
Article https://doi.org/10.1038/s41467-025-67063-2

Observation of a mixed close-packed
structure in superionic water

A list of authors and their affiliations appears at the end of the paper

The study of superionic (SI) water has been a highly active research area since
its theoretical prediction. Despite significant experimental and computational
efforts, its melting curve and the stability of different oxygen lattices remain
debated, impactingour understandingof SI ice’s peculiar transport properties.
Experimental results at lower pressures show disagreement, whereas data at
higher pressures are scarce due to the extreme challenges of such experi-
ments. In this work, we present ultrafast X-ray diffraction results of water
compressed by multiple shocks to pressures up to ~ 180 GPa. At pressures
exceeding 150 GPa and temperatures around 2500 K, our diffraction patterns
challenge the pure FCC-SI phase model, providing experimental evidence of
the mixed close-packed superionic phase predicted by advanced ab initio
calculations. At lower pressures, we observe simultaneous signatures of BCC
and FCC structures within a pressure-temperature range consistent with some
static-compression experiments, helping to resolve contradictory results in
literature. These insights offer new constraints on the stability domains of SI
phases and reveal detailed structural features, such as stacking faults. Our
results advance the structural understanding of high-pressure SI ice to a level
approaching that of ice I polymorphs, with potential implications for water-
rich interiors of giant planets.

Under extreme pressures and temperatures, water transforms into a
variety of exotic phases, including the superionic (SI) phase, char-
acterised by a crystalline oxygen lattice permeated by highly mobile
protons. This phase, with its hybrid solid-liquid properties, has pro-
found implications for fundamental physics and chemistry, material
science, and planetary science, particularly in understanding the
interiors of ice giants like Uranus and Neptune. However, despite dec-
ades of research, the phase diagramof superionicwater remains poorly
understood, with considerable controversy surrounding competing
phases, precise phase boundaries, and transformation mechanisms. As
water is the archetype of hydrogen-rich compounds, its phase beha-
viour has inspired continuous investigation, leading to the discovery of
at least 19 (partially) crystalline phases under different thermodynamic
conditions1. Therefore, addressing uncertainties on the water SI beha-
viour is critical for a general understanding of such an exotic state.

Early theoretical work suggested a uniform superionic phase
inheriting the body-centered cubic (BCC) oxygen lattice of ice VII and
X2–4. This belief was seriously questioned after thermodynamic
integration-based free energy calculations predicted that a face-
centred cubic (FCC) oxygen lattice is thermodynamically stable and
could potentially affect transport properties5. Adding to the com-
plexity, theoretical studies have proposed the existence of competing
phases within the SI regime. Ab initio calculations by Sun et al. 6 and
Cheng et al.7 suggest that lower symmetry close-packed structures,
such as stacking-disordered phases, may compete with or bridge the
pure SI-BCC, SI-FCC, or SI-HCP phases. Characterising these faulted
phases is essential, as dislocations can significantly influence viscosity,
thus potentially affecting the interior dynamics of ice giants8. Inter-
estingly, stacking disorder has also been observed in the water ice Ih
and Ic polymorphs, forming ice Isd, which might be encountered in
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various environments in the Solar System, including the outermost ice-
rich layer of icy moons9,10

Experimentally probing the SI phase at the extreme pressures
(>100GPa) and temperatures (>2000K) of planetary interiors poses
significant challenges and the aforementioned predictions remain
unconfirmed. Even at relatively low pressures, where diamond anvil
cell (DAC) experiments allow robust phase determination, dis-
crepancies abound. For instance, Prakapenka et al. 11 observed the SI-
FCC phase at pressures as low as 30GPa, while Weck et al. 12 found no
evidence of SI-FCC below 50GPa. The phase boundaries reported in
these studies diverge significantly, with Prakapenka et al. observing
transition temperatures that are 600 K higher than those reported by
Weck et al. at 60GPa. Most recently, Forestier et al. 13 have char-
acterised the BCC-FCC phase boundary and successfully recovered
metastable FCC ice, thereby enabling a precise determination of the
superionic transitiononset. At higher pressures, the situation becomes
even more complicated due to the experimental limitations of static
compression methods. Dynamic compression techniques, such as
laser-driven shock loading, have extended the exploration of the SI
phase to higher pressures, but results remain inconsistent. Millot et al.
14 reported the FCC-SI phase at 160GPa and 3200K, whereas Gleason
et al. 15, using a similar technique, observed a BCC phase under similar
pressures and ~2700K. TheBCCphasewould remain stable at 200GPa
and 3200Kup to temperatures exceeding 5000K. In general, dynamic
compression experiments face inherent challenges in achieving high-
quality in-situ X-ray diffraction data under extreme conditions, which
hindered the ability to unambiguously identify crystalline phases and
to resolve microstructural features such as mixed phases or stacking
faults.

In this work, we present ultrafast X-ray diffraction measurements
of water compressed by reverberating shocks, achieving an unprece-
dented level of resolution for dynamic compression experiments. By
exploring a broad region of the phase diagram within the predicted
superionic regime, our data complement and refine interpretations
from previous experiments. Our results at P ≥ 150 (10) GPa and
T ≥ 2450 (135)K reveal a predominantly FCC lattice, consistentwith the
findings of Millot et al.14. However, the observed diffraction patterns
deviate from the pure SI-FCC model and require the inclusion of

stacking disorder to fully explain the data. This provides experimental
evidence of a mixed close-packed phase in the superionic regime, as
predicted by advanced ab initio calculations6,7. At lower pressures, our
results supply critical data for the refinement of the high-pressure
phase diagram of water, addressing the complex mechanisms under-
lying the SI phase transitions.

Results and discussion
The results reported here were obtained by coupling laser-driven
compression with high-brilliance X-ray probes from free-electron
lasers (Fig. 1). The thermodynamic conditions of the samples were
constrained using optical diagnostics routinely applied in dynamic
compression studies and correlated with time-resolved X-ray diffrac-
tion measurements (Fig. 2). This experimental configuration allows us
to reach extreme pressures and temperatures while simultaneously
capturing the structural evolution of the material on sub-nanosecond
timescales. Comprehensive details of the experimental setup, diag-
nostic configuration, and analysis procedures are given in the ‘Meth-
ods’ section and Supplementary Information. Figure 3 presents
representative diffraction patterns recorded under different com-
pression conditions. Additional data are reported in the Supplemen-
tary Information. The diffracted signal from diamonds is minimised
mainly by using single crystal windows instead of polycrystalline
samples (see Supplementary Information Fig. S6). Moreover, diamond
contributions are readily distinguishable from those originating from
the water ice, due to their distinct textures: the diamond features
appear as characteristic ‘textured’, while the water ice produces very
‘powder-like’ patterns. This distinction is particularly clear in the data
shown in the lower panel of Fig. 3, where the featurenear 4.2Å−1 cannot
be attributed to any diamond reflections but it is instead consistent
with the 200 reflection of BCC ice (further details are in the Supple-
mentary Information Section 4.1).

Results for the maximum compression achieved in our cam-
paigns, at P ~180GPa and temperature of 2500–3000K, are shown in
Fig. 3a. Similar diffraction patterns were observed for pressures
exceeding 150 GPa in the same temperature range, recorded across
four independent experiments in the two campaigns (see Fig. 4b and
Supplementary Information Fig. S12). These data clearly lack peaks
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compressedmultiple times by laser-generated shock waves reverberating between
diamond windows (a). The VISAR data (b) track the evolution of the velocity of
various interfaces in the target, among which the free surface of the diamond
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pression path. Themicroscopic state of thewater sample is probed by a single 50 fs
X-ray pulse with a photon energy of 9.5 keV at LCLS, and 18 keV at EuXFEL. X-ray
diffraction is recordedusing a large-area detector (c), and it allows investigating the
structure of the compressed water.
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associated with the BCC phase, ruling out its stability in this region of
the phase diagram15. Instead, reflections corresponding to the 111, 200,
and 220 planes of the FCC phase are observed, in line with earlier
results obtained under comparable conditions14. However, the unpre-
cedented spectral resolution of our data reveals that a single FCC
phase is insufficient to fully explain the diffraction patterns. Con-
sidering contributions from the diamond windows, liquid signal, or
grain-size effects do not allow a comprehensive understanding of the
data (see Supplementary Information Section 6). Instead, the patterns
are best explained by a model combining FCC and lower symmetry
structures, such as hexagonal close-packed (HCP). The broadening of
the HCP-related peaks relative to those of the FCC phase suggests a
highly complex and disordered structure (see Supplementary Infor-
mation Fig. S10). This observation suggests that the features are better
explained by stacking disorder (SD) between FCC- and HCP-like
sequences rather than by the coexistence of distinct phases16–18. This
interpretation is reinforced by the remarkable agreement between our
data and the stacking faults (SF) refinement, as illustrated in Figs. 3a
and 4b. Further evidence for this scenario is also provided by the
strong similarity between our diffraction pattern and machine-
learning-potential-based simulations of mixed stacking, shown as yel-
low and blue curves in Fig. 4. The stacking disorder results from var-
iations in the stacking sequence of the atomic planes, which can
alternate locally between structures (see Fig. 4c inset). This behaviour
in SI water has been predicted by theoretical simulations, which sug-
gest that within specific pressure and temperature ranges—typically
between 100GPa and 800GPa, and temperatures from 2000K to
5500K—lower symmetry SI stacked structures can compete with the
FCC-SI phase6,7. In these predictions, the oxygen sublattice may alter-
nate between different stacking configurations, predominantly HCP
(AB), FCC (ABC), and dhcp (ABAC), leading to stacking defects within
the crystals. Furthermore, in their simulations, Sun et al.6 report that
these different structures are so similar that they can transform from

one configuration to another. As a result, they were unable to distin-
guish between these structures, referring to a single ‘close-packed’
(CP-SI) phase. This assumption also holds for our data, and the FCC/
HCP stacking fault phases were used to model the data. The stacking
disorder is quantified by a factor α, representing the probability of
observing anHCP sequence among three random layers. A perfect FCC
crystal corresponds to α = 0 (ABCABC sequence), while a perfect HCP
crystal has α = 1 (ABABAB sequence)16,17(see Fig. 4c). In our data set, α
values range from 0.25 to 0.32, indicating a predominant FCC phase
with 25–32% HCP contributions (see Supplementary Information sec-
tion 5 formore details). These results suggest significant local stacking
disorder within the lattice. However, the refinement assuming simple
stacking faults does not fully capture all the experimental features.
Small but systematic discrepancies are observed between the calcu-
lated and experimental patterns, notably near Q ~3.4Å−1 and around
the (200)/(110) reflections (see Fig. 4b and Supplementary Information
Fig. S12). This suggests that the local structure is more complex than a
simple FCC-HCP stacking sequence, and that more sophisticated
models may be required to accurately reproduce the diffraction
features.

From our results, we cannot discriminate whether the observed
stacking disorder arises from the strong uniaxial, high-strain-rate
compression associated with shock-driven pressure, as for example
observed in copper and gold19,20, or if it represents an intrinsic feature
of superionic ice.

Given that stacking-disordered ice I (referred to as ice Isd) may be
very widespread10, this structural feature could be a fundamental
characteristic of water ice, suggesting that even at high pressures its
behaviour is far more complex than previously understood. Kinetic
effects similar to thoseobserved in ice Ic21, where disordered cubic and
hexagonal stacking sequences gradually lose cubic disorder, trans-
forming over time into the more stable hexagonal phase, may also
influence the detection of stacking fault, hindering its observation in
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Fig. 2 | VISAR data and hydrodynamic simulations. a VISAR image for a target
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with the apparent velocity of the diamond ablator-water interface (blue curve) and
rear diamond velocity (red curves) given by the optimised ESTHER hydrodynamic
simulation. Uncertainties in the velocitymeasurements correspond to the standard
deviation of fringe-shift values within the analyzed region. Dotted, dashed, and
solid lines represent different simulations within VISAR measurement uncertain-
ties. c density map of the corresponding hydrodynamic simulation. The blue line
corresponds to the probing time for Run 346 at LCLS, shown in Fig. S12d. Other
examples can be found in the Supplementary Information, Fig. S1. The y-axis (time
ns) is common for the tree (a–c).
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static measurements13. In this case, the fast temporal scale of our
experiment (ns) provides an optimal means to capture such details in
the transformation dynamics.

Varying the laser energy and probing time, we can explore other
regions of the phase diagram. Between ~70 and 120GPa and at tem-
perature ranging from2000 to 2500K, the diffraction patterns exhibit

a notable change. In addition to the 111, 200 and 220 reflections of the
FCC structure, we found characteristic peaks of the BCC structure, as
shown in Fig. 3b and the Supplementary Information. Differently from
the higher pressure data discussed above, here the width of the BCC
and FCC peaks is similar (see Supplementary Information Fig. S8).
Remarkably, both structures also exhibit the same density within the
measurement uncertainties (see Supplementary InformationTable S1).
This observation is consistent with previous studies11,12,22, some of
which12 attributed the coexistence of the two phases to a temperature
gradient. However, since the occurrence of similar temperature and
pressure gradients seems unlikely in our experiments, this finding
raises the possibility that BCC-SI and FCC-SI structures may coexist
locally, prompting further discussion on the underlying mechanisms
and kinetics. Indeed, in this pressure/temperature range ab initio-
based calculations find very similar chemical potentials μ for the two
phases and even μbcc = μfcc in the hatched area in Fig. 5. This provides a
plausible explanation for the simultaneous observation of BCC- and
FCC-like signatures in our experimental data within this region of the
P-T diagram (Fig. 5). In addition, they predict that the BCC arrange-
ment remains kinetically stabilised, while the FCC structure is ther-
modynamically favoured7.

At even lower laser energies and longer delays, our diffraction
data provide unequivocal evidence for the presence of a sole BCC
structure. As shown in Fig. 3c and Supplementary Information Fig. S7
up to four distinct peaks are clearly observed. VISAR-calibrated
hydrodynamic simulations place the experimental conditions
between ~25 and 50GPa and at temperature ranging from 900 to
1300K. The densities inferred from the XRD (2.153 (9), 2.207(2), and
2.371(8) g/cm3, respectively) at the simulated temperatures are con-
sistent with BCC-SI (see Supplementary Information Fig. S17). These
findings are in line with data available in literature11,12,22,23.

In Fig. 5, our data ensemble is plotted in the P-Tdiagramalongside
previous results. To ensure clarity and effectively convey our findings,
we present only a subset of existing experimental and theoretical
results. A more comprehensive comparison with additional data is
provided in the Supplementary Information (Fig. S18).

Our measurements corroborate the BCC-FCC phase boundary
established by Weck et al.12, Forestier et al.13 and Millot et al.14, in dis-
agreement with the higher-temperature transition proposed by Pra-
kapenka et al.11, Husband et al.22 and Gleason et al.15 (Supplementary
Information Fig. 18). For pressures and temperatures between 148(10)-
180(20) GPa and 2445(150)-2700(350) K we identify a mixed close-
packed structure, providing experimental support for the complex
phase behaviour predicted by ab initio calculations of Cheng et al.7 and
Sun et al.6. The high resolution of our XRD data allows us to revisit
previous shock compression results. We unravel HCP stacking dis-
order within the FCC-SI phase previously identified by Millot et al.14,
while contesting the stability of the BCC-SI in this P-T regime as sug-
gested by Gleason et al.15. If intrinsic, the observed stacking disorder
would affect the transport properties that govern internal structure,
rheology, and magnetic field generation in ice-rich planets8,24. If
instead shock-induced, its significancewoulddependon the lifetimeof
themetastable faulted phase, a question that our work cannot resolve,
but that future investigations should address, given the growing
recognition of giant impacts as a key hypothesis for shaping planetary
interiors25,26.

Our work thus provides new critical constraints on water’s high-
density phase behaviour. It demonstrates a high-pressure high-tem-
perature diagram, shaped by mixed structural phases and kinetic
effects, that is significantly more intricate than previously established.
The complexity of the superionic regime mirrors the rich phase
behaviour of solid ice and reinforces how water, a seemingly simple
and ubiquitous molecule, continues to reveal exceptional and unex-
pected physical properties,with potential impacts on astrophysics and
planetary science.
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Methods
Shock-compression experiment setup and diagnostics
Two separate experimental campaigns were performed at the Linac
Coherent Light Source (LCLS)27 and at the European X-ray Free-Elec-
tron Laser Facility (EuXFEL)28. In both campaigns, we used the high-
energy nanosecond laser pulses, available atMEC and HED-HiBEF end-
stations, respectively, to compress water to the SI regime and probed
the atomic structure via ultrafast in-situ X-ray diffraction (XRD) using
the XFEL beam. The water layer (30–60μm thick) was confined
between a diamond ablator (30 μm thick) and a diamond window
(60μm thick). A sketch of the target assembly is presented in the inset
of Fig. 1a. A shock wave is generated in the diamond ablator by
focusing a 10 ns square pulse operating at 527 nm into 250 or 300μm
phase-plate smoothed spots. The peak pressure was varied by chan-
ging the total energy delivered to the target, in the range of a few
1012W/cm2. At these laser intensities elastic and plastic waves are
generated in the diamond ablator and reverberate between the dia-
mondswith higher shock impedance. Thewater layer thus undergoes a
multi-step compression. This configuration allowed to probe the
regime where the SI phase is predicted to be stable, which is not
possible for single shock compression due to the steep rise in
temperature.

To obtain the generated pressure and temperature conditions, we
used optical data combined with hydrodynamic simulations (see Fig. 2
and Fig. S1 in the Supplementary Information). Two line-imaging
Velocity Interferometer System for Any Reflectors (VISARs) were used
to record the compression history of each shot, by measuring the
shock arrival and exit times in water, the velocity of the diamond

window free surface, and, for some shots, the ablator/water interface
velocity. Uncertainties in the VISAR velocity measurements were
obtained from the standard deviation of the fringe-shift values within
the analysed region. When only timing measurements were used, the
uncertainties were derived from the combined errors in timings and
sample thickness.

Hydrodynamic simulations
These measurements were then used to calibrate hydrodynamic
simulations and infer the thermodynamic state in the water layer. For
each experiment, simulations were run using the experimental laser
temporal profile, optimising the intensity and the target thickness
within uncertainties to better reproduce measured timings and velo-
cities (see Supplementary Information). The simulated pressure and
temperature conditions at the X-ray probing time were considered to
be representative of the compressed water layer. The reported error
bars on the inferred thermodynamic conditions account for the
variability among numerical simulations that yield agreement with the
experimental data within the VISAR uncertainties. Simulations were
done using the hydrodynamic code ESTHER29. For diamond, we used
the SESAME 7830 equation of state, implemented with mechanical
properties issued from ref. 30. This enables us to account for the
strong diamond elastic precursor, crucial for the description of the
water compression history. For water, we implemented the recent
‘AQUA’ equation of state31. In the pressure and temperature range of
the experiment, ‘AQUA’ shows a very good agreement with the most
established ab initio calculations (see Supplementary Information
Fig. S3), which corroborates the simulated conditions in water,
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especially for temperatures, where other widespread EOS, e.g.,
SESAME tables 7150 or 7154, differ substantially (Supplementary
Information Fig. S3).

X-ray diffraction
In-situ XRD was performed using quasi-monochromatic (dE/E = 0.2
–0.5%) 9.5 keV and 18 keV X-ray pulses at the LCLS and EuXFEL,
respectively. In both cases, X-ray pulses of ~50 fs duration and
~20–30μm spot diameter were used, much smaller than the flat-
compressed region to minimise pressure and temperature gradients.
By varying the timing between the X-ray beam and the drive laser, we
probed different stages of the compression history. This approach,
combined with different drive laser energies, allowed us to probe a
large range of pressure and temperature conditions of the water high-
pressure phase diagram.

Molecular dynamics simulations
Classical molecular dynamics simulations have been performed with
the open-source LAMMPS code (stable release version 3March 2020)32

interfaced with n2p233 to employ a machine learning potential based
on density functional theory (DFT) for water. The previously devel-
oped water potential was generated by Cheng et al.7 using a PBE DFT
dataset that covers the entire thermodynamic range relevant for this
work. Our simulations were carried out for fluid, solid, and superionic
phases with BCC, FCC, Pbcm, and mixed structures at various ther-
modynamic conditions. The number of water molecules considered in
the simulation box varied for each studied phase (e.g., up to 13824
molecules in themixed phase). The simulations were performed in the

NpT ensemble, and each calculationwas run for 100 pswith a timestep
size of 0.25 fs. Every 1000 time steps, a snapshot of all the atomic
positions was collected, and the XRD spectrum was calculated for this
configuration using the atomic simulation environment (ASE). The
final XRD spectrum for each thermodynamic condition was obtained
by averaging the 400 snapshots. The simulation input files, i.e., initial
structures for each phase and MD parameters, can be found in the
repository associated with Cheng et al.7.

Data availability
Data recorded for the experiment at the European XFEL will be openly
available at https://doi.org/10.22003/XFEL.EU-DATA-004463-00
once the data embargo of the experiment campaign 4463 has been
lifted (2026-10-30). Before the end of the data embargo, all relevant
raw data will be available from the authors upon request. Source data
are providedwith this paper and available in the repository https://doi.
org/10.6084/m9.figshare.3062437734. Additional data available upon
reasonable request. Source data are provided with this paper.
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