Files

Abstract

XFELs provide X-ray pulses with unprecedented peak brightness and ultrashort duration. They are usually driven by planar undulators, meaning that the output radiation is linearly polarized. For many experimental applications, however, polarization control is critical: besides the ability to produce linearly polarized radiation, one often needs the possibility of generating circularly polarized radiation with a high, stable degree of polarization. This may be achieved by using a first part of the XFEL undulator to produce bunching and then, by propagating the the bunched beam through an "afterburner" - a short undulator with tunable polarization, where only limited gain takes place. One of the issues that one needs to consider in this case is the separation of the circularly polarized radiation obtained in the radiator from the linearly polarized background produced in the first part of the FEL. In this article we review several methods to do so, including the inverse tapering technique. In particular, we use the Genesis FEL code to simulate a case study pertaining to the SASE3 FEL line at the European XFEL with up-to-date parameters and we confirm that a high degree of circular polarization is expected. Moreover, we propose to further improve the effectiveness of the inverse tapering technique either via angular separation of the linearly polarized radiation or strongly defocusing it at the sample position. In this way we exploit the unique flexibility of the European XFEL from both the electron beam and the photon beam optics side.

Details

PDF

Statistics

from
to
Export
Download Full History