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Single-stranded RNA viruses co-assemble their
capsid with the genome and variations in cap-
sid structures can have significant functional rel-
evance1,2. In particular, viruses need to respond
to a dehydrating environment to prevent genomic
degradation and remain active upon rehydra-
tion. Theoretical work has predicted low-energy
buckling transitions in icosahedral capsids which
could protect the virus from further dehydra-
tion3. However, there has been no direct exper-
imental evidence, nor molecular mechanism, for
such behaviour. Here we observe this transition
using X-ray single particle imaging of MS2 bacte-
riophages after aerosolization4,5. Using a combi-
nation of machine learning tools, we classify hun-
dreds of thousands of single particle diffraction
patterns to learn the structural landscape of the
capsid morphology as a function of time spent
in the aerosol phase. We found a previously un-
reported compact conformation as well as inter-
mediate structures which suggest an incoherent
buckling transition which does not preserve icosa-
hedral symmetry. Finally, we propose a mecha-
nism of this buckling, where a single 19-residue
loop is destabilised, leading to the large observed
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morphology change6. Our results provide exper-
imental evidence for a mechanism by which viral
capsids protect themselves from dehydration. In
the process, these findings also demonstrate the
power of single particle X-ray imaging and ma-
chine learning methods in studying biomolecular
structural dynamics.

Viral capsids assemble optimally to prioritise the pro-
tection and efficient packaging of the genome. It ensures
the survival of the virus and facilitates interactions with
a host to maintain infectivity. Most spherical viruses in
nature assemble their capsids with icosahedral symmetry,
characterised by a triangulation number (T): the number
of structural subunits forming the triangular facets of the
icosahedron7. For instance, the MS2 bacteriophage, a 27
nm single-stranded RNA virus infecting Escherichia coli
bacteria (E. coli), is a non-enveloped virus with a T = 3
icosahedral capsid structure8. With non-genomic RNA,
the capsid protein can also assemble into T = 4 as well
as hybrid capsids between these two triangulation num-
bers9. Furthermore, covalent dimerization of the coat
protein in MS2 can lead to an octahedral structure un-
der certain buffer conditions10.

The variability in capsid structures and symmetry
breaking in icosahedral capsids can potentially affect in-
fectivity, and has been well-studied in the context of
viral maturation2. The shape of the capsids is deter-
mined by elastic properties such as stretching and bend-
ing energies, spontaneous curvature, and chirality. The
transition from smooth to faceted shapes in icosahedral
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capsid shells corresponds to a soft-mode buckling transi-
tion, driven by bending stiffness3. Continuum elasticity
theory attributes shape transitions in capsids with non-
icosahedral symmetries to a trade-off between stretching
and bending energies11. Moreover, the elastic responses
to external forces elucidate the mechanical stability and
rupture behaviour of both empty and filled viral cap-
sids12.

Understanding the intricate and non-trivial variations
in viral capsid structure is essential for unravelling the
fundamental processes driving viral infectivity and har-
diness. In this study, we approach this problem using
the emerging technique of single particle imaging (SPI)
at an X-ray Free Electron Laser (XFEL) source. This is a
powerful method for probing the structures of nanoscale
systems4,13,14. In these experiments, extremely bright,
ultrashort and coherent X-ray pulses from XFELs in-
teract with copies of isolated single particles in random
orientations one at a time. This process generates mil-
lions of diffraction patterns, each from a single viral par-
ticle. Machine learning approaches, including unsuper-
vised methods15,16, are employed to identify diffraction
patterns scattered from the target object amid contam-
inants, aggregates and outliers. This is followed by ori-
entation determination and phase retrieval to obtain the
electron density of the average particle17–19. Since each
measurement is made on an individual particle, one addi-
tionally has the opportunity to classify them and obtain
not only the average structure, but also the landscape of
structural variations13–15,20.

The short pulses of an XFEL also enable time-resolved
SPI experiments to investigate ultrafast phenomena and
structural dynamics in ensembles of particles at the
nanoscale. This progression has enabled the exploration
of ultrafast photo-induced dynamics21, resolving the non-
equilibrium shape distributions14, retrieving the 3D mor-
phology of polyhedral particles22, melting to explosive
disintegration of nanoparticles23, demonstrating diffrac-
tion before destruction at the protein scale24 and retriev-
ing structures of heterogeneous nanoparticles13.

In this work, we explore and analyse the structural
dynamics of MS2 bacteriophage viruses after aerosolisa-
tion. In the process of being transported to the XFEL
beam, the aerosol droplets are continuously drying, sim-
ulating the natural dehydration process25–27. The parti-
cles are then probed using the XFEL at random degrees
of dehydration to produce single particle diffraction pat-
terns. Using a combination of maximum likelihood and
deep learning techniques, we map the collected diffraction
data from the ensemble of MS2 capsids to a continuous
structural landscape. One can then observe viral cap-
sid structures ranging from the fully-hydrated state to
a previously unobserved capsid form with full coverage
of intermediate structures. This data then enabled us to
hypothesise a molecular mechanism for the observed con-
formational changes, which seems to apparently protect

the genome from further dehydration. In the process, we
also show how the combination of machine learning meth-
ods with high-throughput SPI measurements at XFELs
can be used to understand the conformational landscape
and dynamics of biomolecules in a fairly general manner.

X-RAY SPI EXPERIMENT

MS2 bacteriophage particles in an aqueous buffer
were aerosolised and sequentially injected into the X-
ray beam interaction region using an electrospray-
ionisation aerodynamic-lens-stack sample delivery sys-
tem5, as shown in Fig. 1a. Diffraction patterns were
collected at an average rate of 3520 frames/second for
an integrated collection time of 3.6 h with a hit ratio of
around 0.7%. Frames with diffraction from particles were
detected by setting a threshold on the scattered signal.
A total of 287 168 potential hit diffraction patterns were
identified containing 1350 photons per pattern on aver-
age.
The highly noise-tolerant EMC algorithm28 can be

used to categorise and orient diffraction frames with only
a few photons18,29,30. We employed the Dragonfly soft-
ware17, to perform two-dimensional (2D) classification
using this algorithm. This procedure generated multiple
2D intensity models of diffraction patterns in the detec-
tor plane13 by determining the in-plane rotation angle
and relative incident fluence of each diffraction pattern.
These 2D reciprocal space intensity models capture the
average of aligned copies of a subset of patterns from the
entire dataset, following which class averages were man-
ually selected corresponding to single particles, indicated
by high fringe contrast and a convex envelope. This pro-
cedure was then repeated, each time rejecting the various
contaminants like aggregates and other outliers.
The final selection contained intensity models reveal-

ing distinctive diffraction features corresponding to an
icosahedral particle with good contrast and sharp streaks.
The subset of diffraction frames associated with this
intensity model was selected to reconstruct a three-
dimensional (3D) Fourier model using Dragonfly. Icosa-
hedral symmetrization was applied due to the subset hav-
ing only 7249 patterns. Subsequently, it was phased to
retrieve the electron density of the MS2 capsid, as shown
in Fig. 1d, with an estimated resolution of 6.1 nm.
Even at this resolution, this structure is markedly

different from the one obtained using cryo-electron mi-
croscopy (cryo-EM) on the same sample batch shown in
Fig. 1b. This structure at 0.49 nm resolution provides in-
sight into the conformation of the hydrated, flash-frozen
capsid, which is a near-spherical particle with icosahedral
symmetry (see Methods section Cryo-EM Structure De-
termination for details). This baseline structure, along
with the similar crystallographic structure of the cap-
sid (PDB: 2MS2)31 serves as a reference for interpreting
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FIG. 1. X-ray SPI Experiment. (a) MS2 bacteriophage particles, ∼ 27 nm in diameter, were aerosolized using an electrospray
and focused with an aerodynamic lens stack to the interaction region within the X-ray beam of 250×250 nm2 focus. The top
inset shows a representative cryo-electron microscopy (cryo-EM) micrograph of the particles. (b) The 3D structure of MS2
capsid determined by cryo-EM (resolution 0.49 nm), served as the control for the subsequent X-ray SPI experiment. (c) The
same cryo-EM structure was low-pass filtered to the resolution of the conventional X-ray SPI structure. (d) The structure
retrieved from diffraction data (6.1 nm resolution) using the conventional analysis pipeline is notably different from the cryo-
EM structure in (c).

structural changes induced by aerosolisation. The low-
pass filtered version shown in Fig. 1c shows differences
at both the 5-fold and 3-fold sites, with the X-ray struc-
ture indenting inwards at the 3-fold sites.

The fact that only a limited number of patterns (only
2.5%) went into the final 3D structure with the conven-
tional X-ray SPI analysis pipeline raises the question of
the structures of the rejected particles and the source of
the heterogeneity. As the particles traverse through the
low-humidity environment aerodynamic lens and then
the vacuum environment of the interaction region, the
surrounding water envelope is continuously evaporating.
We explore the possibility of whether the rejected pat-
terns contain information about the transition from the
hydrated state to the final structure depicted in Fig. 1d.

HETEROGENEITY ANALYSIS WORKFLOW

Figure 2a shows the analysis workflow for learning the
structural landscape of aerosolized MS2 capsids. By us-
ing a much larger fraction of the data, we can recon-
struct not just a single homogeneous object, but a whole
family of structures, and then to study the variations in

that family. We first used the same 2D classification ap-
proach as for the single reconstruction above. In order to
effectively train and utilise the deep learning method dis-
cussed below, we expanded the total number of intensity
models by performing multiple runs of 2D classification.
In each of the 100 independent bootstrapping runs, 20%
of the diffraction frames (from a total of 170355) were
randomly selected and classified into 100 distinct 2D in-
tensity models, resulting in 10 000 intensity models.
Upon scrutinising the 2D intensity models, distinctive

patterns emerged, including some with strong streaks in
the detector plane from faceted particles but also nearly
circular diffraction rings from rounded objects. These ob-
servations hinted at particle shapes spanning from icosa-
hedral to almost perfectly round. We applied size filter-
ing on the 2D intensity dataset to retrieve distribution of
different discrete heterogeneity in the MS2 particles. The
effective size of the particles was determined from each in-
tensity average using a spherical diffraction model32 (see
Supplementary Section I).
We curated a dataset of 2558 2D intensity models from

79711 diffraction frames, representing particles with dif-
ferent capsid morphologies, but excluding models from
dimers, aggregates and other contaminants whose nomi-
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FIG. 2. Analysis Pipeline. (a) Schematic of diffraction
data analysis workflow. All steps other than the unsupervised
learning ones are part of the standard SPI workflow. (b) De-
tailed flow chart of the unsupervised learning step to generate
the structural latent space and associated 3D Fourier inten-
sity volumes. The pipeline involves training a β-VAE with a
local orientation optimizer. Every 20th epoch, the optimizer
outputs an improved estimate for the orientation (Ω) given
the 3D Fourier volumes, dataset, and the current estimate of
the orientations. (c) Schematic representation of the β-VAE
network. The model takes 2D class-average intensities and
orientations as input and encodes them into a latent space
via an encoder network. This latent space coordinate (Z) is
subsequently utilized by a decoder network to reconstruct 3D
Fourier volumes.

nal size was outside the 23-31 nm size range. To under-
stand the structural landscape of the remaining particles,
we employed an unsupervised deep learning approach –
a variational autoencoder (VAE) network33. Inspired by
the pioneering cryoDRGN approach using a VAE net-
work to study heterogeneity in single-particle cryo-EM
datasets34 and our prior work on continuous shape tran-

sitions in gold nanoparticles15, we adapted the network
for our MS2 virion dataset as a β-VAE, as illustrated in
Fig. 2c. Details of the network architecture are described
in the Online Methods.
Conventional autoencoders aim to learn a represen-

tation of the dataset by reconstructing the input data.
However, the VAE here must learn to separate the effect
of true structural variations from the large, but trivial
variations in diffraction patterns of differently oriented
particles. By incorporating the orientation estimate (Ω)
explicitly in the network architecture, we are able to learn
the structural variations separately (see Fig. 2c). The de-
scription of the network architecture as well as the analy-
sis workflow to refine the orientation estimates is detailed
in Fig. 2b and the Methods section.
Once trained, the β-VAE network enables detailed

analysis and systematic exploration of structural hetero-
geneity by examining the 3D intensity volumes recon-
structed by the decoder for various points in the latent
space. The effective diameter of each 3D volume was de-
termined by fitting a sphere model, the result of which is
shown in Fig. 3a where the two components of the latent
vector mean, µ1 and µ2 are represented along the axes
and the colour and height represent the effective diame-
ter.

STRUCTURAL LANDSCAPE

We highlight two paths through the structural land-
scape shown in Fig. 3a, capturing two salient features
of the evolution of the capsid morphology. Firstly, the
dotted Gray line trajectory illustrates the variation in
shape and size, as observed from top to bottom, which we
ascribe to the effect of dehydration. Three-dimensional
structures of the MS2 capsids along this path are depicted
in Fig. 3b. Following this path, we note a transition from
larger particles to smaller, nearly icosahedral particles as
dehydration progresses. The largest particles (29-31 nm)
were nearly spherical and larger than the reported 27 nm
hydrated structure, representing MS2 capsids with a wa-
ter envelope around them. The contour images in Fig. 3b
and c are colour-coded radially from red to white to blue
in order to ease visualisation of facets, curvature, and size
changes. The structure in Fig. 1d, reconstructed without
the VAE, lies at the end of this path and is highlighted
by a star in the landscape.
The second, Green, trajectory is shown in Fig. 3c.

Along this path, all particles had an estimated diame-
ter of 27 nm. Here, subtle and gradual deviations from
the icosahedral shape at a constant size are observed.
Close examination shows structures with varying degrees
of deviation from the symmetric structure, also borne
out by individual diffraction patterns and class averages
showing asymmetric structures. This suggests that what-
ever morphological change is occurring, is not a coherent
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FIG. 3. Structural Landscape. (a) The latent space learned by the β-VAE coloured by the estimated diameter (d) of
individual patterns. The plot highlights two distinct trajectories selected to capture the structural variation phenomenon
within the latent space. The retrieved electron density of MS2 particles via phase retrieval of Fourier volumes generated by
decoder network of β-VAE network is shown in the grid. (b) The dottedGray trajectory, following from top to bottom in (a),
depicts the shape-size variation in the ensemble of capsids. (c) The Green trajectory, progressing from left to right in (a),
corresponds to different shape realisations for a fixed size of capsid. Red-white-blue coloured radially. (d) Encapsulated overlay
of the 3D structure of the MS2 capsid from the low-pass filtered cryo-EM reconstruction (gray) and the dehydrated X-ray SPI
reconstruction (green). The overlap highlights the altered conformations in the vicinity of the 5-fold and 3-fold sites.

change acting on all icosahedral sites simultaneously, but
seems to occur independently at each site.

PROPOSED MOLECULAR MECHANISM

In order to better understand the capsid morphology
change, we focus on the fully dehydrated state and com-
pare it to the MS2 capsid structures obtained from cryo-
EM and crystallography. Figure 3d displays an overlay
visualisation of the two MS2 capsid structures: the low-
pass filtered cryo-EM reconstruction and the X-ray SPI
reconstruction. This overlay emphasises the locations of
the pores at the 5-fold and 3-fold sites (vertex and face
centre respectively), which are affected during dehydra-
tion through aerosolisation. The T=3 icosahedral capsid
of MS2 consists of 12 5-fold contacts at the vertices and
20 6-fold contacts at the face-centres, as seen in the cryo-

EM structures in Fig. 1b and c. The configuration of
the coat protein creates a capsid shell featuring 32 pores
(about 2 nm in diameter), denoted here as 5-fold and
3-fold pores, respectively.

The crystal structure of the MS2 virus capsid31 shows
that the coat protein has three possible conformations,
termed A, B and C. These proteins assemble into two
types of dimers: asymmetric A/B dimers and symmetric
C/C dimers. Although the A, B, and C subunits (129
residues) are almost structurally identical, they differ in
the conformation of the FG-loop (residues 66-82), with
the A and C subunits exhibiting a conformation that is
different from that of the B subunit.

The 5-fold pores consist of 5 A/B dimers, with the FG-
loops of the five B-subunits oriented towards the pores
in a compact conformation, as depicted in Fig. 4a. The
3-fold pores are formed by six dimers–3 A/B and 3 C/C–
arranged alternately, with 3 FG-loops from each A and C
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FIG. 4. Dehydrated capsid model. (a-b) The pentameric (5-A/B) and hexameric (3-A/B and 3-C/C) faces of the T=3
icosahedral capsid shell from the 2MS2 PDB structure. At the 5-fold axis FG loops of B (B-FG loop, green, a), and at the
3-fold axis FG-loops of A (A-FG loop, sky blue, b) and C (C-FG loop, red) are crucial for capsid assembly and curvature.
(c ) The A-FG loop and C-FG loop exhibit significant fluctuations compared to B-FG loop (residues 66-82, shaded region).
The Root Mean Square fluctuation (RMSF) was calculated from a 20 ns vacuum MD-trajectory of A/B and C/C dimers.
(d) Transformed hexameric building block designed/modelled from the X-ray SPI map. At the 3-fold axis, C/C dimers move
toward the capsid centre. (e) Map generated from transformed capsid model (at 6.1 nm resolution). The left half is in a similar
representation as the experimental X-ray SPI map (Fig. 1d) for visual comparison.

subunit in an extended conformation (Fig. 4b). The FG-
loop plays a pivotal role in capsid assembly and affects
its curvature and mutations in this region can disrupt
assembly35.

We performed molecular dynamics (MD) simulations
of the A/B and C/C dimers in vacuum conditions sim-
ilar to those during sample delivery of the SPI experi-
ment. The FG-loop of A and C subunits showed notable
conformational changes or movements compared to the
FG-loop of B on a nanosecond timescale (marked in gray
in Fig. 4c). The dehydration primarily affects the FG-
loop of A and C6,36, suggesting a strong role for water
molecules in stabilising the extended form of the FG-loop
around the 3-fold pore. In addition, mass spectrometry
observations hint that a section of the internal RNA sta-
bilises the A/B dimers of the capsid37.

Based on these observations, we formulate a hypothesis
that due to the high mobility of the FG-loops of A and C
under dehydrating conditions, the FG-loops around the
3-fold pore contract upon losing stabilising waters and
the C/C dimer shifts towards the centre of the virus. We
utilised the positions of A, B, and C subunits from the

asymmetric unit of the 2MS2 crystallographic model as
a starting point, then adjusted the position of the C sub-
unit (by translation and rotation) to form a new capsid
assembly and minimised the energy of the entire capsid
model in vacuum conditions. This procedure was iter-
ated until we obtained a stable capsid shell model which
also fit our SPI electron density map, shown in Fig. 4d.
Figure 4e shows the full capsid with the modelled pore
structure. The left half shows the low-pass filtered elec-
tron density map showing a remarkable similarity to the
experimental map in Fig. 1d.

DISCUSSION

The structural response of viruses to a dehydrating en-
vironment is an important, and somewhat understudied
question, limited by the inability to study these systems
in situ under these conditions. Single particle imaging
using XFELs provides a unique opportunity to probe the
structures of these viral capsids while they are dehydrat-
ing in an aerosol stream. With the use of machine learn-
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ing tools to classify the whole ensemble of observed par-
ticles, one can observe complex conformational trajecto-
ries which would be hidden with other ensemble-averaged
measurements. The femtosecond XFEL pulses allow one
to temporally freeze the structural transitions and ob-
serve non-equilibirum, intermediate structures that occur
during dehydration.

In this work, we apply this method to MS2 bacterio-
phage capsids, where we observe 3D structures ranging
from a well-hydrated particle with a liquid envelope down
to a dehydrated structure, with a different capsid mor-
phology. Not only do we see these endpoints, but also a
large number of intermediate conformations which break
icosahedral symmetry, providing clear evidence for a site-
specific transformation rather than a capsid-wide con-
certed change.

While this study is limited to a moderate resolution,
the large scale changes in this system are already clearly
apparent. Upcoming technical improvements promise to
push this resolution barrier to sub-nm levels38,39. This
work also opens up the possibility of studying this impor-
tant question for aerosol-transmitted pathogenic viruses.

METHODS

Sample Preparation.

E. coli strain C-3000 (ATCC 15597 ) was cultured in
volumes of 50 ml at 37°C with shaking at 150 rpm.
Shaking was reduced to 90 rpm when the exponential
growth phase was reached, and the culture was infected
with 100 µL MS2 (2.9mgmL−1, ε280 = 3.86mgmL−1)
(ATCC 15597-B1 ) and 100 µL CaCl2 (1 M). Incubation
was stopped when the cells were lysed (c. 3 hours). One
milliliter of the lysate and 800µL CaCl2 was used to in-
fect 400mL of exponential phase growth culture of E.
coli. Incubation was carried out with shaking at 90 rpm
until the cells were lysed (ca. 5 hours). The lysate was
precipitated using 10% (w/v) PEG 6000 and 0.5 M NaCl
over 48 hours at 4 ◦C.

After precipitation, the suspension was centrifuged at
10 000 g for 30 min. The pellet was re-suspended in
30mL 0.01 M Tris, pH 7.5 (containing 0.1 M NaCl, 0.1
mM MgCl2, and 0.01 mM EDTA). Stirring was carried
out for 1 hour at room temperature until complete re-
suspension. Next, the suspension was incubated at 37 ◦C
with shaking at 120 rpm after adding 1.5 mg lysozyme,
300 µL MgCl2 (1 M), and 10µL Benzonase. After incuba-
tion, the suspension was centrifuged at 8000 g for 30 min.
The supernatant was precipitated using 10% (w/v) PEG
6000 and 0.5 M NaCl and incubated at 4 ◦C overnight.
The suspension was centrifuged at 27 000 g for 30 min,
and the pellet was re-suspended in Tris buffer. The re-
suspension was applied to a sucrose gradient (15-50%)
and centrifuged at 40 000 g for 18 h at 4 ◦C. The sucrose

in the collected band fractions was removed by repetitive
concentration and dilution steps with Tris buffer using
an Amicon Ultra Centrifugal Filter (100 kDa cutoff).
Prior to cryo-EM grid preparation and sample injec-

tion at the XFEL, the Tris buffer of the sample was ex-
changed to a buffer containing 0.2 mM sodium citrate and
5 mM ammonium acetate using a PD Minitrap G-25 col-
umn (Cytiva). The sample concentration was adjusted
to ∼ 2 × 1015 particles/mL (or ∼12 mg/mL) for both
experiments.

Cryo-EM Structure Determination.

An aliquot (3 µL) of MS2 virions was deposited onto
freshly glow-discharged, 300 mesh R2/2 Quantifoil grids,
followed by 3 s of blotting at 4°C and 95% humidity us-
ing a Vitrobot Mark IV instrument (ThermoFisher Sci-
entific). The blotted grid was plunge-frozen into a 37:63
(v/v) liquid ethane/propane mixture. Images were ac-
quired using a Talos Arctica microscope (ThermoFisher
Scientific) operated at 200 kV and equipped with a Fal-
con 3EC detector (ThermoFisher Scientific). A total of
861 movies were recorded using the EPU software (Ther-
moFisher Scientific) in integration mode at a nominal
magnification of ×92,000, yielding a final pixel size of
1.58 Å2. Each movie had a total dose of 36e-/Å2 over 39
frames.
Image processing was performed using cryoSPARC40.

Drift and beam-induced motions were corrected using
patch motion correction, and the contrast transfer func-
tion (CTF) was estimated using patch CTF estimation.
The micrographs were inspected and curated using the
manually curated exposures job, from which 622 micro-
graphs were accepted for further processing. Blob pick-
ing was used to pick 60,861 particles, of which 47,546 re-
mained after two rounds of 2D classification. Two classes
out of four from ab initio reconstruction and heteroge-
neous refinement (C1 symmetry) had apparent density
for both the capsid and the A protein. The particles from
these two classes (22,592) were selected for homogenous
refinement (C1), where a 4.9 Å resolution map was ob-
tained as estimated by the Fourier shell correlation (FSC)
= 0.143 criterion (see Supplementary Fig.S1).

SPI Data Collection.

Data was collected at the SPB/SFX (single particles,
clusters and biomolecules & serial femtosecond crystal-
lography) instrument41 of the European XFEL using
6 keV photons focused into a 250×250 nm2 spot. Indi-
vidual x-ray pulses were generated with 3.8mJ of en-
ergy on average (3.94× 1012 photons/pulse). The pulses
were delivered in 352-pulse trains with an intra-train rep-
etition rate of 1.1 MHz and trains arriving every 0.1
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s, leading to a maximum data collection rate of 3520
frames/second. A detector built specifically for this burst
mode operation, the Adaptive Gain Integrating Pixel De-
tector (AGIPD)42, was placed 700 mm downstream of the
interaction region to collect the diffraction patterns for
each pulse individually up to a scattering angle of 13◦ at
the corner of the detector.

Details of β-VAE Network.

The β-VAE consisted of an encoder and a decoder neu-
ral network, to encode information into a lower dimension
and retrieve it back respectively. The encoder encodes
diffraction data (in this case, 2D intensity models) gen-
erating a low-dimensional latent vector, Z, for each input
pattern X. The encoder parameterises this distribution
with a mean µ(X) and a variance σ(X). During train-
ing, this distribution is sampled from a normal distribu-
tion N (µ(X), σ(X)) before being passed to the decoder,
which introduces stochasticity, improving robustness and
ensuring smoothness of the latent space.

The network is trained and optimised by minimising
a loss function, combining mean square error as a re-
construction loss and Kullback-Leibler (KL) divergence
loss as a regularisation term, which discourages a too-
sharp latent space. In our case, the optimized β-VAE
had β = 0.5, with the latent space dimension of Z = 2
(see Supplementary Section II for details).

Pre-processing: The initial 2D intensities from Drag-
onfly have dimensions of 503 × 503 pixels. Preprocessing
steps were applied to enhance relevant features and re-
duce computational redundancy. Given the highly sam-
pled nature of the data and minimal scattering signal
at high q, the size was reduced to 171 × 171 through
downsampling and cropping. Additionally, background
normalisation was performed by subtracting the mean at
high q and dividing by the mean at low q. Considering
that diffraction patterns of compactly supported objects
are primarily dominated by low q signal, to appropri-
ately weight higher q shape information, the 2D intensi-
ties were divided by the radial average intensity over the
whole dataset before inputting them into the network.
This weighting was then reverted when generating the
3D Fourier volumes. This approach optimises computa-
tional efficiency by focusing solely on relevant informa-
tion in the diffraction data, where distinctive features are
evident.

Network Parameters: The encoder network comprises
a series of convolutional layers, specifically three Conv2d
layers that increase in channel depth from 8 to 32, fol-
lowed by a sequence of linear layers reducing the dimen-
sionality to a latent space dimension Z. Conversely, the
decoder utilizes a symmetrical setup starting from the
latent dimension Z, expanding through linear layers, and
then upscaling spatial dimensions through three Con-

vTranspose3d layers, ultimately reconstructing the input
data. Other optimized hyperparameters of the β-VAE
include a batch size of 32 and a learning rate of 10−4

and wight decay of 10−5 for Adam optimizer43 . Refer to
Supplementary Table I for network architecture parame-
ter values.

Analysis workflow details

In order to learn the relevant structural latent vari-
ables, we include the quaternion representation of the
estimated orientation (Ω) for every 2D intensity model
in the dense layers of the encoder network. In the decod-
ing process, after sampling the latent vector, the decoder
reconstructs a 3D Fourier volume. This reconstructed
volume is then sliced at Ω to retrieve the input intensi-
ties as reconstructed output data.
As an initial estimate, the orientation of each of these

2D intensity class averages was determined against a sin-
gle 3D Fourier volume of the icosahedrally symmetrized
MS2 bacteriophage from the conventional SPI recon-
struction (Fig. 1d). These orientation estimates were in-
crementally updated using a so-called Local Optimizer,
which works as follows. After a given epoch, each in-
put data frame was used to generate a 3D Fourier vol-
ume using a single pass through the VAE. This volume
was sliced multiple times, using orientations which were
slightly different from the current estimate (standard de-
viation of 5mrad or 0.3◦). The updated orientation for
this frame was chosen to be the one which maximised the
Pearson correlation coefficient with the data (see Supple-
mentary Section III for details). This pipeline is shown
schematically in Fig. 2b.
For this dataset, the β-VAE was trained over a to-

tal of 2000 epochs. In the first 1000 epochs, the Local
Optimizer was turned off, and icosahedral symmetric ori-
entation estimates were fed, allowing the VAE to learn
features from the dataset and stabilise itself. In the later
1000 epochs, the orientations were updated.

Phase Retrieval.

The electron densities were reconstructed through a
3D iterative phase retrieval method applied to the full-
resolution intensity volume of the MS2 bacteriophage.
The procedure was almost identical to the pipeline dis-
cussed in18. Fig. 1d illustrates the reconstructed electron
density obtained for a dehydrated phage. In Supplemen-
tary Fig. S3, the phase retrieval transfer function (PRTF)
metric, evaluating the reproducibility of retrieved phases
based on 128 independent phasing runs for both icosahe-
dral and octahedral structure of MS2 capsid.
The electron density reconstruction from the

background-subtracted intensity distribution involved
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a hybrid approach employing the error reduction (ER)
algorithm and the difference map (DM) algorithm. Each
phasing run consisted of 400 iterations, comprising 100
ER iterations followed by 200 DM iterations, and con-
cluding with 100 additional ER iterations. The support
was updated after each iteration using a smoothing and
thresholding procedure, with the strongest 40 000 voxels
retained in the support.

The phase retrieval process for the reconstructed
Fourier volumes by the decoder network for various tra-
jectory points involved 16 random model starts. The
number of voxels for the support was determined based
on the estimated diameter size and fringe counts in the
3D Fourier volumes. The electron density maps were
visualised with radial colouring to depict structural vari-
ations.

The density map, crystal structure and SPI densities
were visualised using the Chimera software44.

Particle Size Determination.

We utilised spherical particle fitting on the Fourier vol-
umes reconstructed by the decoder network of β-VAE.
This process involved computing the radial average of
the volumes and fitting them with the Fourier model of
a spherical particle. This analysis yielded an estimation
of the diameter of the MS2 phages during shape-phase
transition. The Fourier model for a spherical particle is
described by the function S(q, d):

S(q) ∝ d6
(
sin(πqd)− πqd · cos(πqd)

(πqd)3

)2

where d denotes the diameter of the particle and q is
defined with the crystallography convention. The size
distribution of MS2 bacteriophage is shown in Supple-
mentary Fig.S5.

MD Simulation

We employed the Gromacs package45 for our simu-
lations, utilising the OPLS-AA force field6 to investi-
gate the A/B and C/C dimers in vacuum conditions.
The initial configurations were based on the 2MS2 PDB
structure31. To achieve a total charge of +10e for the
dimers, we protonated specific aspartic and glutamic
acid residues within each subunit37, adhering to a well-
established protocol6. Subsequently, the structures un-
derwent a steepest descent energy minimisation followed
by a brief equilibration at 300K, without the applica-
tion of periodic boundary conditions or pressure cou-
pling, to simulate vacuum conditions. Protein dynamics
were monitored over a 20 ns period, with all parameters
maintained in alignment with the established protocol6.

[1] S. Sun, V. B. Rao, and M. G. Rossmann, Current Opinion
in Structural Biology 20, 114 (2010).

[2] A. K. Jana and E. R. May, Current opinion in virology
45, 8 (2020).

[3] M. Widom, J. Lidmar, and D. R. Nelson, Physical Review
E 76, 031911 (2007).

[4] M. M. Seibert, T. Ekeberg, F. R. Maia, M. Svenda,
J. Andreasson, O. Jönsson, D. Odić, B. Iwan, A. Rocker,
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J. Correa, S. Düsterer, B. Erk, L. Hecht, A. Heilrath,
et al., Science Advances 9, eade5839 (2023).



10

[23] S. Dold, T. Reichenbach, A. Colombo, J. Jor-
dan, I. Barke, P. Behrens, N. Bernhardt, J. Cor-
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I. CRYO-EM FSC CURVES
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FIG. S1. FSC curve of the cryo-EM reconstruction generated using cryoSPARC? for the cryo-EM reconstruction of the MS2
capsid from the same batch as used for the X-ray SPI experiment. The average resolution of 0.49 nm was estimated based on
FSC = 0.143 threshold? (black dashed line).
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II. CLASSIFICATION, DISCRETE HETEROGENEITY AND POLYMORPHISM

Classification : The first step of data classification was the generation of average two-dimensional (2D) classes in the
detector plane from the full diffraction dataset using the 2D classification procedure implemented in Dragonfly? ? .
This process employs a modified EMC algorithm to classify all frames into a specified number of averages (models,
termed classes in Dragonfly). We began by classifying the dataset into 50 2D classes. Examples of these classes are
shown in Fig. S2a. The 2D classes corresponding to very weak hits (pink dashed grid) were excluded at this stage.

To obtain the training dataset, a bootstrapping method was employed by running the 2D EMC reconstruction 100
times, each with 100 models, using a random subset of 20% of the frames (from 170 355 diffraction frames) each time,
resulting in 10 000 2D intensity models. Size filtering was then applied to the dataset by fitting a spherical object
Fourier model to the radial average of the intensity, resulting in a size distribution of 2D intensity models (Fig. S2b).
By comparing the 2D models and their locations in the distribution, we qualitatively divided the space into three
groups, as shown in Fig. S2b. In the figure, red denotes icosahedral, blue denotes octahedral, and green denotes
contaminants, including outliers and dimers. The corresponding example samples of 2D intensities for different
groups are shown in Fig. S2c. The top row shows the classes with panel gaps and detector artefacts, which have fitted
diameters greater than 40 nm in the distribution. Among all dataset models, 2558 were icosahedral corresponding to
79 771 diffraction frames. These icosahedral 2D intensity models were used for training the β-VAE.

Discrete Heterogeneity : The 2D classification also yielded some interesting structures which had a different sym-
metry than the icosahedral objects. Figure S2d shows some of the 2D intensity averages with reasonable intensity
contrast. Note that since intensities are always non-negative, the averages from diverse aggregates and contaminants
typically generate low-contrast models. The insets show the projected electron densities resulting from 2D phase
retrieval. Only patterns belonging to classes like the “Icosahedral” class were selected for the reconstruction in Fig. 1d.

Polymorphism : Along with the rounded icosahedra and dimers, we also obtain patterns with clear octahedral
structure. The 3D structure of the octahedral particle was reconstructed without any imposed symmetry from 11 626
patterns. The reconstructed electron density at 6.1 nm resolution is shown in Fig. S2e and is 1.53 times lower in
volume than the icosahedral structure. MS2 capsids have been reported to assemble with octahedral packing and
T = 3 quasi-symmetry? ? . The primary distinction between icosahedral and octahedral structures lies in the presence
of four-fold contacts rather than five-fold contacts, potentially resulting in curved interfaces. The octahedral packing
results from the fusion of two coat-protein subunits? . These capsids have been reported to disassemble and reassemble
into the octahedral structure during crystallisation? . To the best of our knowledge, this is the first observation of
octahedral MS2 capsids without mutation or different buffer conditions.
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a b

c

d eIcosahedral Dimer Octahedral
Octahedral
PolymorphRounded Icosahedral

FIG. S2. Classification, Discrete Heterogeneity, and Polymorphism. (a) Examples from the 50 2D intensity models
obtained from the initial EMC classification. The 2D intensity models in the dashed pink grid were rejected prior to generating
the training dataset for the β-VAE. (Bottom row) Examples of the 2D intensity models used for the dataset generation. (b)
A histogram of the fitted diameter (nm) values for the 2D intensity classes dataset (10,000 classes). Different structure types
of the samples are manually marked in the distribution as icosahedral (red), octahedral (blue), and others, including dimers,
outliers, etc. (green). (c) The corresponding examples of 2D intensity models for each structure class are shown in the grid.
(Top row) Examples of classes with panel gaps and detector artifacts, which had fitted diameters > 40 nm. (d) Examples from
the diffraction dataset of 2D intensity models and corresponding electron density projections (inset) via phase retrieval. The
structural diversity in the diffraction dataset includes icosahedral, rounded icosahedral, dimers and octahedral particles; the
scale bar is 30 nm. (e) 3D structure of the MS2 capsid reconstructed from the octahedral data (resolution 6.1 nm). The capsid
structure exhibits an octahedral shape — a known form of polymorphism in MS2 phages.
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III. PHASE RETRIEVAL TRANSFER FUNCTION (PRTF)
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FIG. S3. (a) Smoothed phase retrieval transfer function (PRTF) vs q. The solid lines represent the azimuthal average PRTF
conventionally used to determine the resolution of the structure. The typical 1/e cutoff is shown in gray. The resolution at
the cutoff for both capsid structures was estimated to be ≈ 6.1 nm. (b) Slice at 001-plane through the Fourier volume of the
MS2 capsid for icosahedral (top) and octahedral (bottom) structures retrieved using Dragonfly? . Fig.1d & Fig. S2e shows the
corresponding phased electron density.
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IV. ARCHITECTURE AND TRAINING OF β-VAE

The β-VAE was trained over a total of 2000 epochs. Fig. S4 (a) depicts the generative performance of the β-VAE on
2D intensity data at the final epoch. The majority of prominent features are successfully reconstructed in the output,
indicating high-quality reconstruction performance. This highlights the effectiveness of the deep learning model in
capturing the fundamental attributes inherent in the input data.

Fig. S4(b) illustrates the loss of the β-VAE over the final 1000 epochs, during which the orientation was updated
every 20th epoch before terminating the training. This approach was adopted because the loss stabilized with no
significant changes observed. These stable training dynamics suggest efficient convergence of the VAE and optimization
of orientation estimates for each 2D intensity model.

Figure S4(c) illustrates the VAE training to determine the optimal value of β. The process involved training multiple
VAE networks across a range of β values from 0 to 10. The optimal value was chosen based on achieving the minimal
loss. The selection of β = 0.5 strikes a balance between smooth disentanglement in the latent space and preservation
of reconstruction quality, providing sufficient regularization to prevent overfitting.

Similarly, for Z > 2, there was a reduction in MSE loss; however, this improvement did not reveal any new or
distinctive features in the latent space. Conversely, Z = 2 seemed to effectively encapsulate the variations in the
dataset. Consequently, a latent dimension of Z = 2 was chosen.

Figure S4(d) shows µ1 and µ2 plot with color-coded label of σ =
√

σ2
1 + σ2

2 . The low standard deviation values
suggest that the network can effectively extract and learn significant features, which are closely correlated and can
be accurately reconstructed with minimal uncertainty.

Figure S4(e) shows the latent space representation of the β-VAE for different random initializations of weights and
biases. Specifically, random seeds of 42, 61, and 99 were used, respectively. Although the low-dimensional embed-
dings appear different due to these random initializations, the latent space consistently captures similar information
regarding shape and size variation across all three cases. This demonstrates the robustness of the β-VAE in retrieving
information from diffraction data despite variations in initial conditions.

The architecture parameters of the β-VAE are mentioned in Table I.

Network Layer Output Size Weights Bias

Encoder Conv2d (1, 8) H/3×W/3× 8 5× 5× 1× 8 8
Conv2d (8, 16) H/9×W/9× 16 5× 5× 8× 16 16
Conv2d (16, 32) H/27×W/27× 32 5× 5× 16× 32 32
Linear 128 800× 128 128
Linear 64 128× 64 64
Linear 8 64× 8 8
Linear (mean) Z 8× Z Z
Linear (log variance) Z 8× Z Z

Decoder Linear 64 Z× 64 64
Linear 128× 5× 5× 5 64× 128× 5× 5× 5 128
ConvTranspose3d (128, 64) H/3×W/3×D/3× 64 5× 5× 5× 128× 64 0
ConvTranspose3d (64, 32) H ×W ×D × 32 5× 5× 5× 64× 32 0
ConvTranspose3d (32, 1) H ×W ×D × 1 7× 7× 7× 32× 1 0

TABLE I. Architecture of β-VAE
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FIG. S4. (a) Comparison between input 2D intensity data and the corresponding output (reconstruction) by β-VAE. (b) Loss
evolution during β-VAE training exhibited a decline over the 1000 epochs. However, the decrease was not significant later
in training, prompting the decision to terminate further training. The depicted loss encompasses both the Mean Squared
Error (MSE) loss for reconstruction and the Kullback-Leibler (KL) divergence loss. (c) β-VAE Loss versus β values. The plot
illustrates a rise in loss as β values increase. The optimal trade-off between minimizing loss and providing sufficient regularization
occurred at β = 0.5 (red dashed line). (d) Latent space representation of the β-VAE color labeled with σ =

√
σ2
1 + σ2

2 . (e) Latent
space representation of the β-VAE for different random initializations of weight and bias parameters. The low-dimensional
embedding varies due to the random start, converging to nearby minima. However, it maintains the same information for shape
and size variations.
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FIG. S5. Histogram depicting the particle size distribution, represented by fitted diameter values, d (nm). These values
were obtained through spherical particle model fitting on the Fourier volumes reconstructed using the decoder network of the
optimized β-VAE.
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V. LOCAL OPTIMIZER FOR ORIENTATION

The Local optimizer updates the orientation (Ω) every 20th epoch during training. To monitor the convergence of
orientation estimates, we assess the Root Mean Square Deviation (RMSD) between estimates at consecutive update
steps (Fig. S6). Convergence is quantified by the measured angle, denoted as Θ, between orientations represented by
quaternions at consecutive update steps. Θ is calculated as:

Θ = arccos
(
2 · (q1 · q2)

2 − 1
)

where q1 and q2 are the normalized quaternions representing orientations.
The RMSD is computed over these angles to measure the average deviation between orientations across update

steps of the Local Optimizer. It is determined as:

RMSD =

√√√√ 1

n

n∑

i=1

Θ2
i

where n is the number of data samples and Θi is the angle between orientations for data sample i at two consecutive
epochs.
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FIG. S6. Root mean square deviation (RMSD) vs Epoch. The RMSD values were evaluated between the orientation estimates
at two consecutive updates of the Local Optimizer. The update is performed every 20th epoch of the training.


