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Diffractive imaging with free electron lasers allows structure determination from 

ensembles of weakly scattering identical nanoparticles. The ultra-short, ultra-bright X-

ray pulses provide snapshots of the randomly oriented particles frozen in time, and 

terminate before the onset of structural damage. As signal strength diminishes for 
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small particles, the synthesis of a three-dimensional diffraction volume requires 

simultaneous involvement of all data. We report the first application of a three-

dimensional spatial frequency correlation analysis to carry out this synthesis from 

noisy single-particle femtosecond X-ray diffraction patterns of nearly identical samples 

in random and unknown orientations, collected at the Linac Coherent Light Source. Our 

demonstration uses unsupported test particles created via aerosol self-assembly, and 

composed of two polystyrene spheres of equal diameter. The correlation analysis 

avoids the need for orientation determination entirely. This method may be applied to 

the structural determination of biological macromolecules in solution. 

 

The advent of X-ray free electron lasers (FELs) promises to eliminate the resolution limitation 

imposed on imaging of biological materials by radiation damage.1 Due to the extreme brevity and 

high fluence of the FEL pulses, even though a radiation dose at the target far exceeds the "safe 

dose" radiation limit for conventional macromolecular crystallography,2 diffraction is recorded 

before the onset of the structural damage processes.3,4 In the single-shot diffraction serial 

nanocrystallography experiments at the Linac Coherent Light Source (LCLS) structure factors for 

lysozyme have been measured to 1.9 Å resolution.5 Resolution in reconstructions of two-

dimensional (2D) electron density projections for a large sub-micron virus,6 soot and other 

aerosols7,8 from single-shot LCLS diffraction patterns ranges from 24 to 41 nm. The next aim is 

experimental determination of three-dimensional (3D) structure from non-crystalline single 

particles using LCLS single-shot diffraction. For most systems of practical interest, such as 

protein complexes, the experiment will be characterized by the small number of scattered 

photons, immersed in the high background noise, and uncertain number of particles in each 

shot. A weak signal dictates the necessity to use a complete data set of diffraction patterns from 

particles in random orientations to construct a 3D diffraction volume. The corresponding 

algorithms are based on Expectation Maximization (EM)9 or dimensionality reduction.10,11 They 

generally require each diffraction pattern to be generated by a single particle, posing practical 

constraints on the experiment. Instead of orientation classification of diffraction patterns, Kam 
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proposed the simple averaging method that overcomes these constraints, and also reduces the 

vast data amount to a single compact 3D array. He demonstrated that averaging angular 

autocorrelation functions of individual 2D diffraction patterns yields the autocorrelation function 

of the 3D diffraction volume for a single particle, and this function can be related to the 

expansion coefficients of the diffraction volume in spherical harmonics.12 Although Kam originally 

proposed his method for solution X-ray scattering, it has never been realized in this form due to 

limitations of previously available X-ray sources. The most notable of these limitations arises 

from the restricted X-ray intensity from synchrotrons, such that statistically meaningful signal 

cannot be obtained during exposures shorter than the time for rotational diffusion on a length 

scale smaller than the desired resolution. Nevertheless, 2D projections of protein complexes 

immobilized on a supporting membrane have been successfully produced from correlations in 

cryo-electron microscopy images.13 Recently, a correlation analysis was applied to soft X-ray 

imaging of 90 nm gold rods laying on the substrate perpendicular to the direction of X-rays, with 

many identical particles per shot.14 Angular cross-correlation function for the speckle diffraction 

pattern has been used to reveal hidden local symmetries in colloidal systems.15  

With ultra-short and intense X-ray pulses from FELs, the requirement of the sample being frozen 

in time is easily satisfied in solutions at room temperature or in vacuum even for the smallest 

proteins, opening a door for measurements of spatial frequency correlations. Here we report the 

first experimental demonstration of the Kam’s method for the particles with cylindrical symmetry 

arbitrary oriented in space, that became possible with FELs. We utilized the LCLS to collect a set 

of single-shot diffraction patterns from unsupported known objects in random orientations. Due 

to cylindrical symmetry the orientation is determined by two rotational degrees of freedom, and 

the particle shape is fully defined by the cross section through the rotational symmetry axis. 

From the correlation analysis of the collected diffraction patterns we obtained the diffraction 

volume of the oriented single particle and reconstructed its shape using a phase retrieval 

algorithm. This demonstration provides an experimental foundation of the Kam’s method to the 

diffractive imaging with X-ray FELs, and shows its potential for imaging biological 

macromolecules. 
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Results 

Characterization of experimental diffraction patterns. The test particles, considered in 

this work, consist of two touching polystyrene spheres (mean diameter of 91 nm), henceforth 

referred as sphere dimers. A set of 635 diffraction patterns from single particles with random 

orientation distribution was selected for analysis. Fig. 1 shows a schematic of the experimental 

set up, and a representative set of diffraction patterns from dimers in various orientations, with 

corresponding particle projections as seen by X-rays. The X-ray fluence in each shot was 

estimated by extrapolation of the radially averaged diffraction patterns to the scattering vector q 

= 0 following the procedure given in Supplementary Methods, and varied from 8.5×109 to 

2.3×1011 photons μm-2. To compensate for these fluctuations we used deviations of photon count 

     from the spherically averaged scattered intensity     , normalized by     :        

           . This normalization also facilitates reliable determination of non-vanishing singular 

values of partial correlation matrices discussed further. The normalization factor      was 

obtained as the radial average of the sum of all diffraction patterns. Prior to normalization of 

each pattern it was scaled to match the corresponding X-ray fluence. A small constant 

background has been added to each diffraction pattern and scaled      to minimize a relative 

error in background subtraction for different shots. 

Because a uniform distribution of particle orientations is essential for correct evaluation of 

correlation function, we estimated this distribution using the common-lines method16 and cross-

correlations with model diffraction patterns (Supplementary Methods). Though we found 

deviations from the uniform distribution, this did not significantly impact the results. 

Correlation analysis. The arguments of the autocorrelation function for diffraction volume are 

the magnitudes of the two scattering vectors and the angle between them. After sampling each 

diffraction pattern corresponding to an unknown, random orientation ω in polar coordinates 

       , where n = 1..N, m = 1..M, its angular autocorrelation function was computed as 

                
 

 
     

 
                         .    (1) 
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Averaging these functions over all diffraction patterns generates the autocorrelation function for 

a 3D diffraction volume              . The magnitudes of scattering vectors     and angles 

between them     are calculated taking into account the curvature of the Ewald sphere, which 

resulted in the missing angles within 1.5° of       and 3° in the vicinity of        . 

Expansion of               as a function of angle in Legendre polynomials yields partial 

correlation matrices            
  

    , where     is the column vector of normalized partial 

scattered intensities (expansion coefficients of scattered intensity in spherical harmonics, see 

Methods) with elements               , and    
  is its adjoint. In general these are N×N real 

symmetric matrices of at most rank 2l+1, depending on the sample symmetry, which can be 

decomposed into the sum of rank-one matrices       
 . While there are many ways to present a 

matrix as the sum of rank-one matrices, this can be most efficiently done by singular value 

decomposition (SVD, equivalent to eigenvalue decomposition for a hermitian matrix to within the 

signs of eigenvalues). It captures the maximum possible fraction of the matrix norm in the 

leading terms, corresponding to the largest singular values. That implies that if there are 

selection rules imposed on     by the particle symmetry, this will be reflected in the number of 

non-vanishing singular values for each l. Simplification of the analysis by a proper choice of the 

basis for the scattered intensity expansion based on the particle symmetry was demonstrated in 

the special case of icosahedral symmetry.17 

From SVD of the experimental partial correlation matrices we found that all of them have rank 

one. That immediately implies the cylindrical symmetry of the diffraction volume, with the only 

contributions into its expansion coming from spherical harmonics with m = 0. Corresponding 

partial scattered intensities        can be calculated to within a sign as the product of the square 

root of the sole singular value and its singular vector. 

The signs of real partial scattered intensities still remain uncertain since so far we only used their 

products       
 . They can be uncovered by involving spherical harmonics expansion of the squared 

scattered intensity             with coefficients       , that has connection to the three point 

autocorrelation function               computed at two scattering vectors from experimental 
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diffraction patterns. General problem of unique determination of        for the particles without 

symmetry using the higher order correlation functions was addressed by Kam.18 Similar to pair 

correlations, normalized partial triple correlations can be experimentally found and written in the 

matrix form as 

                   
  

            (2) 

Like    , the matrix      is of maximum rank 2l+1 and real. However, it is asymmetric as follows 

from Eq. (2). Limiting our discussion to an object with cylindrical symmetry, vectors   
    

     

2  0 can be calculated using Eq. (2): 

   
    

            
  ,         (3) 

where     is a vector 2-norm. The same vectors   
    

 can be also computed directly from pair 

correlations as quadratic forms of partial scattered intensities (Methods). Vectors   
    

 and   
    

 

will coincide if all     have proper signs. Therefore, the signs can be determined by minimization 

of the difference between these vectors, defined by the R-factor        
    

   
    

 
 

   
    

 
 

 
    
   , 

using signs of     as fitting parameters. The R-factor for all sign combinations up to lmax = 26 is 

plotted in Fig. 2a. Figs. 2b and 2c compare the sets of   
    

 and   
    

 vectors for the sign 

combination corresponding to the point with the smallest R-factor. This point can be clearly 

identified and correctly determines signs of all partial intensities. Alternatively, we can search for 

the sign combination which minimizes the number of negative pixels in the scattered intensity 

assembled from its spherical harmonics expansion. However, this method only gave us correct 

signs up to l = 22. 

Partial scattered intensities            up to l = 26 with the signs correctly resolved from Fig. 2a 

are plotted in Fig. 3 by circles. They can be compared with the results of direct computation from 

the particle shape, described in Supplementary Methods, and plotted by solid lines. Now the 

determined partial scattered intensities can be substituted into the spherical harmonics 

expansion of scattered intensity to generate the diffraction volume. Due to the cylindrical 

symmetry of the sample, the diffraction volume is fully defined by its azimuthal projection, which 
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is equivalent to the central section through the axis of cylindrical symmetry. These sections, 

calculated directly from the model particle shape and experimentally determined partial scattered 

intensities are depicted in Figs. 4a and 4b, respectively. The negative pixels in the experimental 

diffraction pattern were set to zero. 

Electron density reconstruction. The diffraction pattern in Fig. 4b was used to solve the 

phase problem and reconstruct the sample electron density. In cylindrical coordinates the 

azimuthal projections of the sample electron density and scattering amplitude are related by a 

Fourier transform in the direction of cylindrical symmetry axis, and a zeroth-order Hankel 

transform in the radial direction.19 While the two-dimensional Fourier transform results in the 

projection of sample electron density in the direction of X-ray beam, this transform provides 

more information on the sample electron density by revealing the interior of the particle. For a 

sample with cylindrical symmetry it is equivalent to a 3D Fourier transform of diffraction volume, 

and greatly reduces computation time. Image of the electron density averaged over 5000 

reconstructions with different starting points after their longitudinal alignment is shown in the 

inset of Fig. 4b. Full-period resolution is 20 nm, twice the pixel size, and limited by the maximum 

measured scattering vectors.  

Discussion 

The major sources of error in our analysis likely originate from the bias in the particles 

orientation distribution, mostly caused by the small size of the data set, and to some extent by 

the possible anisotropy introduced by the particle delivery system. Additional error can be 

introduced during the data selection and processing. Close resemblance between the single 

sphere diffraction pattern and that of a dimer nearly aligned along the X-ray direction leads to 

the potential exclusion of such orientations from the analysis. 

Overrepresentation of the diffraction patterns, corresponding to the particles oriented 

perpendicular to the incident beam may result from our data normalization by the incident X-ray 

fluence. As estimated in Supplementary Methods, the fluence for such particles could be 

underestimated by as much as 25%. With an extensive data set, the normalization by X-ray 
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fluence could be omitted if all classes of sample orientation are adequately represented over the 

entire distribution of observed X-ray fluences, and its fluctuations would be averaged out. 

We emphasize that although our test sample’s cylindrical symmetry has certainly simplified the 

correlation analysis, this symmetry was apparent from the form of the partial correlation 

matrices, each of which had a single singular value. Therefore, it did not need to be assumed a 

priori. The treatment of an arbitrary object lacking symmetries was given by Kam.20 In this case 

each partial scattered intensity        is a linear combination of the      singular vectors of the 

corresponding correlation matrix. All        for a given l can be found by multiplication of a 

special solution from SVD by a specific unitary matrix. Determination of these matrices for all l 

requires solving the optimization problem on the set of random unitary matrices (whose 

elements are additionally constrained by the properties of the spherical harmonics expansion 

coefficients) with the total number of parameters                  

    for expansion up to     , 

which seems to be a formidable task. But many biological systems of interest are oligomers with 

some symmetry. In special cases this symmetry will greatly decrease the number of fitting 

parameters. We expect that use of SVD will help to reveal the sample symmetries. As a simple 

example, the number of non-zero singular values for each l would identify the n-fold rotational 

symmetry. 

In a past similar experiment, a set of the soft X-ray diffraction patterns from ellipsoidal particles 

with variable X-ray fluence was converted into the 3D diffraction volume using the iterative 

Expansion – expectation Maximization – Compression (EMC) algorithm.21 EMC maximizes the 

log-likelihood function of the statistical model for the 3D diffraction volume parameterized by the 

scattered intensities on the Cartesian grid in reciprocal space. However, assembling the 3D 

diffraction intensities with the EMC requires each diffraction pattern to be produced by only a 

single particle. We avoid this restrictive requirement in our paper since single particle correlation 

functions will be obtained even if more than one particle contributes to each diffraction pattern. 

Two factors permit this: firstly, averaging of the correlation function over all recorded diffraction 

patterns “washes out” random cross-correlations and the coherent interference between different 
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particles; secondly, for spatially separated particles, interference speckles are averaged out 

when the pixel size is adjusted to give a minimum oversampling required for reconstruction. The 

number of particles illuminated by X-rays in a single shot usually can be adjusted over a broad 

range if the sample is injected by means of aerodynamic lens stack22 or liquid jet.23 The ability to 

make productive use of multiple-particle diffraction patterns allows the significant sample dilution 

required to guarantee the predominance of single particle hits to be avoided. The allowed 

number of particles per shot is only limited by the detector intensity resolution or maximum 

sample concentration. Nevertheless, we should note that although computing correlations using 

a single diffraction pattern from N particles appears equivalent to averaging N correlation 

functions of single-particle diffraction patterns, the undesirable background is proportional to N2 

and N in the respective scenarios.18 As demonstrated elsewhere,24 the signal-to-noise ratio 

quickly saturates as the number of particles per shot increases. 

Besides the obvious advantages of reducing experimental time and computational load, in the 

multiple-particle diffraction normalization by the radially averaged sum of all diffraction patterns 

can be replaced by normalizing each pattern by its radial average, as it approximates the 

spherical average of scattered intensity from the individual particle. That eliminates the 

requirement to determine the incident X-ray fluence in each shot.  

Since the computation of correlations is simple and straightforward, it can be easily parallelized 

and even performed during experiments for useful and immediate feedback to experimenters. 

The resultant correlation functions are compact, when compared to the massive set of the 

original diffraction patterns, easy to manipulate and transfer between computers. 

It is instructive to note that the correlation functions in this paper can still be computed using 

measurements from detectors with sparse pixel distributions, as long as the entire required 

range of scattering vectors and their relative orientations is represented. In particular, the 

presence of the gap between the two detector halves in our experiment did not handicap the 

analysis. 
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In summary, we have presented the first experimental evaluation of the use of the scattered 

intensity correlations to obtain and phase the single particle diffraction pattern utilizing an 

ensemble of 2D snapshot diffraction patterns from nearly identical unsupported particles in 

random orientations, produced by an X-ray FEL. The size and electron density of these particles 

are similar to those of large viruses. Achievable resolution will be improved as harder X-rays with 

higher intensities are used, and stable sub-μm liquid jets for background minimization are 

developed. Our work highlights several important practical concerns in designing experiments 

aimed at structure determination through the use of spatial correlations. The many strengths of 

the spatial correlations approach discussed in this paper and its references continue to motivate 

and guide us in the ultimate goal of reconstructing the 3D structure of non-crystalline particles 

without symmetries. 

Methods 

Data acquisition and sorting. Experiments were carried out in the CFEL-ASG Multi-Purpose 

(CAMP) instrument25 on the Atomic, Molecular and Optical Science (AMO) beamline at the LCLS. 

A colloidal suspension of polystyrene spheres (from Postnova Analytics GmbH), with nominal 

diameter of 98 nm, in water was atomized using a Mira Mist CE nebulizer (Burgener Research 

Inc., Mississauga, Ontario, Canada). Evaporation of water from the aerosolized droplets resulted 

in formation of self-assembled clusters of polystyrene spheres. They were focused and directed 

into the X-ray interaction region with help of a differentially pumped aerodynamic lens stack,22 as 

illustrated in Fig. 1a. Clusters varying in size from a single sphere to large aggregates populate 

the particle beam. Since we need to differentiate the dimer particles, the sample formation and 

delivery system was tuned to provide exactly one particle in each shot, similar to previous 

work.21 Those particles which were intercepted by X-ray pulses produced diffraction patterns, 

captured by a detector system consisting of two 1024×512 pnCCD detectors located at the 

distance 738 mm from the interaction region, and separated by a gap of 1.6 mm. The pixel size 

was 75×75 μm2. This arrangement corresponds to full-period resolution of 20 nm for X-ray 

energy of 1.2 keV used in the experiment. The X-ray beam was focused to a 10 μm2 focus spot 

in the interaction region. After removing the persistent background, faulted and saturated pixels, 
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recorded diffraction patterns were preliminarily sorted by the total scattered intensity to 

eliminate empty shots and weak patterns. Images corresponding to sphere aggregates were 

extracted by selection based on the position of the first pronounced minimum in the radially 

averaged diffraction patterns. Patterns from single spheres were identified by flat angular 

autocorrelations. Finally, the set of diffraction patterns produced by dimers was selected by 

visual inspection of the remaining data. The average beam center and relative position of two 

detector halves were determined by minimizing variations of the angular correlations in single-

sphere diffraction patterns, or by maximizing the depth of minima in the radially averaged 

diffraction patterns. These two methods gave the same results. The set of 10,190 single spheres 

was used to determine the true size distribution of the spheres. For this purpose, the radially 

averaged scattered intensities were fitted to an analytical dependence using incident X-ray 

fluence, sphere radius and uniform background as fitting parameters. Due to the small sphere 

size and low electron density of polystyrene, the phase shift introduced by a sphere is small, and 

scattered intensity can be calculated in the framework of the Rayleigh-Gans formalism.26 The 

sphere diameter from this analysis is 91±5 nm (below the nominal size), which closely matches 

a simple estimation from the position of the first minimum in radial intensity. Variations in the 

determined sphere size also include apparent changes due to the jitter in sample-detector 

distance of a few mm during the experiments, and possible effects of the X-ray pulse duration, 

intentionally varied from 70 to 300 fs. A total of 845 diffraction patterns from randomly-oriented 

dimers were identified. Of these, the patterns whose first radial minimum was beyond the 

ensemble’s standard deviation were excluded from examination in order to provide size 

monodispersity, a property essential for successful application of correlations. 

Correlation functions. Here we outline the relationships between the correlation functions and 

spherical harmonics expansions of corresponding values. The two point (pair) correlation function 

normalized by the spherically averaged scattered intensity      is 

                              ,        (4) 

where                   . The subscript ω denotes orientation of the particle, and averaging is 

performed over all possible orientations. 
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Using the orthogonality of rotation matrices and the addition theorem for spherical harmonics, 

one can show12 that this correlation function can be expanded in Legendre polynomials      : 

                       
 

  
            

     
 
    

 
           ,    (5) 

where φ is the angle between    and   , and        partial scattered intensities in spherical 

harmonics expansion of the normalized scattered intensity 

                          .        (6) 

In this expansion           , and only even l terms contribute into the sum due to the       

parity of spherical harmonics and symmetry of scattered intensity with respect to reflection 

about the origin (Friedel’s law). The expansion coefficients, or partial correlation matrices, of Eq. 

(5) are determined as: 

                       
     

 
    .        (7) 

In a complete analogy with pair correlation function, normalized three point (triple) correlation 

function calculated in two points is defined as 

                
               .        (8) 

Its evaluation requires expansion of the square of the normalized scattered intensity 

                           . Just like pair correlation function,             can be reduced to a 

set of expansion coefficients in Legendre polynomials 

                       
                 

 
    .      (9) 

There is a connection between expansion coefficients        and        which can be established 

by taking square of Eq. (6) and using the product rule for spherical harmonics: 

                   
              

        
                               

    
            

        
   , (10) 

where                are Clebsch-Gordan coefficients. 
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Phase retrieval. To obtain phases of the scattering amplitudes, the Relaxed Averaged 

Alternating Reflections (RAAR) algorithm,27 a variant of iterative projection phasing algorithms, 

was used. A quasi-discrete Hankel transform28 was applied for numerical calculation. A starting 

point in reciprocal space was generated by assigning random phases to the experimental 

scattering amplitudes, which were set to the square root of the azimuthal projection of diffraction 

volume. The initial support mask was estimated from the sample autocorrelation. The support 

was updated as iterations proceeded following the Shrinkwrap algorithm.29 This algorithm 

periodically modifies the object support, using the current estimate of the object’s electron 

density. In addition to the support constraint, reality and positivity constraints were applied in 

real space. In reciprocal space, the unmeasured scattering amplitudes in the central beamstop 

area and pixels with zero values were kept unconstrained. To estimate consistency between 

independent reconstructions we calculated the phase retrieval transfer function         

            , where    are retrieved phases, and averaging is performed over all reconstructions. 

Resolution can be defined by the point where radially averaged PRTF drops below 1/e. For our 

reconstruction PRTF falls to 0.47 at the maximum value of measured scattering vector, and 

resolution is diffraction limited. 
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Figure 1 | Measuring single-shot diffraction patterns. (a) Experimental schematic. Micron-

sized droplets emitted from an atmospheric pressure nebulizer contain one or multiple 

polystyrene spheres. As the droplets transit into the aerodynamic lens stack in a N2 carrier gas, 

evaporation leads to single spheres or aerosol assembled aggregates of random configurations. 

These particles accelerate toward the interaction region with a velocity of about 150 m/s. LCLS 

X-ray pulses scatter off randomly intersected particles to produce a diffraction pattern recorded 

on the pnCCD. The unperturbed X-ray beam passes through a hole in the detector. Non-

intercepted particles are captured in a particle beam dump. (b) Experimental diffraction patterns 

from dimers in several orientations, as indicated in the bottom of each image. The incident X-ray 

fluence, from left to right, is (3.7, 2.9, 4.4, 4.0)×1010 photons μm-2. Colorbar indicates detector 

counts. Detector’s gain is 7 counts per photon, and quantum efficiency is 0.9. Projections of the 

particles on the plane perpendicular to the X-ray beam direction, corresponding to each shot are 

also shown. 
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Figure 2 | Determining the signs of partial scattered intensities. (a) R-factor monitoring 

agreement between spherical harmonics expansion coefficients of the squared scattered intensity 

computed in two distinct ways for all possible sign combinations assigned to the first 13 non-

vanishing partial scattered intensities with l>0. The arrow marks the point corresponding to the 

correct sign combination. (b,c) Comparison of the expansion coefficients of the squared 

scattered intensity calculated from pair and triple correlations, respectively. Each row 

corresponds to the different l, indicated on the vertical axis, and magnitude is encoded with 

color. 
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Figure 3 | Partial scattered intensities for the dumbbell shaped particle. Circles 

correspond to computation from the experimental data. The result of calculation from the ideal 

particle shape is shown by solid lines. The degrees of spherical harmonics and scaling factors are 

indicated. Isotropic contribution l = 0 is plotted in logarithmic scale. 
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Figure 4 | Azimuthally averaged single particle diffraction patterns. (a) Model partial 

scattered intensities (solid lines in Fig. 3) are used for calculation of diffraction pattern. (b) 

Diffraction pattern is assembled from the experimental partial scattered intensities (circles in 

Fig. 3) obtained by correlation analysis of randomly orientated diffraction patterns. Inset shows 

the image of azimuthally averaged electron density reconstructed from the experimental pattern. 

Scale bar is 10 nm. 


