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1. Introduction 

Synchrotron radiation is a unique source of infrared radiation being highly polarized, 
pulsed, with the broad emission band and about thousand times brighter than standard 
thermal source. All just mentioned synchrotron radiation adventures apply to a large choice 
of experimental techniques and investigations. Among them are high-pressure studies, earth 
science and biology, microspectroscopy, reflectance and absorption spectroscopy for surface 
study, time-resolved spectroscopy and ellipsometry. Interest in infrared synchrotron 
radiation goes back to the 1980s (Duncan & Williams, 1983). At present numerous infrared 
beamlines have been developed at synchrotron radiation facilities throughout the world, 
see, e. g., (Bocci et al., 2008; Carr & Dumas, 1999; Guidi et al., 2005; H. Kimura et al., 2001; S. 
Kimura et al., 2001; S. Kimura et al., 2006; Roy et al., 2006; Williams & Dumas, 1997). Efforts 
to improve the radiation beam characteristics lead to elaboration more and more 
sophisticated beamline optics. To achieve this goal, we need to know all characteristics of 
emitted radiation, its intensity distribution, polarization and phase distribution. In 
particular, the synchrotron radiation wave properties play a major role in conventional 
diagnostics of electron beams in storage rings (Andersson et al., 2006; Elleaume et al., 1995; 
Fang et al., 1996; Flanagan et al., 1999; Hs & Huang, 1993; Weitkamp et al., 2001). In this 
case, the image of the electron beam is formed by an optical lens. The synchrotron radiation 
diffraction on the lens iris aperture restricts the resolution of the beam profile 
measurements. Infrared synchrotron radiation was used for longitudinal beam diagnostics 
at FLASH free electron laser (Grimm et al., 2008; Paech et al., 2006, 2007). Recent trends 
show an increased usage of synchrotron radiation interferometers for high precision 
measurements of the electron beam sizes (Artemiev et al., 1996; Chubar, 1995; Hiramatsu et 
al., 1999; Katoh & Mitsuhashi, 1999; Naito & Mitsuhashi, 2010). For proper interpretation of 
observed data, we also need to know synchrotron radiation phase distributions.  

As far as we know, the paper (Sabersky, 1973) was one of the first papers to pioneer the 
investigation of geometrical-optical properties of synchrotron radiation coming from the 
curving relativistic electron beam. The phase-space techniques, commonly applied to 
charged beam optics, was used for analysis. The focusing of synchrotron radiation by a 
convex lens within the framework of geometrical optics was considered in (Green, 1976; 
Ogata, 1987). The qualitative agreement with the experimentally observed data was found, 
although the quantitative discussion needs taking into account of the diffraction effects. The 
synchrotron radiation treatment as a laser-like Gaussian beam with a small opening angle 
was performed in (Coisson & Marchesini, 1997; Kim, 1986; Ogata, 1991; Takayama et al., 
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1998, 1999). The important benefit to the use of this approximation is that the Gaussian 
beams have been much studied. It has been shown however that the Gaussian 
approximation has some limitations when calculating the synchrotron radiation coherence. 
At the same time the Gaussian beam approximation can reasonably be applied to the 
horizontally polarized component of synchrotron radiation only. It has been also found that 
the Gaussian beam approximation is poor for undulator radiation (Kim, 1986). In addition, 
as it was noted (Miyahara & Kagoshima, 1995), the brightness function defined by Kim can 
be negative (that has no physical meaning) and should therefore be modified. 

The most-used scheme of diffraction phenomena implementation into synchrotron radiation 
theory was suggested by A. Hofmann and F. Meot (Hofmann & Meot, 1982). This technique 
involves the following steps. First, the synchrotron radiation from a single electron has 
supposedly the phase distribution of a point source that is spherically symmetrical one, while 
its amplitude distributions (for both horizontal and vertical polarizations) should be identical 
to that of an electron in a homogeneous magnetic field. Under these assumptions and 
supposing small observation angles, for such source we can calculate the Fraunhofer 
diffraction pattern. Then, assuming that we have a transverse Gaussian distribution of such 
point-like sources, and that they are not coherent (it corresponds to incoherent radiation of 
different electrons in the beam), we can calculate the image distribution by a convolution of 
the single-electron radiation diffraction pattern with the point sources distribution. Assume 
further that, instead of moving relativistic beam, we have a uniform longitudinal distribution 
of such immobile point sources along the circular trajectory of the beam, which are again 
incoherent. Then we can calculate the resultant image distribution from the electron beam by 
straightforward integration along longitudinal coordinate. This scheme is relatively simple, 
easy-to-interpret physically and allows easily estimating the optical resolution for the beam 
cross-section measurements. It was employed by a number of groups for optimization of the 
electron beam profile monitor systems and experimental date interpretations, e.g. (Andersson 
& Tagger, 1995; Arp, 2001; Clarke, 1994; Hs & Huang, 1993). The main weakness of this 
method is that some steps in this scheme are not deduced from the fundamental principles of 
radiation theory that is to say from the Maxwell equations. Close inspection of this model 
shows that some assumptions seem not sufficiently self-consistent. Thus, considering the 
synchrotron radiation as the radiation from the immobile point sources distributed uniformly 
along electron’s trajectory, we in fact presume that the radiation, generated by the electron at 
neighboring sections of its path, are incoherent, but this is not the case. The simplest counter 
example is undulator radiation, where the radiation, emitted by the electron at different 
periods (5-10 and more cm in length), is coherent. Accordingly, there is no reason to expect the 
opposite for synchrotron radiation. Rather, we should expect that the radiation from different 
parts of the electron trajectory is coherent in the case of synchrotron radiation as well.  

In terms of wave optics a consistent definition of the problem is as follows. Let a physical 
device consists of multiple optical parts. Each part has characteristics known beforehand. It 
is sufficient to know the radiation wave amplitude and phase at every point of the device 
entrance window in order to take advantage of the Helmholtz - Kirchhoff integral theorem 
(Born & Wolf, 1986). If these values are known, one can calculate the distribution of the 
radiation intensity on the device output screen. 

The analysis of synchrotron radiation phase distribution based on the fundamental radiation 
principles was presented at the Eleventh Russian Conference on the usage of Synchrotron 
Radiation (Novosibirsk, 1996) (Smolyakov, 1998a, 1998b). Using exact solutions of the Maxwell 
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equations, the expansion of the synchrotron radiation phase in powers of small observation 
angles was obtained. A leading quadratic term of this expansion shows that synchrotron 
radiation by its phase distribution nature is much closer to the radiation emitted by an 
immobile point source rather than to the longitudinally extended source according to the 
geometrical-optical approach mentioned above. At the same time the correction cubic term 
produces a self-aberration effect of synchrotron radiation. The synchrotron radiation exhibits a 
searchlight effect which manifests itself in the amplitude distribution non-homogeneity in the 
vertical direction. Using the known amplitude and phase distributions, the intensity 
distribution of the focused synchrotron radiation from one electron (single electron image) was 
computed (Smolyakov, 1998c). The effect of the lens aperture on the optical resolution of the 
electron beam profile measurement system by means of synchrotron radiation was also 
analyzed. Later the similar results were obtained in the paper (Bosch, 1999), in the part which 
deals with the synchrotron radiation focusing by a reflecting sphere with an aperture.  

An accurate simulation of synchrotron radiation propagation through the beamline optical 
system inevitably needs the application of specialized computer codes. Nowadays two 
codes are mostly in use: the code SRW (Chubar & Elleaume, 1998) and the code PHASE 
(Bahrdt, 1997, 2007). Comparison studies of these codes may be found in (Bowler et al., 
2008). Some distributions of focused synchrotron radiation with and without phase 
corrections were simulated with the help of SRW (Chubar et al., 1999, 2001).  

The codes, which are based on the wave propagation, are precise but time consuming. It 
should be mentioned that simpler and hence faster approaches are also used for analysis of 
beamline optical system properties (Ferrero et al., 2008).  

In this chapter we will consider solely the case of standard synchrotron radiation, namely, 
the radiation generated by highly relativistic electrons while they pass through the uniform 
magnetic field of bending magnets in storage rings. Intensity distributions of synchrotron 
radiation, as well as its polarization properties, have been studied quite intensively and are 
widely covered in the literature. The amplitudes of horizontally ( ) and vertically ( ) 

polarized wave components of synchrotron radiation are expressed in terms of modified 
Bessel functions. Although the first formulas for the wave amplitudes were derived more 
than 60 years ago, regular study of the synchrotron radiation phase distributions started 
relatively recently, about dozen years ago and not yet analyzed in full measure. Here an 
exact expression for the phase distribution in synchrotron radiation wave will be derived. 
Surprisingly, the resultant exact formula is written in terms of elementary functions only, 
though this formula is rather cumbersome. The lens aperture effect on the focused radiation 
intensity distribution is analyzed. 

We do not consider edge radiation in this chapter. A comprehensive list of papers on edge 
radiation can be found in (Geloni et al. 2009a, 2009b; Korchuganov & Smolyakov, 2009; 
Smolyakov & Hiraya, 2005).  

2. Qualitative analysis of synchrotron radiation wave properties 

2.1 Wave optics of convex lens 

To gain greater insight into physics of synchrotron radiation wave optics, let us consider a 

standard case of the point source radiation focusing by a refractive lens, see Fig. 1. Within 
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the framework of geometrical optics, the set of rays ( 1R  and 2R ) from the point source P , 

located at a distance 0D  ahead of the lens, is focused to an image point S aft of the lens at 

the distance L  so that: fLD 111  , where f  is the focal length of the lens.  

 

 

Fig. 1. Point source radiation focusing by a lens: P  - point source, S  - its image, 1R  - 4R  - 

radiation rays. 

In terms of wave optics, a point source emits a divergent spherical wave ikre
r

E
zyxE 0),,(

  , 

with the spherically symmetric amplitude and phase distributions. Here 2k , 

222 )( Dzyxr  . In its passing through the ideal lens, the wave does not change its 

amplitude distribution (no absorption) while the phase distribution is transformed from the 
divergent-type one into the convergent-type wave as it is shown in Fig. 1. This is due to the 
fact that the lens, with its spherical shape and correspondently with smoothly varied 
thickness, imparts the proper different phase delays to different parts of the incident wave. 

Supposing that the lens sizes are far less than the distance to the source D , we have for the 

incident wave at 0z :  

  )2()(exp)0,,( 220 DyxikikD
D

E
zyxEin 


. (1) 

After passing the ideal infinitely thin lens with the focal length f , the correspondent 

distributions of the outgoing wave )0,,( zyxEout


 at 0z  will be equal to:  

  )2()(exp)0,,()0,,( 22 fyxikzyxEzyxE inout  
. (2) 

Here the phase factor  )2()(exp 22 fyxik   describes the action of the lens on the radiation 

passing through it. With a knowledge of the radiation distributions )0,,( zyxEout


 aft of the 

lens and applying the Kirchhoff integral theorem (Born & Wolf, 1986), we can calculate the 

radiation intensity at any point of the observation screen },,{ sss zyx  at 0sz .  
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22
222   is the distance of the lens 

element dxdy  from the point },,{ sss zyx  at the observation screen and the integral is taken 

over the lens aperture A . The standard simplification of the Kirchhoff integral was made by 

neglecting the small terms of the order of D , L  and f . The expression (3) displays 

the well-known Huygens-Fresnel Principle: every point of a wave front )0,,( zyxEout


 may 

be considered as a center of a secondary disturbance which gives rise to spherical waves 

s

s

r

ikr )exp(
. The total disturbance at the observation point },,{ sss zyx  is the result of all these 

secondary waves interference.  

Substituting Eq. (1) and Eq. (2) into Eq. (3), we get:  
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 (4) 

Assume for simplicity that the lens is rectangular in shape: xlx  , yly  , where xl2  and 

yl2  are the lens horizontal and vertical sizes respectively. Considering the integral (4) in the 

image plane Lzs  , where 0111  fLD , we get:  
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where s
x

s x
L

l


 2 , s

y
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L

l


 2 . The radiation intensity is proportional to 

2
),,( sss zyxE


. 

Notice that the focused spot has horizontal and vertical sizes yxlL ,  respectively, which are 

in inverse proportion to the lens aperture sizes yxl ,2 . Second, the radiation intensity at the 

spot center 0sx , 0sy , is proportional to 22
yx ll . It is physically clear that with the lens 

horizontal aperture xl2  increasing, the photon flux through the lens varies proportionally 

and the horizontal size of the spot is correspondently diminished. So, the density is 

quadratic in xl2 . Similar to the vertical aperture yl2 .  

2.2 Time-domain analysis of synchrotron radiation 

Here, we will consider synchrotron radiation in the time domain and describe it in terms of 
electric field of the emitted wave and its arrival time to an observer. A relativistic electron 
generates synchrotron radiation in the uniform magnetic field of a storage ring bending 
magnet. Let us consider a physical experiment with a geometry shown in Fig. 2. The 
electron rotates anticlockwise.  
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Fig. 2. Typical layout of synchrotron radiation observation: 1 – electron trajectory;  
2, 3, 4 – synchrotron radiation field pulses; A-D-B – device entrance window.  

For simplicity, we will restrict here our qualitative analysis to the case of radiation in the 

storage ring median plane XOZ . Briefly, the idea of analysis is as following.  

In uniform magnetic field, an electron generates synchrotron radiation homogeneously 

along its orbit. In the median plane on which the electron moves, the wave shape of the 

emitted radiation (the electric field temporal structure, curves 2, 3 and 4 in Fig.2) is the same 

at any observer positions in this plane (e.g., points A , D  and B ) provided the distances 

from the emitting points a , O  and b  respectively to the observers are the same. In the strict 

sense the distances aA , OD  and bB  are slightly different from each other. Here, however, 

this difference can be neglected being negligibly small in comparison with the distance 

itself. The difference in the field between observers A , D  and B  is in the relative arrival 

time A , D  and B  of the radiation field. The distinctions   between arrival time A , 

D  and B  cannot be neglected since the quantity c  is not negligibly small as compared 

with the radiation wavelength, where c  is the speed of light. This arrival time difference 

gives rise to the phase difference in the frequency domain.  

Let a relativistic electron moves along its circular orbit in a horizontal plane XOZ  (the 

magnetic field is aligned with the vertical Y-axis). It is convenient to choose a frame of 

reference in such a way that at the initial moment 0t  the electron was at the origin of the 

coordinates with its velocity vector directed along the Z- axis. Then the equations of the 

electron motion are:  
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Here, R  is the electron orbit radius,   is the angular velocity of the electron Rc ,   

is the electron reduced velocity 
dt

trd

c
t

)(1
)(

  , constt  )( 
, c  is the speed of light. 

Let us consider a points at the observation screen (plane A-D-B, device entrance window), 

which is transversal to the Z-axis. The observer, who is at the point },0,0{ D , will detect the 

peak in the electric field distribution of the radiation wave (synchrotron radiation field 

pulse) at the moment cD . This is obvious because, at time 0t  the electron was at the 

origin of coordinates, and the vector of its velocity pointed to the observer with coordinates 

},0,0{ D . If there are other observers located at some different points A or B of the 

observation screen, they will detect a similar synchrotron radiation pulse. Nevertheless, 
these observers will detect the signal peak at different instants. Obviously, the time detected 

by each observer consists of two components. The first part )( se xt  is the time, when the 

electron was at such point of its orbit )( etr


 from where the velocity vector pointed to the 

observer with coordinates },0,{ DxX ss   (points a or b in Fig.2). The other part is the time of 

radiation propagation from position of the electron ))(( se xtr


 to the point at the observation 

screen },0,{ DxX ss  , that is the quantity ))((
1

ses xtrX
c

  .  

At some moment t  the electron’s position was )(tr


 and its velocity was pointed to the 

observer with the coordinates  },0),({ Dtxs . It can easily be shown from Fig. 2 that: 

 tgtrDtrtx zxs  ))(()()( , (8) 

where t .  

It follows from Eq. (6) and Eq. (8) that: 

 
)cos(

)()(
t

R
ttgDRtxs  , (9) 

The case 0)( tz  (i.e. 0)cos( t ) is of interest for our analysis. By using the relation 

)(cos1)(1 22   tg , we can get from Eq. (9):  

     0)(2)()()(2)( 2222  tRxtxttgtxRDttgRD sss . (10) 

This equation is quadratic in terms of )( ttg  with the solution:  

 
22

222 )()(
))((

RD

xRDRDxRR
xttg ss

se 
 . (11) 
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This is precisely the solution of the two solutions of the quadratic equation (10) which gives 

0)0( se xt . Here we consider the quantity sx  as an independent variable. Thus, )( se xt  is 

the moment when the electron, having the position ))(( se xtr


, points to the observer with the 

coordinates },0,{ Dxs . As a result, we have the following expression for the arriving time 

)( sx  of synchrotron radiation pulse:  

 ))((
1

)()( sesses xtrX
c

xtx
  . (12) 

It is convenient to define the function )( sx : 

 












22

222 )()(
arctan)(

RD

xRDRDxRR
x ss

s , (13) 

with 0)0( sx  and )()(
1

)( ssse x
c

R
xxt   . In essence the function )( sx is the angle 

t , at which the electron velocity )(t  points to the observer },0,{ DxX ss  , see Fig. 2. 

As a result, we will get the following expression for the arriving time )( sx : 

    22 ))(sin())(cos(
1

)()( sssss xRDxRRx
c

x
c

R
x   . (14) 

Looking ahead, we note that the value of  )(2 sxc  is a phase of the radiation with the 

wavelength  . 

The sx -dependence of the function  )0()()(   ss xcxc  is shown in Fig. 3a. The 

parameters of Siberia-2 storage ring were used for this simulation: electron beam energy 2.5 

GeV (electron reduced energy is equal to  =4892), electron orbit radius R =4905.4 mm, 

synchrotron radiation critical energy 7.2 keV (Korchuganov et al., 2005; Korchuganov & 

Smolyakov, 2009). The distance of the observation plane from the emission point was taken 

to be D = 20000 mm.  

The quadratic behaviour of retardation )( sxc   suggests that the synchrotron radiation 

phase distribution is very close to that of an immobile point source. Closer examination of 

the derived above expressions shows that the correspondent equivalent point source, which 

produces the similar phase distribution, should be placed at the point with coordinates 




  0,0,
2 2

R
. Practically the value 

22
R

 is very small; in our case it is equal to 410  mm. The 

front position for this point source is described by the following expression: 

     222222 )2()2()( DRDRxxd ss   . (15) 
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Fig. 3. (a) Synchrotron radiation retardation )( sxc   versus observer horizontal position sx . 

(b) Difference in positions between synchrotron radiation front and point source front. 

The difference between the synchrotron radiation front position )( sxc   and the point 

source front position )( sxd  is shown in Fig. 3b. It should be pointed out that this difference 

is small, less to 310  mm at the horizontal aperture boundaries 200  mm in our example. It 

means that the synchrotron radiation phase can be considered at zero approximation as the 

spherically symmetric phase of the correspondent immobile point source. Expanding Eqs. 

(13) – (15) in powers of sx  we get the following approximation for the difference in front 

positions of synchrotron radiation and point source front (Fig. 3b):  

    33 6)()( DRxxdxc sss  . (16) 

It describes the curve in Fig. 3b with a very good accuracy. Though this term is cubic in sx  

and is very small at first glance, it plays an important part in synchrotron radiation imaging, 
as we will see below.  

Finally we will give another well-known example, which on closer examination also shows 

the phase distribution of synchrotron radiation. Let an electron moves anticlockwise along 

the circle trajectory )(tr


, see Fig. 4. The radiation pulse (the maximum of the generated 

electric field) moves along the velocity vector )(t . At time   it will reach the point 

)(
)( 

)()( tc
t

trX  




. Let us substitute Eqs. (6) and (7) into this relation, fix an 

observation point in time   and consider the set of points in time t  when the radiation was 

emitted: t . We will get the simultaneous distribution of the radiation pulses in the space, 

the well-known spiral radiation pattern, see Fig. 4. Some comments to this pattern can be 

found in (Jackson, 1999). The numbers of computed diagrams of electric field lines of 

radiating electron are published by (Tsien, 1972), see also (Shintake, 2003).  
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Fig. 4. The left side: space distribution of synchrotron radiation in the median plane. Small 
black circle is the electron trajectory which rotates anticlockwise. The right side: a magnified 
element of the spiral pattern.  

Let us draw a line along the electron velocity )(t  tangentially to the electron trajectory (the 

direction of the radiation propagation) and consider the observation screen transversal to 
this line as it is shown on Fig.4, left side. The radiation at the point A  was emitted at the 
point O  one electron turn ago and the radiation at the point B  was emitted two electron 

turns ago. The radiation at the point A  moves along the line BAO  towards the point B . 

Similarly, we can say about the radiation which is generated at the point U  and propagates 

along the line WVU  . What is important for us in this picture is the fact that the spiral 
pattern is tangent to the screen and locally has the behaviour of quadratic function relative 
to horizontal (X) coordinates as it is shown at the right side of Fig.4. So, this spiral pattern 
also displays the phase distribution similar to the point source phase behaviour.  

3. Synchrotron radiation phase distribution 

In this section we will derive the exact expressions for synchrotron radiation phase. Let us 

consider an electron moving along trajectory )(tr


 with reduced energy 1 . Electric field 

in the emitted wave which is observed at the point },,{ DyxX   and time   is equal to:  
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, (17) 

where c  is the speed of light, e  is the electron charge,   is its reduced velocity, 
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 )(
1

trX
c

t
  . (18) 

The radiation spectrum with wavelength   is defined by the Fourier transform:  

 
 dXE

c
iXE ),()

2
exp(),(

~   , (19) 

The unit vectors of polarization q


 and q


 are directed transversally to the radiation 

propagation and describe horizontally and vertically polarized radiation correspondently. 
The number of photons per unit time per unit area per unit relative spectral interval emitted 

by an electron beam with current I is equal to: 

 
2

,2
,

),(
~

4)(



  XEq
e

Ic

ddsd

dN 


 
 (20) 

It can easily be shown by the direct differentiation of Eq. (18) that:  

  ))((1
)(

tn
t

t 
   . (21) 

Using Eq. (21) we can write:   t

T

tdtnTt ))(1()()(  
, or: 

 ),()(
1

)( tTfTrX
c

Tt   , (22) 

where 

   t

T

tdtntTf ))(1(),(  . (23) 

Here T  is an arbitrary quantity to be defined below. It is important to keep in mind that T  
does not depend on time t . 

Substituting Eqs. (17) and (18) into Eq. (19) and changing the integration from the 
independent variable   to the variable t  with the help of Eq. (21), we get:  

   ),(
~

),(exp),(
~

0 XEXTiXE
   , (24) 

where 
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Once the radiation intensity is calculated, the Eq. (24) should be substituted into Eq. (20) and 

the phase ),( XT
  is of no concern. But the applications of optical elements generate a need 

for the radiation phase ),( XT
  accurate calculations.  

It is a matter of direct verification to prove the following exact relation: 

 22
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22
)()1()()1(
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)()1()(
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trX
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 (27) 

Substituting Eq. (27) into Eq. (26) and integrating by parts with using Eq. (23), we get: 
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  (28) 

It should be noted that so far the exact formulas (17) - (28) were used and no approximations 
were employed. Particular attention should be paid to the phase as its scale of variation is 

very small, the phase changes by 2  along the radiation wavelength. Furthermore, we will 

derive the exact expression for synchrotron radiation phase distribution which is given by 
Eq. (25). At the same time we will apply the standard far-field approximation in the 
radiation amplitudes calculations, see Eq. (28).  

We detect the radiation at the point },,{ DyxX  , where D  is considered to be much greater 

than the size of the emission region. Then we can write DtrX  )( 


, Dxnx , Dyny  

and certainly we can neglect by the small term  )( 2 trXi
   in Eq. (28). The polarization 

vectors are  

 
[ ] [ ] ,

[ ],

q j n j n

q n q


 
  
 
   

    (29) 

where j


 is the unit vector along vertical Y-axis. Let us consider the radiation at small 

observation angles: 1, yxn so that 221 yxz nnn   is approximately equal to:  

 )(5.01 22
yxz nnn  . (30) 

Similarly, the expansion  for )()( 22 tt xz    is equal to: 

 ))((5.01)( 22 tt xz    . (31) 

It can be easily derived from Eq. (30) and Eq. (31) that:  
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  222 )(5.0)(1 yxx nnn    . (32) 

Then we obtain from Eq. (28): 

   dttntTf
c

i
D

e
iXE yx ,,0 )()),(

2
exp

2
),(

~ 





 


   (33) 

and 

     t

T
yxx tdntntTf 2222

2
)(1

2

1
),(  . (34) 

Usually, calculating synchrotron radiation intensity, the observation point is chosen in such 

a way that 0xn   thus substantially simplifying the resultant calculations. It is possible for 

the amplitudes calculations because they are axially uniform and depends on vertical angle 

only. In this case we obtain 


  ),(
~

XEq
   as a purely real function and 


  ),(

~
XEq
   as a 

purely imaginary function. But this simplification is not applicable when calculating the 
phase distribution of synchrotron radiation and we need to apply more accurate calculating 
procedure. 

Now we determine the parameter T  by making it equal to )(xte , where x  is the horizontal 

coordinate of the observation point },,{ DyxX   and the function )(xte  is given by Eq. (11). 

By using the relation 
)(

)(

t

t
tg

z

x
  , see Eqs. (7), we get from Eq. (8):  

 
))((

))((

))((

))((

xt

xt

n

n

xtrD

xtrx

ez

ex

z

x

ez

ex 



. (35) 

Saving the linear terms of Eq. (35), which is to say that 1zn  and 1z , we get: 

D

x
nxt xex ))((  and hence in the frame of linear approximation: 

tntxttxtt xeex  )sin())(cos()cos())(sin()(  , where txtt e  )( .  

Substituting this relation into Eq. (34) and denoting t  , where Rc , we obtain:  

   



  322

3 3

1
1

2
)),((  ye n

c

R
txtTf . (36) 

Using Eq. (36), we can easily derive from Eq. (33) the well-known expressions for 
synchrotron radiation fields:  

   22
0 1

4
),(

~
yniA

Dc

e
XE   , (37) 
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   22
2

0 1
4

),(
~

yy nAin
Dc

e
iXE    (38) 

where 
3

23
2

3 4

3 






 



 cR

, 
33

4


 R

c   is the synchrotron radiation critical wavelength, 

 xAi  and  xiA   are the Airy function and its derivative.  

We have obtained standard formulas, describing the synchrotron radiation amplitudes 0
~
E  

and 0
~
E  in the far-field approximation. The phases of the amplitudes 0

~
E  and 0

~
E  are 

constant (independent of the observation point position), so the phase dependence of the 

synchrotron radiation is described by the function )),(( XxtT e

 , see Eq. (25): 

 



  ))((

1
)(

2
)),(()( xtrX

c
xt

c
XxtTX eee






 (39) 

Notice that )(xte
 is the moment when the electron, having the position ))(( xtr e


, points to 

the observer with the coordinates },0,{ Dx . The second term ))((
1

xtrX
c

e
   is the time 

interval required for the light passing from the position of the electron ))(( xtr e


 to the 

observer position },,{ DyxX  . Thus, we have obtained a physically reasonable result that 

the synchrotron radiation phase is proportional to the arrival time of the maximum of 
function ),( XE

 : the arrival time is equal to )2()( cX   . 

Let us determine the following variables: 
D

R , 
D

x
x  , 

D

y
y   and a function )( x : 

 
2

22

1

)(1)(
arctan)( 

 
 xx

x
. (40) 

Notice that 0)0( x . Then the phase distribution of synchrotron radiation is described 

by the following exact expression:  

 



  222 )cos()sin1(

2
)( yx

D
X 


. (41) 

It is worth noting that we have obtained, as a result, the exact analytic expression involving 
only elementary functions. It is important to outline also that the phase difference, rather 

than the phase value )(X
 , has a physical sense. In other words, the phase is defined up to 

a constant value identical for all the points of the optical device entrance window. 

4. Synchrotron radiation regarded as a point-source radiation 

Consider now the phase )(X
  at the observation point },,{ DyxX  , where Dx  , 

Dy  . Analysis shows that the function )(X
  has a minimum in the vicinity of the point 
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},0,0{ D . Let us expand this phase in a power series with respect to the small transverse 

angles 
D

x
x   and 

D

y
y   up to the third power inclusive. This expansion has the form: 

 )()()( 320 XXX
  , (42) 

  )8(1
2 422

0 


DR
D  , (43) 
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22
2

)( yx
D

X 



, (44) 

 



  23

3
3

1
)( yxx

R
X 


. (45) 

If both angles x  and y  are sufficiently small, one can neglect the term )(3 X
 , which is of 

the third order of smallness. The size of the corresponding region can be evaluated from 

condition 5.0)(3  X


. As a result, one finds that the term )(3 X
  can be neglected if:  

 3,
1

c
yx 


  . (46) 

In this case )()( 2 XX
   and the distribution of the synchrotron radiation phases 

coincides with the phase distribution of an immobile point source located at the point 




 0,0,
2 2
R

. The quantity 
22

R
 usually is very small and can be neglected. Then it is seen 

from Eq. (44) that the equivalent immobile point source is located at the origin of the 
coordinates. In this case the synchrotron radiation properties are rather well understood. 
The spatial distributions of the synchrotron radiation amplitudes are described by Eqs. (37) 
and (38). The synchrotron radiation phase distribution inside the angle limited by Eqs. (46) 
coincides with that of an equivalent spherical wave propagating from the origin of the 

coordinates and is described by Eq. (44). For the Siberia-2 storage ring (  =4892, c =0.175 

nm,  =6000 nm) the region given by Eq. (46) is rather large: 6.6, yx  mrad. Any decrease 

in the radiation wavelength reduces the size of this region. 

All the above stated concerned a single relativistic electron moving along the circular 
trajectory with zero initial conditions see Eqs. (6) and (7) and Fig. 5. This electron passed 

through the origin of the coordinates, where its velocity was directed along the Z -axis. The 
immobile point source, which is equivalent in phase distribution to the synchrotron 
radiation generated by this electron, is at the origin of the coordinates. However, in practice 
the electron beam has always some spread in both positions and angles. It is clear that for 
electrons with different orbits the locations of the equivalent immobile point sources would 
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also be different. The explicit calculation of the position of the equivalent point source for an 
arbitrary electron involves rather cumbersome formulas and is beyond the scope of this 
chapter. However, for an electron with a trajectory lying in the storage ring median plane, 
the solution is reasonably simple.  

 

Fig. 5. Equivalent immobile point sources positions sketch: the point source  0,0,)2( 2R  

for the electron 1 with zero initial conditions and the point source  cc  ,0,  for the electron 

2 with nonzero initial conditions.  

Let us consider now an electron moving along a circular trajectory which lies in the XOZ -

plane and intersects the X -axis at some point 0x  so that the electron initial position is  0,0,0x . Let the vector  00 ,0, zx   be the reduced velocity of the electron at this initial 

point and 0x  be small. According to the analysis, the phase distribution of the synchrotron 

radiation in this case coincides with the phase distribution of an equivalent spherical wave 

outgoing from a point source with the coordinates  cc  ,0, , where: 

 2
020 5.0

2
xc R

R
x   , 0xc R  . (47) 

Up to )2( 2R , this point source lies on the electron orbit. Namely, it is the point of 

tangency of a normal to the screen with the electron circular trajectory, see Fig.5. Notice that 

the transverse (X) coordinate c  depends mainly on the electron initial position 0x , while 

its longitudinal (Z) coordinate c  is determined by the electron initial angle 0x . 

Let us consider a relativistic beam, in which all the electron trajectories lie in the XOZ -
plane (zero vertical emittance condition). Nevertheless, these electrons are spread over 
horizontal positions and angles. In the vicinity of the optical device window (as defined by 
Eq. (46)) the synchrotron radiation of such a beam can be regarded as a radiation from a set 
of immobile point sources, whose coordinates are defined by Eqs. (47). The phases of the 
synchrotron radiation emitted by each of the electrons coincide with the phases of the 
radiation emitted by the corresponding immobile point sources. However, according to Eqs. 
(37) and (38), the radiation amplitudes of the immobile point sources are modulated in the 
vertical direction. This approach permits us to substitute of a determination of a pattern 
produced by the distributed immobile point sources for the calculation of the image created 
by the synchrotron radiation. The solution of this problem has been comprehensively 
examined by the wave optics (Born & Wolf, 1986). It is significant that the length along Z-
axis of this immobile point sources distribution is determined by the electron beam angular 
spread rather than the orbit curvature and a focusing lens aperture as implied in the 
geometrical optics approach (Hofmann & Meot, 1982).  

  

X 
O 

x0 

},0,{ cc     

0  
1 2 

D Z 
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It should be said in closing that the term )(3 X
 , which was outside our analysis here, plays 

an important role in synchrotron radiation optics, determining its self-aberration effect.  

5. Focusing of synchrotron radiation 

Let us consider the standard experimental layout for synchrotron radiation imaging shown 

in Fig. 6. For simplicity sake the geometry with an ideal refractive lens is considered. The 

distance between the origin of coordinates and lens is equal to D , the distance from the lens 

to the observation screen is equal to L .  

 

 

 

Fig. 6. Synchrotron radiation imaging experiment geometry: 1 – electron trajectory; 2 – lens, 
3 – observation screen.  

The ideal lens with focal length f  does not change the synchrotron radiation amplitudes 

but adds an extra shift in the radiation phase distribution: 

  )()(exp),,(),,( 22 fyxiDzyxEDzyxE inout   
. (48) 

Here   ),(
~

)(exp),,( 0 XEXiDzyxEin

   is the synchrotron radiation field. Its amplitudes 

0

~
E


 are given by Eqs. (37) and (38) and the phase )()()( 32 XXX
   is given by Eqs. (42) 

– (45). Notice that the cubic term )(3 X
  will also be taken here into account.  

The radiation field at the point },,{ LDzyxX ssss   of the observation screen can be 

found by applying the Kirchhoff integral theorem (Born & Wolf, 1986):  

  
A s

s
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ikr
DzyxE
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where 
L

yyxx
LLyyxxr ss

sss
2

)()(
)()(

22
222   is the distance of the lens 

element dxdy  from the observer },,{ LDzyxX ssss   and A  is the lens aperture, which 

is assumed rectangular in shape here. Calculating numerically the Kirchhoff integral (49), 
we can find with Eq. (20) the intensity distribution of the focused synchrotron radiation. 

The computed images of horizontally and vertically polarized synchrotron radiation are 

shown in Fig. 7. The simulations were performed at the following conditions: orbit bending 

radius 4905.4 mm; electron beam energy of 2.5 GeV; beam current 0.1 A; beam emittance is 

zero (one-electron approximation); lens focal length 5 m; distance from tangential source 

point to the lens 10 m; distance from the lens to the observation screen 10 m; horizontal and 

vertical sizes of the lens 600 mm (angular aperture 60 mrad); radiation wavelength 6000 nm. 

The lens focuses the synchrotron radiation emitted into all vertical angles, see Fig. 8.  

 

Fig. 7. Intensity distributions of the focused synchrotron radiation: a – horizontally ( ) 

polarized component of radiation; b – vertically ( ) polarized component of radiation. 

Intensity distributions are given in photons/s/mm2/(0.1%bandwidth). 
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It is significant that the intensity of focused vertically polarized synchrotron radiation is 

equal to zero in the electron orbit plane ( 0y ), see Fig. 7b. This is a result of the anti-

symmetry of the vertically polarized electric field with respect to the electron orbit plane, 

see Fig. 8 and Eq. (38): ),(
~

0 XE
  is proportional to Dyny  . Thus two rays with the 

opposite signs of yn  and respectively with the opposite electric field directions, when 

focused to the point },0,{ LDzx ss  , will cancel each other. 

 

Fig. 8. Vertical distributions of synchrotron radiation electric fields ),(
~

,0 XE
   on the lens 

surface: 1 – horizontally polarized radiation, 2 – vertically polarized radiation.  

At large horizontal aperture of the lens (600 mm) the cubic term )(3 X
  in the radiation 

phase manifests itself as additional asymmetric fringes in the radiation image (self-
aberration effect). Real electron beam emittance will smooth out these fringes. Nevertheless, 
such asymmetry was observed in 100 - 20000 cm-1 spectral range at BL43IR infrared 
beamline of Spring-8 (Ikemoto et al., 2003), see Fig. 9.  

 

Fig. 9. Experimentally observed at Spring-8 image of the electron beam. 
(Published with the kind permission of Prof. T. Nanba) 

Let us consider now the influence of the lens horizontal aperture on the synchrotron 
radiation imaging. It follows from Eq. (46) that the natural scale for the angular aperture is  
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For the Siberia-2 storage ring with the orbit bending radius R 4905.4 mm and for  6000 

nm this value is equal to 3.13 SR  mrad. Fig. 10 shows the computed radiation intensity 

distributions in the electron orbit plane 0y . The simulations were performed under the 

same conditions as above except for the lens horizontal size. The lens horizontal aperture 

xl2  was taken equal to 66 mm, 132 mm, 264 mm and 528 mm, that is the lens horizontal 

angular aperture Dlxlens 2  is equal to SR5.0 , SR , SR2  and SR4  respectively. 

 

Fig. 10. Intensity distributions (photons/s/mm2/(0.1%bandwidth)) in the median plane of 

the focused synchrotron radiation for different horizontal angular aperture lens  of the lens: 

a - SRlens   5.0 , b - SRlens   , c - SRlens   2  and d - SRlens   4 .  

Curve 1 - focused synchrotron radiation, curve 2 – approximation by  2)sin(  , see Eq. (5). 

From Fig.10 we notice that the function  2)sin( ss   with s
x

s x
L

l


 2 , when normalised 

and horizontally shifted, adequately describes the horizontal profiles of the focused 
synchrotron radiation up to SRlens   2 . But at large horizontal aperture of the lens, the 

self-aberration property of synchrotron radiation changes dramatically the radiation image 
characteristics. For the case of point source radiation its intensity at the focused spot center 
varies with the square of the lens horizontal aperture, see the end of the section 2.1. This is 
also true for synchrotron radiation focusing by relatively small lens; at small lens  its value 
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doubling tends to increase the maximum of intensity by a factor of four approximately. But 
the increasing of the lens horizontal aperture from SRlens   2  to SRlens   4  implies a 

decrease in the maximum of the focused synchrotron radiation intensity, see Fig 10.  

Such kind of problems, which are caused by the self-aberration effect of synchrotron 

radiation (the term )(3 X
 ), can be neutralized by using of the so-called “magic mirror”. 

The idea how to bring a segment of circular orbit to an isochronous focus and profile of such 
mirror in the orbit plane was presented in (Lopez-Delgado & Szwarc, 1976). The expansion 
of formula for “magic mirror” to include the vertical direction was made in (S. Kimura et al., 
2001). The “magic mirror” for synchrotron radiation is similar to the ideal lens for a point 

source radiation since it compensates the aberrations caused by the term )(3 X
  in design. It 

is employed at some infrared beamlines (H. Kimura et al., 2001; S. Kimura et al., 2006). 

6. Conclusion 

The analysis of wave optical properties of synchrotron radiation given in this chapter shows 
their unconventionality. On the one hand, in the zero-order approximation the phases of the 
synchrotron radiation emitted by each of the electrons coincide with the phases of the 
radiation emitted by the corresponding immobile point sources. That is why standard 
optical equipment works well with synchrotron radiation paraxial beams. On the other 
hand, synchrotron radiation has the property of self-aberration. To improve beamline 
performance, the specialized optical elements, such as the “magic mirror”, should be used in 
the beamline optical system. The use of the exact formula for the phase distribution of 
synchrotron radiation provides a way of developing new optical elements which are 
optimized for synchrotron radiation utilization.  
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