Files

Abstract

Ångstrom and attosecond are the fundamental spatiotemporal scales for electron dynamics in various materials. Although attosecond pulses with wavelengths comparable to the atomic scales are expected to be a key tool in advancing attosecond science, producing high-power hard X-ray attosecond pulses at ångstrom wavelengths remains a formidable challenge. Here, we report the generation of terawatt-scale attosecond hard X-ray pulses using a free-electron laser in a special operation mode. We achieved 9 keV single-spike X-ray pulses with a mean pulse energy of around 180 μJ, exceeding previous reports by more than an order of magnitude, and an estimated average pulse duration of 200 as at full-width at half-maximum. Exploiting the unique capability of the European XFEL, which can deliver ten pulse trains per second with each containing hundreds of pulses at megahertz repetition rates, this study demonstrates the generation of attosecond X-ray pulses at a 2.25 MHz repetition rate. These intense high-repetition-rate attosecond X-ray pulses present transformative prospects for structural and electronic damage-free X-ray measurements and attosecond time-resolved X-ray methodologies, heralding a new era in ultrafast X-ray science.

Details

PDF

Statistics

from
to
Export
Download Full History