

Accelerator Status

Presented at the

1st Meeting of the European XFEL Accelerator Consortium
April 16 – 19, 2012

Hans Weise

tunnel radio (temporarily)

welding line for heavy loads

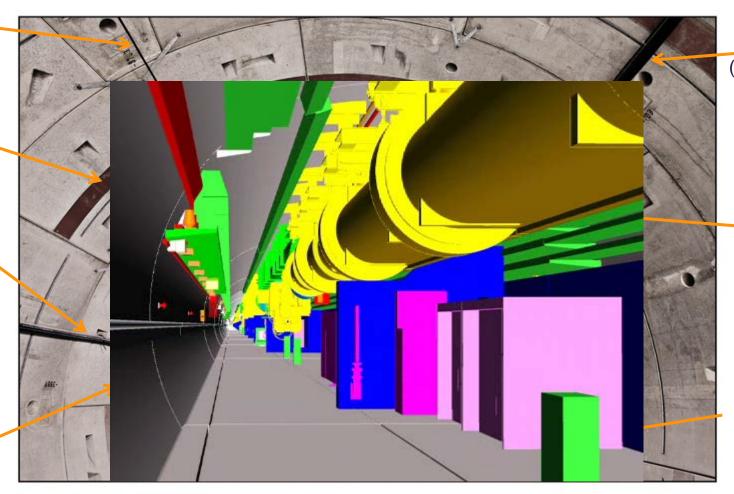
fire-fighting water (temporarily)

halfen rails for cable trays etc.

electricity (temporarily)

electrical grounding

floor plates



tunnel radio (temporarily)

welding line for heavy - loads

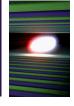
fire-fighting water (temporarily)

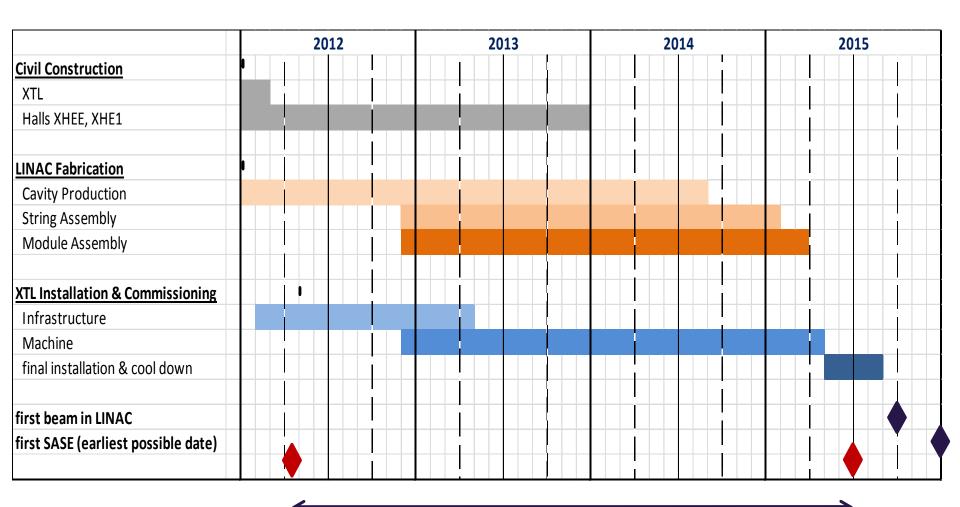
halfen rails for cable trays etc.

electricity (temporarily)

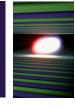
electrical grounding

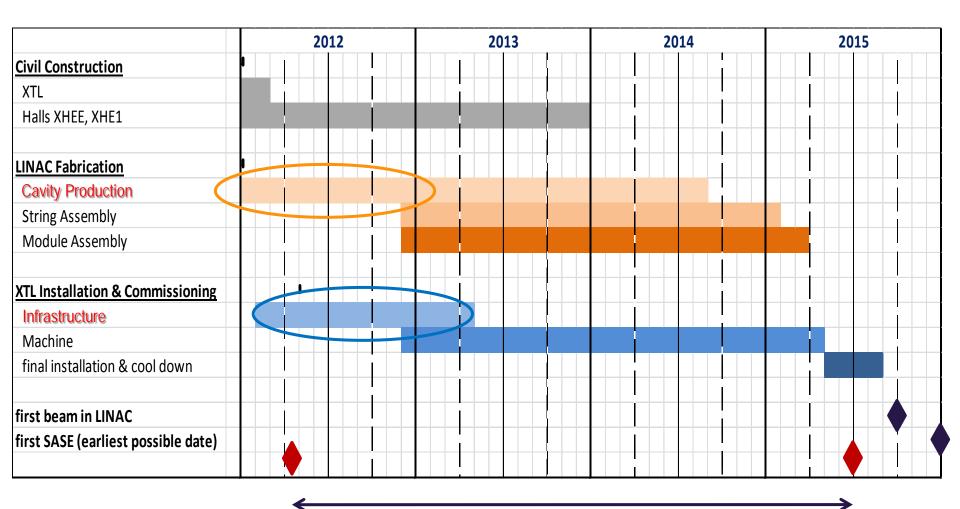
floor plates


Beam Dump

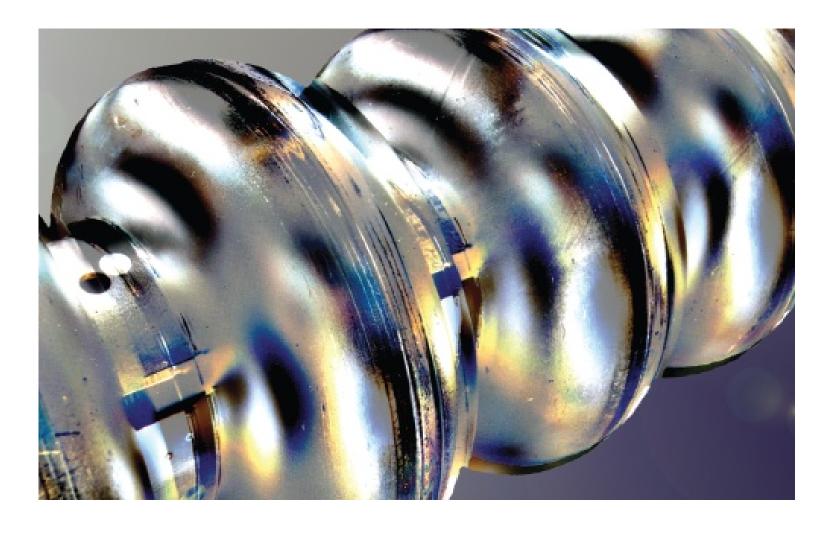


XFEL 17.5 GeV Schedule


1,170 days, i.e. 167 weeks. i.e. 38.5 months, i.e. 3.2 years



XFEL 17.5 GeV Schedule

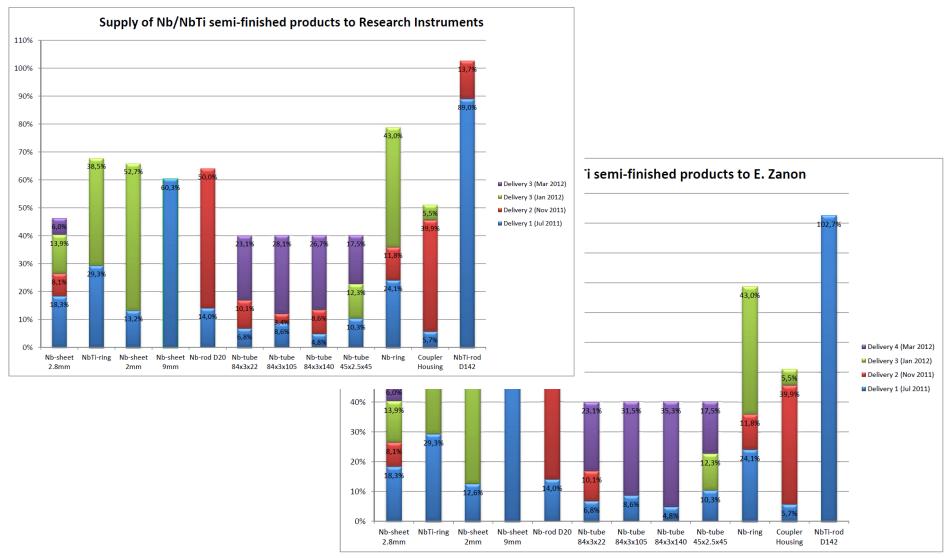

1,170 days, i.e. 167 weeks. i.e. 38.5 months, i.e.3.2 years

XFEL Cavity Production

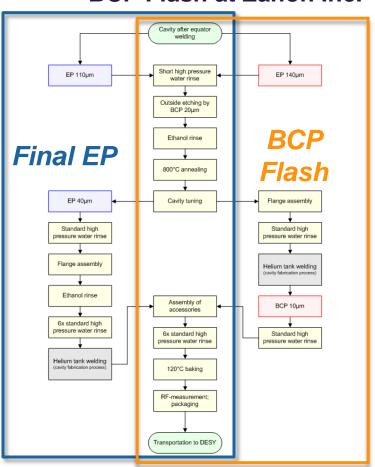
DE04 - Niobium / Cavities

Eddy current scanning of XFEL niobium sheets at DESY

Equipment for tactile 3D dimension measurement


- More than 6,000 niobium sheets arrived, the next 2,000 to come soon.
- In average 40% of all niobium incl. tubes etc. delivered to cavities vendors (status 3/2012).
- Material for remaining 160 cavities contracted.
- Reference cavities from both companies arrived and currently tested.
- Commissioning of infrastructure at cavity vendors is next.
- First cavities expected for summer 2012.

Equipment for sheets marking



FEL Cavities – Preparation & Reference Cavities

Two schemes for the final surface treatment:

- Final EP at Research Instr.
- BCP Flash at Zanon Inc.

At each company

- 4 dedicated Cav's for set-up of infrastructure
- 4 dedicated Cav's for qualification of infrastructure

Close supervision of

infrastructure set-up, processes, procedures and handling

by DESY + INFN Milano

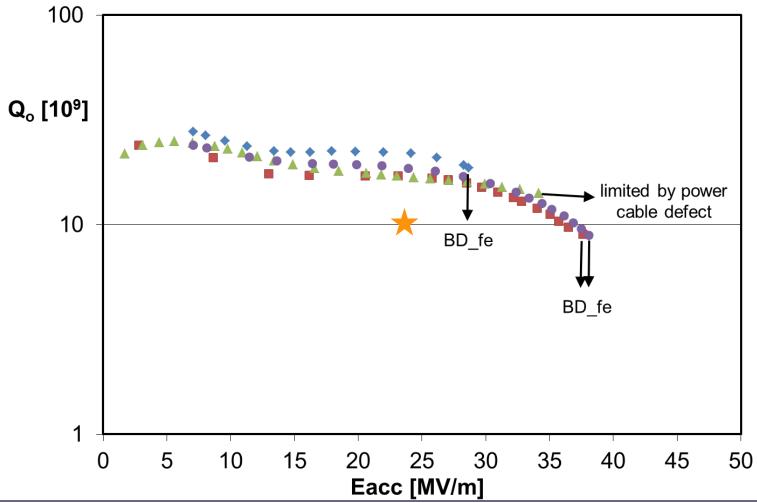
Specification w/o performance guarantee, thus:

- the risk of unexpected low gradient or field emission is with DESY
- responsibility for re-treatment at DESY

Strategy of Reference Cavities (RCV)

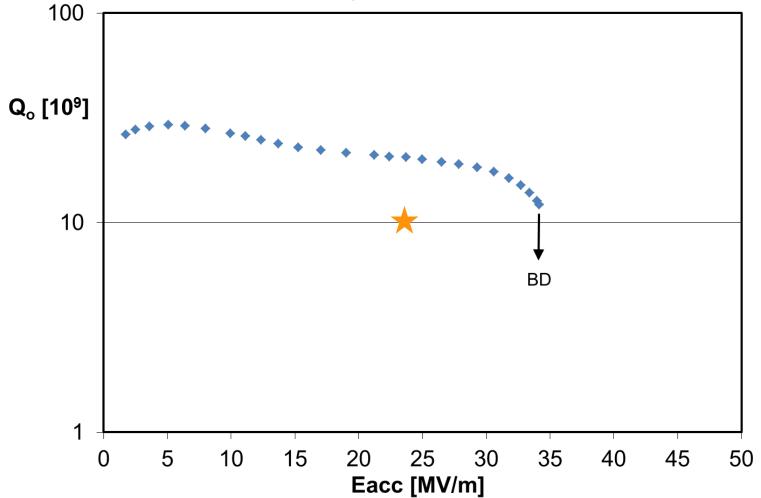
- Four reference cavities fabricated at each company
- First surface treatment and vertical acceptance test w/o He-tank at DESY (following the companies' preparation scheme: Final EP / BCP Flash)
- Stepwise qualification of surface treatment infrastructure at companies (after successful set-up of infrastructure with further dedicated cavities)

	Step 1	Step 2	Step 3	Step 4	Step 5
slow venting / slow pumping (incl. leak check + RGA)	X	X	X	X	X
disassembly of beam tube flange (short side), full HPR-cycle, drying, assembly of beam tube flange		X	X	X	X
disassembly of all flanges, assembly of flanges except of beam tube flange			X	X	X
Final 40µm EP (RI) / Final 10µm BCP (EZ), first HPR , ethanol rinse , 120° C bake				X	X
full surface treatment (incl. Main EP, outside etching, 800° C firing)					X



Status of Reference Cavities: Research Instr.

Acceptance test done with all four RI reference cavities $E_{acc} > 28 \text{ MV/m}!$

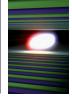


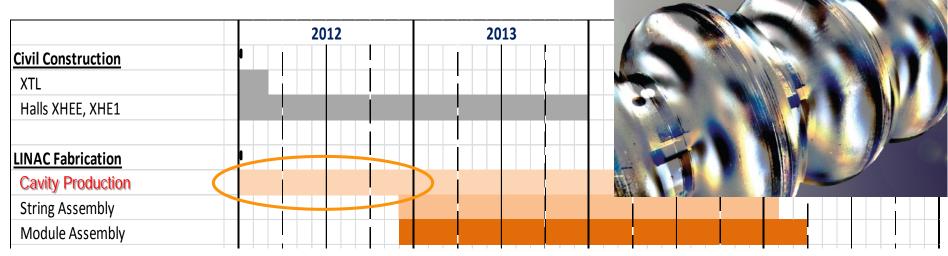
Status of Reference Cavities: EZ

First cavity vertical acceptance test successful Three cavities ready for vertical acceptance test

XFEL Zanon Infrastructure

RI Infrastructure



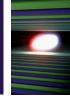


17.5 GeV Schedule

Research Instruments:

- pre-series cavities delayed by 6 weeks
- delivery of first cavities mid 8/2012
- challenge is the HPR station
- vendor schedules 4 cavs / week starting with first delivery
- the modified delivery plan leads to 42 series cavities expected until end of 2012

Zanon Inc.:

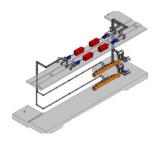

- pre-series cavities delayed by two months (mid 9/2012)
- challenge is the HPR station
- vendor schedule 3.5 cavs / week starting end of November
- we expect a total of 14 series cavities until end of 2012

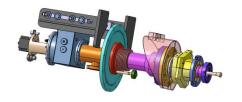
(FEL | Main Linac (XTL) Infrastructure

2015

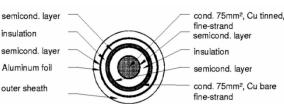
- Main Linac Tunnel Infrastructure installation started beginning of 3/2012
- Details to be reported by the Technical Coordinator
- Project Integration Time schedule (PIT) used to coordinate activities
- Initial infrastructure almost done (safety, light, ...)
- Some first unforeseen tasks (e.g. wobbling floor plates creating noise)
- Lot of work to be done until first accelerator components can be installed

1,170 days, i.e. 167 weeks. i.e. 38.5 months, i.e.3.2 years

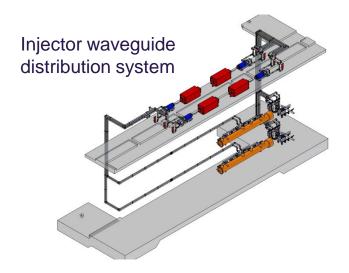

XFEL Accelerator components - a non-exhaustive tour



XFEL WP01 - Klystrons / Modulators etc.

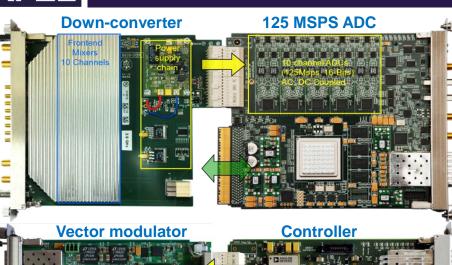

0

- all major components ordered, i.e.
 - klystrons
 - modulators
 - pulse transformers
 - pulse cables
 - connection modules
- ordering of RF interlock components started
- layout of RF racks
- Long term test of connection module and HV cable with MBKs continued
- WATF procurement of components and installation in AMTF continued
- Installation in KTF (klystron test facility) for further test continued



XFEL WP01 - Waveguide distribution

Linac waveguide distribution system

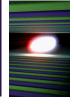

- specifications for waveguide components ready
- tendering will start soon
- large number of different types of waveguides
- interfaces and potential interferences to be further discussed

WP02 - Low Level RF

- Successful prototype tests of major components
 - Down-converter
- Piezo driver
- 125 MSPS ADC
- Drift calibration box
- Controller unit
- Compact LO generation
- Vector modulator
- RF backplane

- Several industry contracts launched
 - Low noise power supplies
 - CPU (together with WP28)
 - LO generation carrier board
- Final revision/preparation for production for most of the modules started
- Software/firmware -> µTCA ongoing
- LLRF successfully tested at CMTB test stand and ACC1 (FLASH) and REGAE
- Many new tools established during recent FLASH 9mA run!

Compact LO for crate

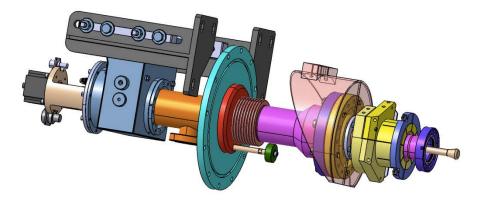


MTCA.4 Crate

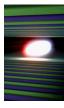
WP03 - Cold Mass and Vacuum Vessel

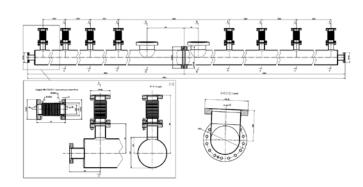
Institute of High Energy Physics Chinese Academy of Sciences

- 58 plus 25 cryostats and vacuum vessels ordered; fabrication on-going; sub-components ready for assembly.
- Production schedule uncritical. First units will arrive very soon (5/2012); storage at DESY and CEA foreseen.
- Remaining 20 cryostats: Call for tender (by DESY) prepared.



_ WP05 - RF Power Coupler

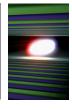

- The coupler production schedule became a real challenge and assumes that any further mistakes are to be avoided. Brazing and copper plating processes are challenging!
- The start of the series production is still to be very critically addressed!!!
- The pre-series modules get some extra attention by LAL & DESY.
- DESY has ordered 32 additional couplers in order to support the ramp-up and to make couplers available for the first modules.
- Coupler conditioning requires thorough preparation.
- DESY is responsible for the coupler interlock. Electronic board development is almost finished. Production is next.



WP08 - Cold vacuum & particle free installation

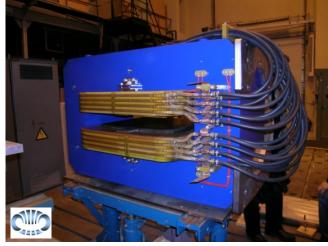
- Russian contribution (BINP)
 - first cavity bellows at DESY: QC ongoing
 - first coupler bellows in April
 - first coupler line in April
 - series components delivery starts in June

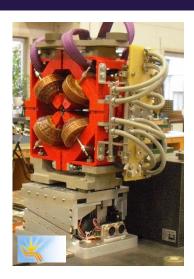
DESY contribution


- module gate valves for pre-series available: QC problem at manufacturer resolved
- **coupler pump line** CAD model completed incl. TSP power supply in April
- isolating-vacuum
 - scheme agreed with cryogenic group
 - pump carts available
 - first tests of large volume pump-down carts successfully completed
 - valves order being prepared

WP11 - Cold Magnets and Current Leads

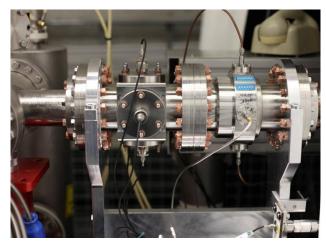
- magnets itself are a CIEMAT In-kind contribution; recent challenge: TUEV qualification of the vendor (ISO 3834-2)
- DESY supports activities and takes care of **beam tube copper plating** and **current leads**; both contracts were placed, series production to be started soon
- quad testing at DESY under preparation, i.e. expert team from IFJ established
- software for both DAQ and database to be finalized
- overall schedule for first magnets looks quite challenging!

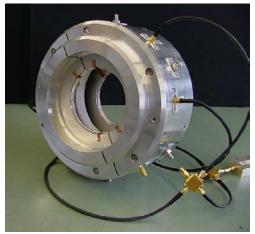




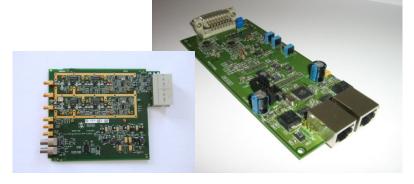
_ WP12 - Warm Magnets

- Production of XQA magnets finished, measurement under way at Stockholm Univ.
- XBB production still on-going, measurement program set-up but extensive measurements take time.
- still more PRRs (production readiness reviews) to be finished
- coil production (XQI, XQF, XQH, XQE, XSC) on-going
- iron for the laminated yokes to be delivered now
- number of spare magnets and coils fixed and accepted
- refurbishing of the HERA QC coils is authorized

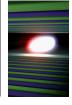


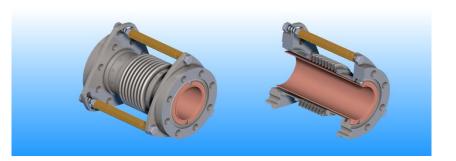


WP17 - all large number beam diagnostic elements



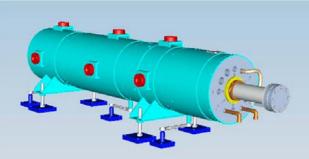
- Development and production of beam diagnostic elements
 - Beam Position Monitor Pick-Ups
 - Beam Size Measurement System
 - Beam Loss Monitor System
 - Charge Monitors and Transmission Interlock
 - Dark Current Monitor System
 - Dosimetry System
- different status for the various components, i.e. prototypes / pre-series / first series
- integration into different beam line sections on-going, installation schedule still to be established together with Technical Coordination

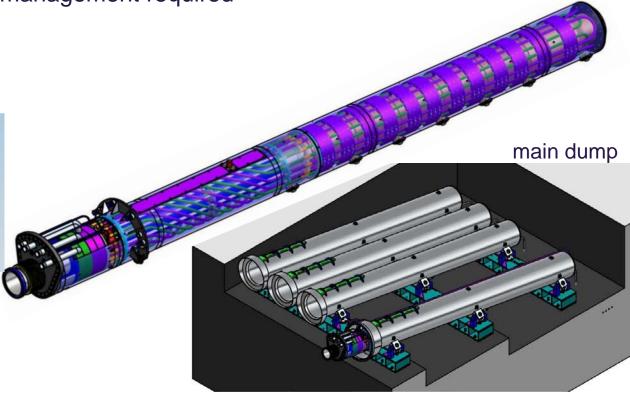




FEL WP19 – Warm vacuum

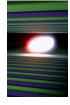
- detailed technical layout of the XFEL warm beam line vacuum sections shows progress but still much more work to be done
- design and manufacturing of vacuum chambers started
- ordering of commercially available components on-going
- UHV as well as particle cleaning where necessary to be prepared
- schedule installation of the components into the XFEL linac
- make available the required mobile vacuum equipment
- electronic components for the vacuum components including vacuum interlock


XFEL WP20 - Beam Dumps


- IHEP is responsible for design and production while DESY takes care of the overall coordination and integration of all beam dumps.
- the project is challenging (material, quality plan, dump windows, installation)
- esp. main dumps have to be absolutely reliable

excellent cooperation and management required

bunch compressor dump

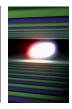


Assembly and Test Infrastructures

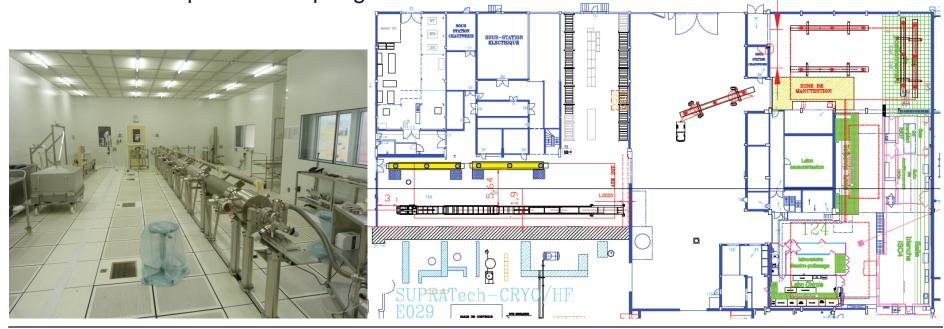
- all collaboration partners were / are setting up major infrastructures for the production, assembly, and test of accelerator components
- utilities (mains, water cooling etc.) are required



XFEL Clean room at DESY



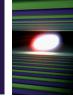
- Technology transfer wrt. cavity string and accelerator module assembly from DESY to CEA Saclay (IRFU) used large infrastructures at both institutes; extensive training phase
- SRF cavities needed for the training phase are prepared at DFSY
- The refurbished DESY clean room will be used to preassemble the quadrupole packages with its' beam position monitors
- The cleanroom is also extensively used for WP04 Cavity activities: Reference cavities are surface treated and prepared for first RF tests



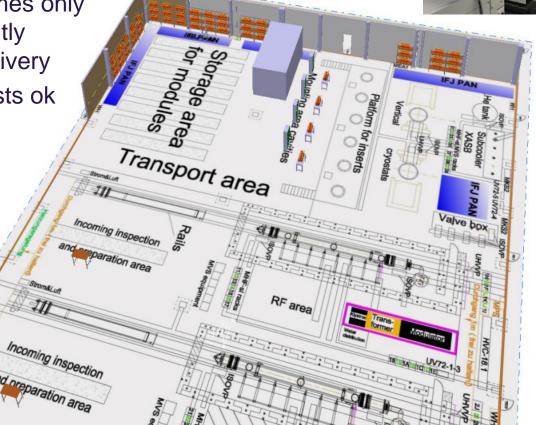
Saclay Infrastructure for String and Module Assembly

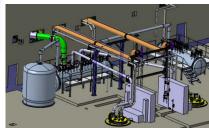
- Publicity and call for candidatures last summer
- Restricted CFT based on cryomodule assembly specifications
- Selection of industrial contractor finished; contracts to be placed now
- Pre-series assembly of three modules in 2012
- First series assembly scheduled for end of 2012

Exact start date still under discussion but according to global project schedule module #100 expected for spring 2015



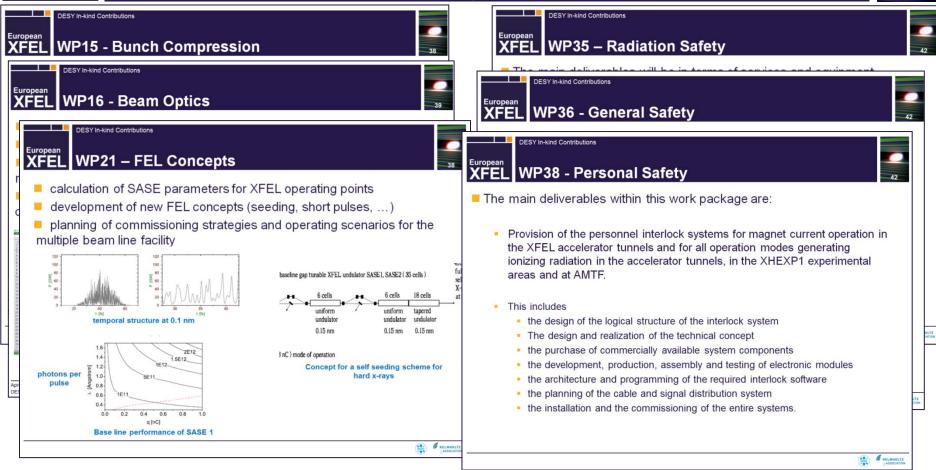
XFEL AMTF Test Stand Infrastructure




Impressive AMTF infrastructure exists but some essentials still missing (e.g. vert. cryostats)

schedule remains challenging until last minute

schedule becomes only viable due to slightly delayed cavity delivery



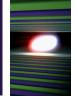
Other contributions – again only examples

- many activities and lots of progress in other work packages too
- essential contributions from all teams

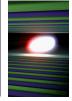
	Milestone Follow-Up, Scheduling, Int Installation, Quality Management Markus Hüning, Riko Wich	frastrucutre	Operation Envelope Winfried Decking, Torsten	
	SR 4b, Bldg 1b	09:00 - 11:00	SR 4a, Bldg 1b	09:00 - 11:00
	Control Software		Vacuum Systems	
	christopher youngman, Kay		Martin Dommach, Sven Led	
-				
	SR 4a, Bldg 1b	11:00 - 13:00	SR 4b, Bldg 1b	11:00 - 13:00

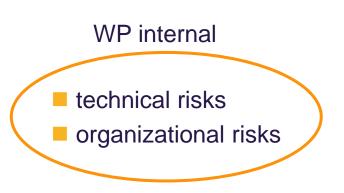
- discussions within working groups will reflect the actual status of all WPs
- plans, collaborations, achievements, challenges, risks, schedule

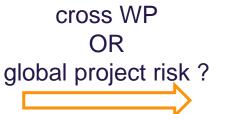
Machine Protection System / I Interlock	Personnel	Cold Linac WPs and WP10: Data Exchange and Handling			
Martin Staack, Harald Sinn		Detlef Reschke, Elmar Vog.			
SR 4a, Bldq 1b	14:00 - 16:00	SR 4a, Bldg 1b	14:00 - 16:00		
Timing, Electronics & FPGA de	velopment	Cold Linac WPs and WP10: Global Schedule 'from Cavity to Tested Module'			
Holger Schlarb, Patrick Ges	ger Schlarb, Patrick Ges		Elmar Vogel, Detlef Resch		
SR 4a, Bldg 1b	16:00 - 18:00	SR 4a, Bldg 1b	16:00 - 18:00		



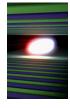
Project Risk Register


e Ho	ome Insert	Page Layout Formulas Data	Review	View Developer Acrobat			nem 10 rosks WPG1	27032012 (2).xlsx [Read-Only] -	Microsoft Excel
Clipboan	t Arial Painter B	- 14 - A' A' A' Z U -		S − Ge Wrap Text	neral	For	nditional Format matting - as Table -	Normal Bad Check Cell Explan	Good Neutral Calculation E AutoSum 2 T
	* (÷	fx							
Α	В	С	D	E	FG	Н	1	J	К
-	last updated	28.03.2012	Diele	Descible	-				Diek Hittersten Heckenlene
ID	Area of Project / Work Package	Risk Description	Risk Type	Possible Consequences	Impact Probability	Severity of Risk	Date of Risk Identifica tion	Date when Risk Consequences Start Affecting the Project	Risk Mitigation Mechanisms
		interlock development behind schedule	schedule	_	Severe 1		26.09.2007		schedule aligned with overall project schedule, developmenet still ongoing thus we should keep it, the probability seems low, but if there is a delay then it will be a general delay for the commissioning Tow and 'severe'
05.04	WP-05: Power	conditioning time may be too long for series production of modules	schedule		moderate s	pale	26.09.2007		according to experience not very likely but it cannot bve excluded that some couplers need longer RF conditioning time; if so it becomes a delay for the module assembly and all other downstream tasks; due to some parallel use a second RF station it can be handeled, nevertheless we should set it to medium & moderate medium and moderate
05.08 NEW	Power	LAL RF power station is not working reliable enough	schedule	no coupler conditioing	modera	pale	26.03.2012	Fall 2012	sufficient emphasis by LAL
05.09 NEW	Power	joining and copper plating technique not sufficiently established	technical	no couplers	severe	red	26.03.2012	Summer 2012	strong cooperation between LAL as contractor and Thales as vendor
NEW	Power coupler	coupler production behind schedule	schedule	no couplers	severe	red	26.03.2012	Summer 2012	strong cooperation between LAL as contractor and Thales as vendor
NEW	ном	BLAs behind schedule	schedule	no BLAs	severe		26.03.2012	Spring 2013	to be solved by IKC
	Frequency	Module long-term storage under defined and dry conditions	technical	Malfunction of tuner drives	severe		05.02.2008	Machine commissioning	Development of proper storage for accelerator modules still valid, methode developed i.e. known; in addition quick installation of 12 module string planned thus iso vac started soon after installation; but risk remains, set it to low low
	Vacuum	not well defined emergency operation of vacuum system after power cuts	technical	delay in commissioing	severe		26.03.2012	2015	becomes a risk during commissioning and has to be adressed before due to its impact
	Strings	Experience transfer to CEA and from CEA to Industry	schedule		modera	pale	26.09.2007		see also WP 03.03; remains some risk until the first modules are assembled and tested moderate medium
	Strings	Timing at Saclay / time slip on Spiral 2 (Cleanroom availability) 27.03.2012 WPG1 2008 Risk Reg	schedule	Infrastructure problems at the proposed in kind infrastructure can lead	a				infrastruture well set-up but project priorities need to be well defined, otherwise resources and thus schedule ri set it to moderate medium until first modules are assembled and work is well established (beg. 2013) moderate medium.
b H WP	rus kisk Register 2	ez-us-zu12 / WPG1 2008 RISK Reg	commenced	- W					[] ₹ [

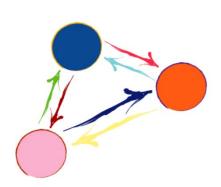

- with each Progress Review we collect / update issue and risk lists based on the WPL's information and PM's judgement
- we see technical, organizational, schedule and budget issues



Risk mitigation



- **schedule risks easily translate into budget risks** for either / or / and the own contribution, other IKC partners, European XFEL company
- <u>just salaries</u>: beginning of 2015 the project has approx. 500 co-workers which amounts to approx. 3 M€ per month
- installation phase ends with successful commissioning thus a delay creates a cost overrun even if the bitter pill of own IKC over-costs is swallowed
- thus it might make sense to use additional resources to keep the schedule
- more important: in case of delays never give up working on recovery strategies
- sufficient flexibility is expected to account for delays of some few weeks out of the still 167 weeks to go until tunnel closing; adjust resources if required!



The way to common success

interaction

collaboration

disputes

recovery plans