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Abstract
A projection operator is derived for use in iterative phase retrieval algorithms when the Fourier
intensity data is an average over the intensity from multiple clusters of identical objects. The
projection operator is a generalization of the magnitude projection for conventional phase
retrieval for a single object, and is applicable when the relative orientations and positions of the
objects within the clusters are known. Simulations demonstrate that an iterative projection
algorithm equipped with this new projection operator can successfully reconstruct an object from
the averaged Fourier intensities from multiple clusters, each containing multiple copies of the
object.

Keywords: phase retrieval, crystallography, diffractive imaging, iterative projection algorithms

(Some figures may appear in colour only in the online journal)

1. Introduction

Coherent diffractive imaging (CDI) is a lensless imaging
technique in which the scattering density of objects are com-
putationally inferred from the diffraction they produce when
illuminated by a coherent radiation wavefront. Far-field dif-
fraction patterns typically provide a direct measurement of the
intensity (modulus squared) of the Fourier transform of the
objectʼs scattering density, and the scattering density is typi-
cally proportional to the objectʼs electron density in the case of
x-ray diffraction. Deducing the scattering density of objects
from their Fourier intensities is the goal of CDI and is also

known as phase retrieval. Such deductions are inverse pro-
blems that are ill-posed in general with the potential of having
multiple solutions. However, it is well known that a sufficiently
finely sampled Fourier intensity in conjunction with knowledge
that the object is finite in size gives sufficient information to
specify a unique scattering density up to trivial ambiguities
[2, 18]. Given that the two aforementioned criteria are met,
iterative projection algorithms (IPAs) are an effective method
for arriving at a practical reconstruction of the object [6, 10].
The method of CDI using IPAs has been successfully
demonstrated experimentally with different types of radiation
and objects in the past, and forms a useful imaging technique in
fields such as microscopy and astronomy [14, 19].

In this paper we consider cases where a CDI experiment
provides us with the average diffracted intensity from a col-
lection of identical objects in which the relative spatial
positions and orientations of the objects are known. Such a
collection of objects is referred to here as a ‘cluster.’ An
example of where this problem can arise is in recent serial

Journal of Optics

J. Opt. 18 (2016) 114003 (13pp) doi:10.1088/2040-8978/18/11/114003

5 Authors to whom any correspondence should be addressed.

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

2040-8978/16/114003+13$33.00 © 2016 IOP Publishing Ltd Printed in the UK1

mailto:jpchen1@mainex1.asu.edu
mailto:rkirian@asu.edu
http://dx.doi.org/10.1088/2040-8978/18/11/114003
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8978/18/11/114003&domain=pdf&date_stamp=2016-09-29
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8978/18/11/114003&domain=pdf&date_stamp=2016-09-29
http://creativecommons.org/licenses/by/3.0/


femtosecond crystallography experiments with x-ray free-
electron lasers. In this application, one hopes to recover the
electron density of the crystal asymmetric unit from the
averaged x-ray diffraction intensity obtained from a large
ensemble of nanocrystals of varying sizes, shapes, and surface
terminations [5, 11, 12, 20]. This particular reconstruction
technique has been called ‘shape transform phasing’ and does
not suffer from the conventional problem of crystallographic
under-sampling because it utilizes diffraction intensities
measured away from the Bragg condition. Unlike conven-
tional structure factor amplitudes measured in protein crys-
tallography, which are almost completely insensitive to the
nature of the crystal surface, inter-Bragg diffraction from
finite crystals varies dramatically according to the specific
occupancies of molecules at the surface of the crystal. The
key idea encountered in shape transform phasing that is of
relevance to this paper is that the ensemble-averaged dif-
fraction from varying finite crystals can be reduced,
approximately, to an incoherent average over the diffraction
from different types of unit-cell configurations [3, 4, 11]. In
cases where one unit-cell arrangement dominates the dif-
fraction intensities, conventional iterative phasing strategies
may be effective [13]. In general, however, the scattering
density of one molecule must be reconstructed with con-
sideration of the averaged diffraction, using knowledge of the
support of the molecule and the symmetry relationships
within and between the different types of unit cell [8, 11].
Here we consider general clusters of objects that are not
restricted to crystallographic unit-cell configurations as in the
case of shape transform phasing.

In this paper we derive and demonstrate a projection
operator that may be used to reconstruct an object when only
the sum of the Fourier intensities corresponding to various
clusters of that object is available. We assume that the relative
positions and orientations of the common object in each
cluster are known a priori, but these positions and orienta-
tions need not correspond to any particular symmetry group.
The basics of IPAs for CDI applications are outlined in
section 2, the projection operator is described in section 3,
simulations verifying the projection are shown in section 4
and conclusions are drawn in section 5.

2. Reconstruction from the Fourier intensity of one
object

Reconstructing the scattering density of an object ( )f x from
knowing only its Fourier intensity ( )I q can be achieved by
IPAs [6, 10, 14, 15]. The object scattering density is repre-
sented by a vector f where each sample in ( )f x constitutes
one entry in f . Each of those samples in ( )f x then in turn
corresponds to one independent dimension and f can be
thought of as a point in the corresponding multidimensional
vector space. Prior knowledge and experimental data are then
treated as constraints which can be described by sets of
equations, forming various manifolds in the vector space. The
phase retrieval problem then becomes that of finding a point

in the intersection of all the constraint manifolds. Intuitively,
the constraints for CDI require that the solution (a) reproduces
the measured diffracted intensities, and (b) satisfies whatever
is assumed to be known a priori about the object.

The search for the constraint manifold intersection pro-
ceeds in an iterative manner through the application of pro-
jection operators. These operators make the smallest change
to their input such that their output satisfies the corresponding
constraint. The two major constraints in CDI are the support
constraint and the Fourier magnitude constraint, with their
corresponding projection operators denoted here by PS and
PM, respectively. The projection operator PS sets the value of
the samples outside a finite region  in real space where the
diffracting object is thought not to exist to zero, and leaves the
sample values inside , where the diffracting object is thought
to exist, unchanged. Denoting the support function by ( )s x ,
gives

( ) ( ) ( ) ( ) ( )
= =

Î
Î

⎧⎨⎩P f s f
f

x x x
x x

x
if

0 if .
1S

The projection PM sets the magnitude of a complex-valued
sample in Fourier space to the measured value while leaving
the phase of that complex-valued sample unchanged. The set
of all complex numbers that have the same magnitude defines
a circle on the complex plane, therefore the projection
involves moving the target sample value radially on the
complex plane until it lies on the circle. The Fourier transform
operation and its inverse, denoted here by the operators  and
 -1, respectively, are required to move the sample values
back-and-forth between real space and Fourier space and so
are incorporated into the projection operator PM, giving

( ) ( )
( )

( ) ( )= -
⎧⎨⎩

⎫⎬⎭P f
I

I
Fx

q
q

q , 2M
1 data

where ( ) ∣ ( )∣ ∣ { ( )}∣= =I F fq q x2 2 and ( )I qdata is the
measured diffracted intensity.

Various IPAs are in use for coercing the iterate to arrive
at the constraint intersection, which is viewed as a fixed point
in the dynamical systems perspective of the algorithm. Not all
fixed points are solutions; most represent local minima in the
landscape described by the distance between the constraint
manifolds. The simplest IPA is the error reduction (ER)
algorithm [10] where the ith iterate ( )f i is updated according to
the rule

( )( ) ( )=+ P Pf f . 3i i1
S M

The ER update rule moves the iterate steadily towards a fixed
point but is unable to escape and explore other regions of the
vector space should that fixed point not be a solution. A flow
diagram depicting the overall procedure of the ER algorithm
for reconstructing a single object from its Fourier intensity is
shown in figure 1. An alternative algorithm which is
pleasingly symmetric is the difference map (DM) algorithm
[6] in which the ith iterate is updated according to the rule

( ) ( )( ) ( ) ( ) ( )b= + -+ P R P Rf f f f , 4i i i i1
S M M S
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where RS and RM are called relaxed projections and are given
by

(( ) )
(( ) )

( ) ( )

( ) ( )
g g
g g

= + -
= + -

R P

R P

f f

f f

1 ,

1 .

i i

i i

S S S S

M M M M

The amount of relaxation for the two relaxed projections is
controlled by the real numbers gS and gM. It is usual to set
g b= -1S , g b= 1M as justified by Elser [7], and ∣ ∣b < 1 is
then a single parameter that can be thought of as relating to
the step-size of the algorithm. Once the algorithm has
converged, i.e., the iterate is no longer changing, and is thus
at a fixed point, a solution *f that satisfies both constraints is
given by

( )( ) ( )* = =P R P Rf f f . 5i i
S M M S

3. Reconstruction from the Fourier intensity
averaged over multiple clusters of objects

Consider now an experiment involving the measurement of
the diffracted intensity averaged over a total of J clusters
where the jth cluster is composed of Kj identical copies of an
object ( )f x . The scattering density of the jth cluster can be
written as

( ) ( ) ( ) ( )å å= = +
= =

c f f Rx x x t , 6j
k

K

jk
k

K

jk jk
1 1

j j

where Rjk is the rotation matrix that gives the orientation of
the kth object in the jth cluster, and the translation vector tjk

shifts the kth oriented object to the correct location in the jth
cluster. There are in total N = å = Kj

J
j1 copies of the object in

all J clusters. The set of all N objects is denoted by
{ ( )} { ( ) ( )}= ¼f f fx x x, ,jk JK11 J

, and the corresponding set of J
clusters by { ( )} { ( ) ( )}= ¼c c cx x x, ,j J1 .

The above description is vectorized as follows to facil-
itate analysis in the later sections. Write the scattering density

of the common object ( )f x as the vector f , the scattering
density of the kth object in the jth cluster ( )f xjk as the vector
f jk, and the scattering density of the jth cluster ( )c xj as the
vector cj. The vectorized density of the kth object in the jth
cluster, f jk, can be related to the vectorized density of the
common object, f , via

( )= Lf f, 7jk jk

where Ljk is a matrix that carries out all the rotation and
translation operations on f to generate object k in cluster j.
The vectorized density of the jth cluster, cj, can be similarly
related to the vectorized density of the common object via

( )= Lc f, 8j j

where Lj is a linear operator (matrix) that replicates f and
carries out all the rotation and translation operations for the fs
to generate the set of all Kj objects in the jth cluster. An
explicit form for the matrices Lj and Ljk depends on the
properties of the vectorization that maps the samples of the
scattering densities into their corresponding vectors, specifi-
cally, it depends on the order of stacking of the samples into a
column vector. With the formalism described by equations (7)
and (8), more general operations than equation (6) can be
included in our model, such as arbitrary spatial permutations
of density samples that are not derived purely from rotation
and translation operations.

We note that in many cases the operations given by
equations (7) and (8) may also incorporate some interpolation
of rotated objects, which would occur, for example, in the
case of a Cartesian grid of densities with rotations that are not
integer multiples of p 2. Equation (8) may also allow object
densities to have spatial overlaps. Although in three dimen-
sions we may safely assume that most objects have no phy-
sical overlap, we consider in this paper the general case of
overlapping objects because it is relevant to the problem of
forming two-dimensional projection images of three-dimen-
sional objects.

The inverses of equations (7) and (8) will be important to
the proposed methods in the paper and are now described.
The mapping from the kth object in the jth cluster back to the
object that generated it can be done via

( )= +Lf f , 9jk jk

where +Ljk is the pseudoinverse of Ljk. The mapping from the
jth cluster back to a common object can similarly be
performed by

( )= +Lf c , 10j j

where +Lj is the pseudoinverse of Lj.
For convenience, we define the equivalent operator

notation forms of equations (7) and (9) that act on the un-
vectorized scattering densities, as

( ) ( ) ( )=f fx x , 11jk jk

and

( ) ( ) ( )= -f fx x . 12jk jk
1

Figure 1. General flow diagram of the ER algorithm for
reconstructing a single object from its Fourier intensity. Gray areas
indicate potential regions of non-zero values in the computational
array holding the object. The operators PM and PS are as described in
the text. The quantities being directed into the operator boxes
represent the information required by the particular operation.
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The operatorsjk and
-
jk

1 are referred to as the forward object
mapping and the inverse object mapping, respectively.
Similarly, we define the equivalent operator notation forms
of equations (8) and (10) that act on the un-vectorized
scattering densities of the common object and the jth cluster
as

( ) ( ) ( )=c fx x , 13j j

and

( ) ( ) ( )= -f cx x . 14j j
1

The operators j and -
j

1 are referred to as the object-to-
cluster mapping and the cluster-to-object mapping,
respectively.

The invertibility of both j and jk is problem-dependent
since there is in general a one-to-many mapping between the
elements of f and the elements of cj (e.g. when there is more
than one object in the cluster), and also between the elements
of f and the elements of f jk (e.g. when interpolations are
required for object rotations). Disregarding the effects of such
operations as interpolations due to rotations, the mapping jk

is in principle one-to-one since it maps one sample of the
common object to one sample in the ( j, k )th copy of the
object. However, j is a one-to-many mapping by definition
since it maps one sample of the common object to more than
one sample in the jth cluster. The invertibility of the object-to-
cluster mapping j can be understood via the matrix Lj. If the
objects do not overlap, Lj simply replicates and permutes the
replicated entries of f to construct cj. The matrix Lj in that
case is always invertible with the inverse given by

( )=+L K L1j j j
T, where the superscript T denotes matrix

transposition. If the objects do overlap, then the pseu-
doinverse, +Lj , contained within -

j
1 is appropriate as it cor-

responds to minimizing the two-norm between the resulting
common object and the jth cluster. Further discussion on the
invertibility of Lj and Ljk is given in section 3.4.

Returning now to the diffraction experiment, the summed
diffracted intensity from a total of J clusters, where each
cluster is weighted by a real-valued multiplicative factor wj, is
given by

( ) ∣ ( )∣ ∣ ( )∣ ( )å å å= =
= = =

I w C w Fq q q . 15
j

J

j j
j

J

j
k

K

jk
1

2

1 1

2
j

The quantities ( )C qj and ( )F qjk are the Fourier transforms of
( )c xj and ( )+f R x tjk jk , respectively. The averaged diffracted

intensity of the J clusters (i.e. equally weighted) would imply
that =w J1j for all = ¼j J1, , . The weighting could
represent, for example, the relative frequency of occurrence
of the different clusters. The reconstruction problem can now
be stated as follows: find a set of N objects{ ( )}f xjk , and hence
the corresponding set of J clusters { ( )}c xj , such that ( )I q is
equal to the measured intensity ( )I qdata . Reconstruction of an
object from the averaged diffracted intensity of multiple
clusters of identical copies of that object then corresponds to
deducing ( )f x from knowing the intensity data ( )I qdata and
the fact that all N objects are the same and of finite extent. The
associated Rjk and tjk for each object and the weights wj for
each cluster are assumed in this paper to be known.

The solution to the above problem can be found using
IPAs, provided that appropriate projection operators are uti-
lized. There are at least two approaches to the above problem
of developing suitable projection operators. Approach A is to
solve for the set of all clusters { ( )}c xj while enforcing the
relationships between the objects in the clusters, and a support
constraint on each cluster. The object ( )f x is then extracted
from the resulting clusters. Approach B is to solve directly for
the set of all objects{ ( )}f xjk , without explicitly reconstructing
each cluster, and estimating ( )f x from the resulting set of
objects. Both approaches achieve the same goal and are dif-
ferent perspectives on the same problem.

3.1. Approach A

In approach A, the object is reconstructed from the averaged
diffracted intensity of multiple clusters by reconstructing the
clusters themselves [16]. For the case of a weighted sum of
diffraction intensities considered here, where the weights are
not necessarily equal, the iterates of the IPA must be scaled
accordingly in order for there to be a closed-form expression
for the Fourier magnitude projection PM. Applying the scal-
ing

( ) ( ) ( )¢ =c w cx x , 16j j j

the summed diffracted intensity from equation (15) becomes

( ) ∣ ( )∣ ( )å= ¢
=

I Cq q , 17
j

J

j
1

2

where ( )¢C qj is the Fourier transform of ( )¢c xj . The IPA will
now operate on ( )¢c xj and the reconstruction at the termination
of the algorithm can be obtained via the inverse scal-
ing ( ) ( )= ¢c c wx xj j j .

The Fourier magnitude projection, PM, for approach A is
similar to that described by Elser and Millane [9] who con-
sidered the case of phase retrieval from diffraction intensity
data that is averaged over multiple orientations of a single
object. The Fourier magnitude projection is given by [16]

( ) ( )
( )

( ) ( )¢ = ¢-
⎧⎨⎩

⎫⎬⎭P c
I

I
Cx

q
q

q , 18M j j
1 data

where ( )I q is calculated from the current estimate of the set of
all clusters { ( )}¢c xj via equation (17).

Geometrically, at a given sample point q in Fourier
space, the constraint manifold specified by equation (17) in
terms of ( )¢C qj corresponds to the surface of a J2 -dimensional
hypersphere in J2 -dimensional space (one-dimension for each
of the real and imaginary components of ( )¢C qj ). The pro-
jection operator PM in equation (18) then brings its input onto
the hypersphere via the rescaling ( ) ( )I Iq qdata . The con-
straint manifold being a hypersphere ensures that such a
rescaling is able to bring the input onto the constraint surface
in a distance-minimizing way. For a set of weights wj that are
not equal, the constraint surface described by equation (15) in
terms of ( )C qj is a hyper-ellipsoid. The effect of the change of
variables given by equation (16) is therefore to rescale the
axes such that the hyper-ellipsoid becomes a hypersphere.
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The real-space projection, PS, for approach A has the
following steps: (i) apply the cluster-to-object mapping, -

j
1,

to the current estimate of the jth scaled cluster, ( )¢c xj , to obtain
an estimate of the common object for all = ¼j J1, , , (ii)
account for the number of objects in each cluster by
weighting the estimate of the common object by Kj, (iii)
calculate the weighted average of all such common object
estimates with the appropriate weightings (as derived in
appendix A), (iv) enforce the support of the common object,

( )s x , on the result of the weighted average to arrive at an
updated common object, and (v) apply the object-to-cluster
mapping, j, and the scaling wj , to the updated common
object to generate an update to each cluster. The real space
projection PS for approach A described above can be written
as

( ) ( )
( ( ))

( )
( )

å
å

¢ =
¢

=
-

=

P c w s
w K c

K w
x x

x
. 19j j j

n

J
n n n n

n

J
n n

S
1

1

1

The real-space operation given in equation (19) becomes
only approximately distance-minimizing if there are object
overlaps or irreversible effects from interpolations. In those
cases a single operation that maps a common object ( )f x to
the set of all clusters { ( )}c xj must be defined and the
pseudoinverse of that operation can be calculated to map
the set of all clusters back onto a common object in a
distance-minimizing way. The overall flow diagram of the
ER algorithm implementing approach A is shown in
figure 2.

Approach A estimates the scattering density of the set of
J clusters { ( )}c xj independently at each iteration, and is a
variant of a related problem studied by Millane and Chen
[17] in which the objective is to reconstruct a set of unre-
lated objects from their averaged Fourier intensities. That
problem uses the same Fourier magnitude projection
equation (18), but the averaging step in the real space pro-
jection is omitted since the objects (clusters) are unrelated.
The phase retrieval problem in that case is not uniquely
solvable in general because it depends on the number of
unique constraints (samples of the union of the object
autocorrelations) and the number of unknown parameters
(samples of the object densities). Uniqueness can be eval-
uated for particular cases as described by Millane and Chen
[17]. For the case of clusters of identical objects considered
here, the number of unknowns is fixed and does not grow
with increasing numbers of clusters, and thus non-unique-
ness is less problematic.

3.2. Approach B

In approach B, developed here, the object ( )f x is recon-
structed from the averaged diffracted intensity of multiple
clusters by first reconstructing the set of all objects { ( )}f xjk

and then estimating ( )f x from the set. A Fourier magnitude
projection PM is required that enforces the relationship that
the averaged diffracted intensity derived from the current
estimate of each object ( )f xjk in each cluster must equal the
measured data ( )I qdata , without explicitly reconstructing the

individual clusters. For the case of a weighted sum of dif-
fraction intensities considered here, where the weights are not
necessarily equal, the iterates of the IPA must be scaled
accordingly in order for there to be a closed-form expression
for the Fourier magnitude projection PM (as described in
appendix B). Applying the scaling

( ) ( ) ( )¢ =f K w fx x , 20jk j j jk

the summed diffracted intensity from equation (15) becomes

( ) ( ) ( )å å= ¢
= =

I
K

Fq q
1

. 21
j

J

j k

K

jk
1 1

2
j

where ( )¢F qjk is the Fourier transform of ( )¢f xjk . The IPA will

now operate on ( )¢f xjk and the reconstruction at the
termination of the algorithm can be obtained via the inverse
scaling, ( ) ( )= ¢f f K wx xjk jk j j .

The Fourier magnitude projection, PM, for approach B
can be found by deriving the corresponding constraint
manifold and using the method of Lagrange multipliers (as

Figure 2. General flow diagram of the ER algorithm for
reconstructing multiple clusters of objects from their weighted
averaged Fourier intensity using approach A. In this example, there
are two clusters that each contain two objects. Gray areas indicate
potential regions of non-zero values in the computational array
holding the object. The operators PM and PS are as described in the
text, the symbol  is understood to contain the collection of all
 ¼, , J1 operators, and similarly -1 contains the set of their
inverse. The weighted averaging step in PS is also understood to be
incorporated within -1. The quantities being directed into the
operator boxes represent the information required by the particular
operation.
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detailed in appendix B) and is given by

( ) ( ) ( )
( )

( ) ( )



å

¢ = ¢ + -

´ ¢

-

=

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭

P f F
I

I

K
F

x q
q

q

q

1

1
, 22

jk jk

j m

K

jm

M
1 data

1

j

where ( )I q is calculated from the current estimate of the set of
all objects { ( )}¢f xjk via equation (21).

Geometrically, as elaborated in appendix B, for a given
sample q in Fourier space the constraint manifold specified by
equation (21) in terms of ( )¢F qjk , corresponds to the surface of
a J2 -dimensional hypercylinder embedded in a N2 -dimen-
sional space (one-dimension for each of the real and ima-
ginary components of the Fourier transforms of the N
objects). The projection PM specified by equation (22) then
brings its input onto the hypercylinder in a distance-mini-
mizing fashion.

The real-space projection PS for approach B has the fol-
lowing steps: (i) apply the inverse object mapping, -

jk
1, to the

current estimate of the scaled kth object in the jth cluster, ( )¢f xjk ,
to generate a set of estimates for the common object, (ii) cal-
culate the weighted average of all such common object estimates
with the appropriate weightings (as derived in appendix A), (iii)
enforce the support of the common object, ( )s x , on the result of
the weighted average to arrive at an updated common object,
and (iv) apply the forward object mapping, jk, and the scaling

K wj j to the updated common object to generate an update to

each ( )¢f xjk . The real space projection PS for approach B
described above can be expressed as

( )
( ) ( )

( )

( )
( )



å å
å

¢ =

´
¢

= =
-

=

P f K w s

K w f

K w

x x

x
. 23

jk j j jk

n

J
n n m

K
nm nm

n

J
n n

S

1 1
1

1
2

n

The real-space operation given in equation (23) becomes only
approximately distance-minimizing if there are irreversible
effects from interpolations. In that case a single operation that
maps a common object ( )f x to the set of all objects { ( )}f xjk

must be defined and the pseudoinverse of that operation can
be calculated to map the set of all objects back onto a
common object in a distance-minimizing way. The overall
flow diagram of approach B as implemented using the ER
algorithm is shown in figure 3.

As expected, one can see that for J=1, =K 11 , =w 11 ,
=t 011 and R11 being the identity matrix, the averaged dif-

fracted intensity given by equation (15) becomes ∣ ( )∣F q11
2 and

the projection operator in equation (22) reduces to the Fourier
magnitude projection in conventional phase retrieval for a
single object given by equation (2).

3.3. Modified approach B

Since the objects in the clusters are all identical, approach B
can in principle be simplified in the following way. We can
select out only a single object ( )¢f xjk , for a single ( )j k, ,

generated by the Fourier space projection equation (22), and
thus eliminate both the estimation of the other copies of the
object and the averaging step in real-space. For example,
choosing j=1, k=1, and setting 11 as the identity opera-
tor, the Fourier magnitude projection for modified approach B
is given by equation (22) but only ( )¢P f xM 11 need be calcu-
lated. The operation in real-space for modified approach B
has two steps: (i) enforce the support of the common object,

( )s x , on the current estimate of ( )¢f x11 , weighted by the
constant factor K w1 1 1/ , and (ii) apply the forward object
mapping, jk , and the scaling K wj j , to the common object to

generate the updated ( )¢f xjk for all = ¼k K1, , j and
= j J1, , , i.e.

( ) ( ) ( ) ( )¢ = ¢P f K w s f
K w

x x x
1

. 24jk j j jkS 11
1 1

The overall flow diagram of the ER algorithm implementing
modified approach B is shown in figure 4.

The advantage of the modified approach is that it reduces
the computational cost of the Fourier space projection by a
factor of N. Furthermore, it eliminates the need for any inverse
mapping back onto the common object such as inverse rota-
tions, and hence reduces artefacts arising from any interpola-
tion that may be required. A disadvantage is that the simplified
real-space operation is no longer a projection since the

Figure 3. General flow diagram of the ER algorithm for
reconstructing multiple objects within multiple clusters from the
weighted averaged Fourier intensity of the clusters using approach
B. Gray areas indicate potential regions of non-zero values in the
computational array holding the object. The operators PM and PS are
as described in the text, the symbol  is understood to contain the
collection of all  ¼, , JK11 J operators, and similarly -1 contains
the set of their inverse. The weighted averaging step in PS is also
understood to be incorporated within -1. The quantities being
directed into the operator boxes represent the information required
by the particular operator.
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weighting factor K w1 1 1 in equation (24) undoes the effect of
the rescaling in equation (20), rendering the projection operator
equation (22) not distance-minimizing, and hence convergence
of IPAs cannot be guaranteed. Furthermore, the real-space
constraint applied is weaker since there is no averaging over
other estimates of the object, which may lead to more iterations
being required for the potential convergence.

3.4. Comparison of the approaches

A key distinction between approaches A and B is that it is
necessary in A to extract the individual object densities from
their constituent clusters in real-space, for example via the
pseudoinverse matrix +Lj as described above, whereas in
approach B, the determination of +Lj is not necessary since,
by design, the object densities are the quantities extracted via
the Fourier modulus projection operator. Only the inverse
object mappings, +Ljk , are needed in approach B, which in
principle always have a unique output since the forward
object mapping, jk , is one-to-one in theory. However in
practice the mapping may be one-to-many depending on the
interpolation process applied.

If object overlap occurs, then the problem appears to be
solvable in many, but not all, cases. In non-solvable cases
there would be insufficient independent data for obtaining the
correct reconstruction, i.e. at least one of the Lj or Ljk would
be rank-deficient and thus not uniquely invertible. In those
non-solvable cases no algorithm (including methods A and B)
will be able to reconstruct the correct object since the required
information is simply absent. An apparently sufficient but not
necessary condition for Lj to be rank-deficient, for clusters
consisting of rotated copies of an object, is when the set of
rotation operator matrices Rjk forms a group.

The uniqueness of a constraint satisfaction problem in
general can be characterized by the ‘constraint ratio’ which is
the ratio of the number of independent equations to the
number of independent unknowns [9, 17]. The constraint ratio
can be applied to determine the necessary, but not necessarily
sufficient, conditions for uniqueness of an inverse problem.
The constraint ratio is in this case of reconstructing from the
averaged diffracted intensity of multiple clusters, related to
the independent portions of the sum of all clusters’ auto-
correlation [16]. The exact form of the constraint ratio for this
type of phase retrieval problem is therefore dependent on the
spatial relationships of the objects in the clusters.

It can be shown that the simpler operation

( ) ( )
( )

( ) ( )= -
⎧⎨⎩

⎫⎬⎭P f
I

I
Fx

q
q

q 25jk jkM
1 data

produces an output that also satisfies the Fourier magnitude
constraint, equation (15) but is not distance-minimizing in
general and applies only to certain translations and rotation
groups. Equation (25) corresponds to equation (18) with the
clusters replaced by the objects. The operation given by
equation (25) is not strictly a projection since even though it
moves the initial point in the N2 -dimensional space onto the
constraint surface given by equation (15) for arbitrary Kj, wj

and J, it only minimizes the distance corresponding to that
movement when the surface is a J2 -dimensional hyper-
sphere, i.e., when wj are all equal and =K 1j for all
= ¼j J1, , . However, despite this shortcoming, equation (25)

was demonstrated by Kirian et al [11] to still be effective in
the context of shape transform phasing. In that case,
convergence was also helped by using a dynamic support
that tightens around the object instead of the cluster.

4. Simulation results

The new Fourier magnitude projection operator equation (22)
was tested through simulations. The two-dimensional
‘Autumn’ image resized to a size of 129 by 129 pixels, was
chosen as the object to be reconstructed. The pixel values of
this image were purely real and had a minimum value of zero
and a maximum value of 1. Clusters of the Autumn image
were formed by rotating and translating multiple copies of the
original image. The rotations were carried out with nearest-
neighbor interpolation and the translations consist of integer
numbers of pixel spacings. The Fourier intensities of the
clusters were calculated using the discrete Fourier transform
and summed together, with equal weights, i.e., =w 1j for all
= ¼j J1, , , to represent the diffracted intensity data ( )I qdata .

Noise was not added since the objective here was to inves-
tigate the effectiveness of the proposed projection operator.

Iterative phase retrieval was carried out using the Fourier
magnitude projection operator equation (22) and the real-
space projection operator equation (23). The support was
fixed as a tight box around the original image. Extra con-
straints such as positivity were not enforced. The simulation
volume was obtained by zero-padding the support box by a

Figure 4. General flow diagram of the ER algorithm for a modified
approach to reconstructing multiple objects within multiple clusters
from the weighted averaged Fourier intensity of the clusters based on
approach B. Gray areas indicate potential regions of non-zero values
in the computational array holding the object. The operators PM and
PS are as described in the text, the symbol  is understood to contain
the collection of all  ¼, , JK11 J operators. The quantities being
directed into the operator boxes represent the information required
by the particular operator.
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factor of three in each dimension and the translations tjk were
chosen such that the Fourier intensity data were sufficiently
sampled with respect to the maximum size of the cluster for
the particular ensemble of clusters tested. The IPA used for
the reconstruction was the DM algorithm given by
equation (4) with its parameter β set to 0.9. The IPA was
started such that the initial iterate has uniformly random
sample values in real space contained within the support.
Convergence of the algorithm was measured by calculating
the normalized root mean square error, E, between ( )I qdata

and the averaged diffracted intensity obtained from the cur-
rent estimate of the object, ( )I q , i.e.

( ( ) ( ))

( )
( )=

å -

å
E

I I

I

q q

q
, 26

q

q

data
2

data
2

where ( )I q is given by equation (15). The final reconstruction
for an IPA run was obtained by taking the iterate at the
iteration where the error metric E was the minimum within
the maximum number of iterations. The quality of the
reconstruction was measured in real space by the normalized
root mean square error, e, between the density of the true
object, ( )f xtrue , and the current estimate of the object density

( )f x , i.e.

( ( ) ( ))
( )

( )=
å -

å
e

f f

f

x x

x
. 27x

x

true
2

true
2

The first simulation is for four clusters of 3, 4, 5, and 7
randomly displaced Autumn images with random rotations as
shown in figure 5(a). Three thousand iterations of the IPA
were carried out. Reasonable reconstruction of the object was
obtained within 500 iterations as shown in the error plot in
figure 5(e). It can be seen that the reconstruction, displayed in
figure 5(d), is slightly blurry. This is due to the interpolation
process when the inverse rotation operator is applied to each
object during each iteration of the iterative algorithm.

The second simulation is for the same four clusters of 3, 4,
5, and 7 randomly displaced Autumn images but with their
rotations now restricted to random integer multiples of 90o, as
shown in figure 6(a). Three thousand iterations of the IPA were
carried out. Successful reconstruction of the object was
obtained within 1000 iterations as shown in figures 6(d) and (e).
The restriction of the rotations to integer multiples of 90o means
that no interpolation is required during the application of the
inverse rotation operator and a good reconstruction is obtained.

The third simulation is for one cluster of two Autumn
images such that their rotations are 0o and 180o, respectively.
The two objects are displaced slightly along their diagonal, as
shown in figure 7(a). Three thousand iterations of the IPA
were carried out. Reconstruction of an object that satisfies the
Fourier intensity of the cluster was obtained as shown in the
error plot figure 7(e). However, the object-to-cluster mapping
matrix L1 is rank-deficient in this case and there is insufficient
information to reconstruct the object. This is shown by the
reconstruction displayed in figure 7(d) that is in error.
Inspection of figure 7(d) shows that the reconstruction is
accurate where the objects do not overlap, but is inaccurate in

the region of overlap where it is contaminated by a mixture of
the two rotated objects.

5. Conclusions

The key result presented here is the new Fourier magnitude
projection operator equation (22) and the combination of this
operator with a weighted averaging method in real-space. This
approach is appropriate for use in reconstructing an object from
arbitrarily weighted Fourier intensities averaged over an arbi-
trary number of clusters of a common object. In practical terms,
this corresponds to the problem in which the far-field diffrac-
tion intensity is obtained from a variety of molecular clusters of
different configurations, but where the intensities have been
averaged. This problem arises in the context of serial femto-
second nanocrystallography, since coherently illuminated
nanocrystals with imperfect surfaces can indeed be viewed as
clusters of identical objects, but where complete three-dimen-
sional diffraction information cannot be obtained in a single
shot, on a single crystal shape. Other situations where a
superposition of coherently and incoherently summed diffrac-
tion intensity from objects can arise include molecular imaging
experiments with translationally disordered crystals [1] and in
time-resolved pump-probe experiments when only a certain
fraction of the molecules are promoted to an excited state [21].
The Fourier magnitude projection operator presented here, in
conjunction with the weighted averaging real-space projection,
may be applicable to the above situations as IPAs equipped
with these projections are (i) not limited to crystallographic
space groups (or any particular cluster configurations), (ii) able
to handle arbitrary diffracted intensity weightings, and (iii) has
the advantage of requiring a simpler real-space projection
operator compared to methods that explicitly solve for the
clusters themselves.

The effectiveness of the projection operator is confirmed
by incorporating it into a standard IPA and reconstructing
simple two-dimensional objects under ideal, noiseless con-
ditions. We expect that the algorithm will also be effective
with realistic objects in three-dimensions, since iterative
phasing algorithms are known to be more robust in higher
dimensions. However, this expectation, along with the impact
of noise and systematic errors in the diffraction data, needs
further investigation.

The projection operators presented here can be applied to
the more general situation of reconstructing independent, non-
identical objects within clusters by appropriately altering the
real-space averaging step. However, the issue of uniqueness
and ambiguities that will subsequently arise with an increased
number of independent unknown parameters has not been
considered in detail here and is the subject of current research.
Similarly, one can envision a generalization to cases in which
the weights of each cluster, i.e. the relative occurrence of each
cluster type that contributes to the summed intensities, are
initially unknown. Since the phase retrieval algorithm solves
for many unknown phases, we expect that the addition of a
small number of additional unknowns (the weights) is a
tractable problem, which we intend to address in future work.
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Appendix A. Real-space averaging projection with
weighted iterates

The Fourier magnitude projection for both approaches A and
B requires its input to be normalized as described in the main
text. The normalization factor is wj for approach A and

K wj j for approach B. The consequence of these normal-
izations is that the real-space density averaging step can no
longer be an unweighted average, but each object being
averaged over must be weighted according to the normal-
ization factors. The required weighted average (i.e. the

projection) minimizes the two-norm of the difference between
the result of the average and the original set of objects. This is
derived as follows.

Let aj be the normalization factor for the jth cluster and ò
be the value of two-norms. The two-norm of the difference
between the set of estimates of the normalized clusters,
{ ( )}¢c xj , and the set of clusters generated by a common object,

( )f x , (the result of the average) is

∣ ( ) ( )( )∣ ( ) åå a= ¢ -
= =

c fx x . A.1c
p

P

j

J

j p j j p
1 1

2

The two-norm of the difference between the set of all
estimates of the normalized object derived from the normal-
ized kth object in the jth cluster, { ( )} ¢- f xjk jk

1 , and a common
object, ( )f x , (the result of the average) is

∣( )( ) ( )∣ ( ) ååå a= ¢ -
= = =

- f fx x . A.2f
p

P

j

J

k

K

jk jk p j p
1 1 1

1 2
j

It can be shown that for the case of no object overlap and
effects from interpolations,  =c f since the index p in
equations (A.1) and (A.2) can be adjusted such that
equivalent pixel-by-pixel comparisons are made. Taking the

Figure 5. (a) Four clusters of 3, 4, 5, and 7 objects randomly displaced and rotated within the cluster. (b) The averaged Fourier intensity of the
four clusters, shown in logarithmic scale. (c) The true common object. (d) Reconstructed object, and (e) the reconstruction error E (solid line)
and e (dashed line) as a function of iteration.
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partial derivative of  f in equation (A.2) with respect to
each sample of ( )f x and setting them to zero, i.e.,

( )= ¶ ¶f x0 f p , gives

( )
( )

( )( )

( )
( )

å å
å

a

a
=

¢
= =

-

=

f
f

K
x

x
, A.3

j

J
j k

K
jk jk

j

J
j j

1 1
1

1
2

j

which is the required weighted average. Setting a = wj j

gives the weighted average for approach A, and setting
a = K wj j j gives the weighted average for approach B.

Appendix B. Geometric interpretation of the
constraint equation (15) and derivation of the
projection operator in equation (22)

In this appendix we first explain the geometric form of the
Fourier magnitude constraint given by equation (15), then we
set out to derive the projection operator given by
equation (22). The derivation will show why the particular
normalization factor, K wj j , that was employed for approach
B was necessary.

At a particular =q qp, equation (15) can be written as

( )å å=
= =

I w z , B.1
j

J

j
k

K

jk
1 1

2
j

where ( )=I I qp and ( ) ( · )p=z F R q q texp i2jk jk p p jk
T . The

quantity zjk is a complex number with real and imaginary
parts denoted here by xjk and yjk, respectively. Equation (B.1)
relates xjk and yjk to the known quantity I and describes a
surface in a multi-dimensional space where each of the real
numbers xjk and yjk for all = ¼k K1, , j and = ¼j J1, ,
represents one independent dimension in this space. The
constraint surface given by equation (B.1) thus resides in a
space of dimension = å =N K2 2 j

J
j1 .

Writing equation (B.1) in terms of xjk and yjk shows that
the constraint surface is a quadratic form given by

( )å å å= +
= = =

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟I w x w y . B.2

j

J

j
k

K

jk j
k

K

jk
1 1

2

1

2
j j

A change of variables can therefore rotate the coordinate
system such that the quadratic form is put into its diagonal
form, i.e., one that has no cross terms. It can be shown that the

Figure 6. (a) Four clusters of 3, 4, 5, and 7 objects randomly displaced within the cluster but with rotations restricted to random integer
multiples of 90o. (b) The averaged Fourier intensity of the four clusters, shown in logarithmic scale. (c) The true common object. (d)
Reconstructed object, and (e) the reconstruction error E (solid line) and e (dashed line) as a function of iteration.
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required substitution involves letting

( )
å

å

¢ =

¢ =

=

=

x w x

y w y

,

,

B.3
j j

k

K

jk

j j
k

K

jk

1

1

j

j

giving

( ) ( )å= ¢ + ¢
=

I x y . B.4
j

J

j j
1

2 2

Equation (B.4) shows that the quadratic form given by
equation (B.2) can be described by just J2 variables in the
appropriate coordinate system and furthermore, becomes a
J2 -dimensional hypersphere. However, since there are now
more dimensions ( N2 ) than independent variables describing
the surface ( J2 ), the surface is a hypercylinder. Moreover, the
weighting factor wj can in general be different for different j
and so the constraint surface is in general a hyper-elliptical
cylinder. Equation (B.1) thus describes the surface of a

J2 -dimensional hyper-elliptical cylinder in a N2 -dimensional
space and equation (B.4) describes the surface of a
J2 -dimensional hypersphere obtained by rescaling the
corresponding axes of the hyper-elliptical cylinder by wj .
For the special case of wj being all equal, and =K 1j for all
= ¼j J1, , , i.e. each cluster is a single object, then N=J

and equation (B.4) reduces to the surface of a J2 -dimensional
hypersphere in a J2 -dimensional space, corresponding to the
case treated by Elser and Millane [9]. The above geometric
representation is for a particular =q qp. The geometry of the
entire constraint manifold over all Fourier intensity samples
= ¼p P1, , is then the intersection of all P J2 -dimensional

hypercylinders in a PN2 -dimensional space.
We now derive the the projection operator onto the above

manifold. Consider again a particular =q qp. Because zjk is
related to the real space object scattering density values by a
unitary operator that combines together the translations,
rotations and the Fourier transformation operations, namely,

( ) ( · )p=z F R q q texp i2jk jk p p jk
T , minimizing the distance

between two points in the N2 -dimensional space also

Figure 7. (a) One cluster of two objects displaced within the cluster with rotations of 0o and 180o, respectively. (b) The Fourier intensity of
the cluster, shown in logarithmic scale. (c) The true common object. (d) Reconstructed object, and (e) the reconstruction error E (solid line)
and e (dashed line) as a function of iteration.
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minimizes the distance between the corresponding points in
the vector space of the object scattering densities. The
required projection operator should thus move a point

[ ]Q = ¼ ¼x x y y, , , , ,JK JK11 11
T

J J
in the N2 -dimensional space

onto the closest point [ ]* * * * *Q =  x x y y, , , , ,JK JK11 11
T

J J
that

lies on the surface of the hypercylinder given by
equation (B.1). One method to determine the point *Q is to
consider the Lagrangian function ( ) ( )lQ Q= +L g,

( )l Qh , where λ is the Lagrange multiplier. The objective here
is to minimize the function ( )Qg , which in this case is the
squared Euclidean distance between an arbitrary starting point

[ ]Q = ¼ ¼x x y y, , , , ,JK JK
o

11
o o

11
o o T

J J
and a point Q, given by

( ) (( ) ( ) ) ( )ååQ = - + -
= =

g x x y y , B.5
j

J

k

K

jk jk jk jk
1 1

o 2 o 2
j

such thatQ is required to satisfy the constraint function ( )Qh ,
which is the Fourier intensity constraint of equation (B.1), i.e.

( ) ( )å å åQ = + - =
= = =

⎛
⎝
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FindingQ that minimizes ( )Qg subject to the constraint ( )Qh
is achieved by calculating the partial derivatives of ( )lQL ,
with respect to λ and each component of Q, setting
each partial derivative to zero, and solving for the closest
point *Q . Performing this calculation first yields the set of
equations

( ) ( )* *ål=
¶
¶

= - +
=
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x
x x w x0 2 2 , B.7
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jk jk j
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K
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1

j
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¶
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= - +
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y y w y0 2 2 , B.8
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K
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j

for all = ¼j J1, , and = ¼k K1, , j, and

( ) ( )*
l

Q=
¶
¶

=
L

h0 . B.9

Writing * * *= +z x yijk jk jk and = +z x yijk jk jk
o o o , and then sum-

ming equations (B.7) and (B.8) over all k for a fixed j, gives

( )*å ål
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+= =
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w K
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1
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K
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Equation (B.10) can then be substituted back into
equations (B.7) and (B.8) to give

( )* å
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Equation (B.10) can also be substituted into equation (B.9)
and upon using equation (B.6), gives

( )
( )å l

=
+=

I
I

w K1
, B.12

j

J
j

j j1

o

2

where ∣ ∣= å =I w zj j k
K

jk
o

1
o 2j .

Equation (B.12) cannot in general be manipulated
to yield an explicit solution for λ. A special case in which
an explicit expression for λ can be obtained is when

=w K1j j for all = ¼j J1, , . In that case equation (B.12)
yields

( )l = -
I

I
1, B.13

o

where = å =I Ij
J

j
o

1
o. Combining equations (B.11) and (B.13)

for =w K1j j gives

( )* å= + -
=

⎛
⎝⎜

⎞
⎠⎟z z

K

I

I
z

1
1 , B.14jk jk

j m

K
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o

o
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o
j

which is the required projection operation given by
equation (22) that moves the point Qo to the point *Q on
the surface of the hypercylinder while minimizing the change
in Euclidean distance.

The need for wj to equal K1 j so that equation (B.12) can
be rearranged for λ, explains the origin of the normalization
factor K wj j for approach B. This scaling factor casts the sum
of any arbitrarily weighted Fourier intensities (equation (15))
into a sum of intensities where the weights are equal to K1 j

(equation (21)) so that the projection operator given by
equation (22) can be applied.
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