Record Details

Proposal to generate 10 TW level femtosecond x-ray pulses from a baseline undulator in conventional SASE regime at the European XFEL
EuXFEL staff
Author group:
Simulation of Photon Fields
Output characteristics of the European XFEL have been previously studied assuming an operation point at 5 kA peak current. In this paper we explore the possibility to go well beyond such nominal peak current level. In order to illustrate the potential of the European XFEL accelerator complex we consider a bunch with 0.25 nC charge, compressed up to a peak current of 45 kA. An advantage of operating at such high peak current is the increase of the x-ray output peak power without any modification to the baseline design. Based on start-to-end simulations, we demonstrate that such high peak current, combined with undulator tapering, allows one to achieve up to a 100-fold increase in a peak power in the conventional SASE regime, compared to the nominal mode of operation. In particular, we find that 10 TW-power level, femtosecond x-ray pulses can be generated in the photon energy range between 3 keV and 5 keV, which is optimal for single biomolecule imaging. Our simulations are based on the exploitation of all the 21 cells foreseen for the SASE3 undulator beamline, and indicate that one can achieve diffraction to the desired resolution with 15 mJ (corresponding to about 3e13 photons) in pulses of about 3 fs, in the case of a 100 nm focus at the photon energy of 3.5 keV.
Report number:
Report type:
External Reports


 Record created 2016-10-11, last modified 2019-01-30

Download fulltextPDF
External link:
Download fulltextFulltext
Rate this document:

Rate this document:
(Not yet reviewed)