

View

Online


Export
Citation

RESEARCH ARTICLE |  NOVEMBER 14 2024

Controlled molecule injector for cold, dense, and pure
molecular beams at the European x-ray free-electron laser
Lanhai He  ; Melby Johny  ; Thomas Kierspel  ; Karol Długołęcki; Sadia Bari  ; Rebecca Boll  ;
Hubertus Bromberger  ; Marcello Coreno  ; Alberto De Fanis  ; Michele Di Fraia  ; Benjamin Erk  ;
Mathieu Gisselbrecht  ; Patrik Grychtol  ; Per Eng-Johnsson  ; Tommaso Mazza  ; Jolijn Onvlee  ;
Yevheniy Ovcharenko  ; Jovana Petrovic  ; Nils Rennhack  ; Daniel E. Rivas  ; Artem Rudenko  ;
Eckart Rühl  ; Lucas Schwob  ; Marc Simon  ; Florian Trinter  ; Sergey Usenko  ; Joss Wiese  ;
Michael Meyer  ; Sebastian Trippel   ; Jochen Küpper 

Rev. Sci. Instrum. 95, 113301 (2024)
https://doi.org/10.1063/5.0219086

Articles You May Be Interested In

Kilohertz droplet-on-demand serial femtosecond crystallography at the European XFEL station FXE

Struct. Dyn. (April 2024)

High spatial coherence and short pulse duration revealed by the Hanbury Brown and Twiss interferometry
at the European XFEL

Struct Dyn (August 2021)

Toward using collective x-ray Thomson scattering to study C–H demixing and hydrogen metallization in
warm dense matter conditions

Phys. Plasmas (May 2023)

 18 N
ovem

ber 2024 07:01:47

https://pubs.aip.org/aip/rsi/article/95/11/113301/3320596/Controlled-molecule-injector-for-cold-dense-and
https://pubs.aip.org/aip/rsi/article/95/11/113301/3320596/Controlled-molecule-injector-for-cold-dense-and?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0002-6577-8716
javascript:;
https://orcid.org/0000-0001-8946-0529
javascript:;
https://orcid.org/0000-0002-1160-0306
javascript:;
javascript:;
https://orcid.org/0000-0003-3985-2051
javascript:;
https://orcid.org/0000-0001-6286-4064
javascript:;
https://orcid.org/0000-0001-5873-0290
javascript:;
https://orcid.org/0000-0003-4376-808X
javascript:;
https://orcid.org/0000-0002-4967-903X
javascript:;
https://orcid.org/0000-0001-8102-0799
javascript:;
https://orcid.org/0000-0001-8413-3588
javascript:;
https://orcid.org/0000-0003-0257-7607
javascript:;
https://orcid.org/0000-0002-7042-9334
javascript:;
https://orcid.org/0000-0003-2135-0248
javascript:;
https://orcid.org/0000-0003-3105-459X
javascript:;
https://orcid.org/0000-0001-6080-2548
javascript:;
https://orcid.org/0000-0001-6804-9781
javascript:;
https://orcid.org/0000-0002-1002-241X
javascript:;
https://orcid.org/0000-0002-4652-3283
javascript:;
https://orcid.org/0000-0002-7540-4902
javascript:;
https://orcid.org/0000-0002-9154-8463
javascript:;
https://orcid.org/0000-0002-0451-8734
javascript:;
https://orcid.org/0000-0002-4274-365X
javascript:;
https://orcid.org/0000-0002-2525-5435
javascript:;
https://orcid.org/0000-0002-0891-9180
javascript:;
https://orcid.org/0000-0001-5202-5267
javascript:;
https://orcid.org/0000-0002-0010-4403
javascript:;
https://orcid.org/0000-0002-1444-6770
javascript:;
https://orcid.org/0000-0002-1895-3868
javascript:;
https://orcid.org/0000-0003-4395-9345
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0219086&domain=pdf&date_stamp=2024-11-14
https://doi.org/10.1063/5.0219086
https://pubs.aip.org/aca/sdy/article/11/2/024310/3283113/Kilohertz-droplet-on-demand-serial-femtosecond
https://pubs.aip.org/aca/sdy/article/8/4/044305/365697/High-spatial-coherence-and-short-pulse-duration
https://pubs.aip.org/aip/pop/article/30/5/052702/2890207/Toward-using-collective-x-ray-Thomson-scattering
https://e-11492.adzerk.net/r?e=&s=TLpDMyGhywuNc-uuMvqstNlJG94


Review of
Scientific Instruments

ARTICLE pubs.aip.org/aip/rsi

Controlled molecule injector for cold, dense,
and pure molecular beams at the European x-ray
free-electron laser

Cite as: Rev. Sci. Instrum. 95, 113301 (2024); doi: 10.1063/5.0219086
Submitted: 15 May 2024 • Accepted: 30 September 2024 •
Published Online: 14 November 2024

Lanhai He,1,2 Melby Johny,1,3,4 Thomas Kierspel,1,3,4 Karol Długołęcki,1 Sadia Bari,5
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ABSTRACT
A permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small
quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-,
size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm−3)
molecular beam with pulse durations up to 100 μs generated by a new version of the Even-Lavie valve. Here, a performance overview of the
COMO setup is presented along with characterization experiments performed both with an optical laser at the Center for Free-Electron-Laser
Science and with x rays at EuXFEL under burst-mode operation. COMO was designed to be attached to different instruments at the EuXFEL,
in particular, the SQS and single particles, clusters, and biomolecules (SPB) instruments. This advanced controlled-molecules injection setup
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enables x-ray free-electron laser studies using highly defined samples with soft and hard x-ray FEL radiation for applications ranging from
atomic, molecular, and cluster physics to elementary processes in chemistry and biology.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0219086

X-ray free-electron lasers (XFELs) deliver x-ray flashes with
unprecedentedly high intensities in combination with ultra-short
pulse durations down to the attosecond regime.1–9 With the devel-
opment and enormous scientific success of these large-scale light
sources such as the free-electron laser in Hamburg (FLASH), the
linac coherent light source (LCLS), the free-electron laser radi-
ation for multidisciplinary investigations (FERMI), the SPring-8
Angstrom compact free-electron laser (SACLA), the x-ray free-
electron laser at the Paul Scherrer Institute (SwissFEL), the European
x-ray free-electron laser (EuXFEL), and the Shanghai soft x-ray
free-electron laser (SXFEL), a huge demand for user experiments
arose.10–14 In this context, applications with very cold and very pure
gas-phase molecular beams are highly desirable, especially for exper-
iments performed in the field of atomic, molecular, and optical
(AMO) sciences.15–21

Molecular-beam methods were established to obtain funda-
mental insights into the mechanisms and dynamics of elemen-
tary molecular and chemical processes. Starting with the first
experiments,22,23 molecular-beam methods were further developed
and refined over the last 100 years and led to tremendous advances
in the scientific understanding and manipulation of small molecules
in the gas phase. Highlights include the discovery of the intrinsic
spin,24 the discovery of nuclear magnetic moments,25,26 the inves-
tigation of chemical reaction dynamics,27 and the invention of the
MASER.28 In particular, in recent years, the control of molecules
with external fields opened the door to completely new experiments
such as scattering experiments at very small relative energies where
quantum effects predominate.29–34 Using the electrostatic deflector,
pure beams of state-, size-, and isomer-selected samples of polar
molecules and clusters were realized.35–40 Furthermore, due to their
rotational temperature on the order of 0.1 K, these pure samples
enable very strong laser alignment and mixed field orientation,41–45

which can be exploited in the recording of so-called molecular
movies, e.g., time-resolved diffractive imaging, in the molecular
frame to directly determine the molecular structure and dynam-
ics by mathematical transformations from the measured diffraction
patterns.46–51

Facilities such as FLASH, EuXFEL, or LCLS-II, with repetition
rates up to 4.5 MHz, provide ultra-short x-ray pulses with brilliances
that are a billion times higher than that of the best conventional
x-ray radiation sources.3,9,52,53 To match the burst-mode operation
of the light pulses at EuXFEL, a cold, pure, and pulsed molecular
beam with a duration on the order of 400 μs and a fundamen-
tal repetition rate of 10 Hz is desirable. Therefore, the controlled
molecules (COMO) setup was developed as a permanently avail-
able extension of endstations at the small quantum systems (SQS)
and single particles, clusters, and biomolecules (SPB) instruments
at EuXFEL. COMO is designed and based on the concept of a
supersonic-molecular-beam source combined with the electrostatic
deflector.31,48

Here, we present an overview of the design and the capabil-
ities of the permanently available endstation-extension COMO as
demonstrated at the SQS instrument of the EuXFEL, where COMO
serves as a source for species-selected, cold, dense, and ultra-pure
molecular beams.

I. APPARATUS DESCRIPTION
A. Vacuum system

The vacuum setup, shown schematically in the lower right
corner of Fig. 1, consists of two stainless-steel chambers, high-
lighted by the blue and purple areas, housing the molecular-beam
source and the electrostatic b-type deflector,54 respectively. The
source chamber is pumped with two turbomolecular pumps (Pfeif-
fer Vacuum HiPace 2300), resulting in a pumping speed on the
order of 4000 l/s for helium. The deflector chamber is pumped
with two turbomolecular pumps (Pfeiffer Vacuum HiPace 700),
resulting in a pumping speed on the order of 1400 l/s. The typical
pressure in the source and deflector chamber when operating the
molecular-beam valve at 10 Hz is ∼10−7 and ∼10−8 mbar, respec-
tively. Both chambers can be separated with a manual DN250 CF
gate valve (VAT 10848-CE01-0008) to allow for sample changes in
the source chamber without breaking the vacuum of the deflector
chamber and the endstation. The source chamber is equipped with
a quick access door (Pfeiffer Vacuum 420KTU250) on a DN250
CF flange to allow for fast sample replacement in the valve’s sam-
ple container.55 The source and deflector chambers are mounted
on rails attached to a stainless-steel platform to facilitate easy con-
nection of the entire setup to the endstation. The total mass of the
molecular-beam setup including the pumps is ∼500 kg. The inter-
face between COMO and an endstation requires a DN250 CF port
with a cylindrical-shaped space with a length of 13.5 cm and a dia-
meter of 20.4 cm inside the endstation for the inverse skimmer
pot.

B. Molecular-beam setup
A schematic of the COMO molecular-beam setup is shown in

Fig. 1. A commercially available long-pulse version of an Even-Lavie
(EL) valve55 with a nozzle diameter of 70 μm is used to deliver the
molecular beam by a supersonic expansion of helium with a trace
of molecules into the vacuum. This version of the valve produces
molecular-beam pulse durations up to 100 μs by utilizing two cur-
rent pulses in close succession provided by a modified driver unit.
The valve is situated on a 3D manipulator (VAB PM12-300-S2EC)
with travel ranges of 1.25, 1.25, and 30 cm in the x, y, and z direc-
tions, respectively. The valve body can be heated up to 250 ○C to
allow for vapor-pressure control of the sample under investigation.
Helium is usually used as the carrier gas with a stagnation pres-
sure on the order of tens of bars, up to 100 bar, to generate a
cold molecular beam. At EuXFEL, the valve is operated at 10 Hz,
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FIG. 1. Schematic of the COMO setup with its main constituents of a pulsed valve and the electrostatic deflector. X rays and possibly further optical laser beams cross the
molecular beam in the interaction region of, for example, the NQS endstation at the SQS instrument. Semi-transparent planes indicate differential pumping sections at the
first and third skimmer. The indicated pressures are typical values during operation with long pulses at 10 Hz. The complete COMO vacuum setup is sketched in the lower
right corner. The flange surface of an endstation is indicated by the light blue dashed line. The skimmer pot ranges into the endstation. The upper left inset depicts the shape
and electric fields of the deflector geometry. The numerically calculated electric-field strengths are depicted in color coding. The dashed circle indicates the typical size and
position of the undeflected molecular beam.

matching the x-ray burst rate. A fast beam flux monitor (BFM,
MBE-Komponenten BFM 40-150) mounted on a DN40 CF linear
feedthrough with a linear travel range of 15 cm perpendicular to the
molecular-beam-propagation direction is used to monitor the tem-
poral profile of the molecular beam. The distance between the BFM
and the first skimmer’s tip is 19.7 cm. The beam flux monitor is con-
trolled by a modified pressure gauge controller (JEVATEC VCU-B0)
that allows for measuring the collector current. The collector cur-
rent is transimpedance amplified with a current amplifier (FEMTO
DHPCA-100), which, in turn, is connected to a digitizer to display
and record the temporal profile of the molecular beam.

All of the components used to shape the molecular beam are
mounted on motorized translation stages, and the individual posi-
tions can be remotely controlled in planes perpendicular to the
molecular-beam propagation direction. The first skimmer (Beam
Dynamics 50.8, ∅ = 3 mm) is used for differential pumping. The
distance between the first skimmer and the valve can be adjusted
between 16.5 and 46.5 cm by moving the valve along the molecular-
beam propagation direction. The first skimmer is mounted on a
home-built flange with a built-in 2D translation stage to adjust the
skimmer position in the x and y directions using two stepper motors
(Thorlabs DRV014) outside vacuum and linear feedthroughs. The
distance between the skimmer tip and the surface of the home-built
flange is given by 4.05 cm. The second skimmer (Beam Dynam-
ics 40.5, ∅ = 1.5 mm) is placed 9.5 cm behind the first skimmer
tip for further collimation of the beam. An electrostatic b-type
deflector,54 which disperses the molecules in the beam with respect
to their quantum states31,56 is located 4.4 cm downstream of the
tip of the second skimmer. Both electrodes of the electrostatic
deflector are connected through two high-voltage feedthroughs

(Pfeiffer Vacuum 420XST040-30-30-1) allowing for voltage differ-
ences up to 60 kV between the electrodes. The unit of the second
skimmer and the electrostatic deflector are mounted on a 2D trans-
lation stage to adjust their positions simultaneously in the x and y
directions using two stepper motors (Thorlabs DRV014) and linear
feedthroughs. This translation stage is mounted on the back side of
the same flange as the translation stage for skimmer 1. The upper
left inset of Fig. 1 depicts the shape and electric fields of the deflec-
tor geometry. The numerically calculated electric-field strengths are
depicted in color coding. The dashed circle indicates the typical
size and position of the undeflected molecular beam. The dispersed
molecular beam is then cut by a vertically adjustable knife edge
placed 5.87 cm downstream of the exit of the deflector. This allows
for improved sample separation and higher column density of the
molecular beam.37 The orientation of the knife edge can be con-
trolled by a motorized rotation stage (Smaract SR-1908) to ensure
the molecular beam is cut parallel to the x-ray propagation direc-
tion. The vertical position of the knife edge can be adjusted by a
linear in-vacuum piezo stage (Smaract SLC 1750) with a travel range
of 3.1 cm. The typical pressure in the deflector chamber is on the
order of 10−8 mbar in operation. The molecular beam is further
skimmed by a third conical skimmer (Beam Dynamics 50.8, ∅ = 1.5
mm) placed 2.52 cm downstream of the knife edge, providing differ-
ential pumping against the interaction chamber. This third skimmer
is again mounted on a 2D translation stage, with the position con-
trolled by two linear in-vacuum piezo stages (Smaract SLC 1750).
Behind the third skimmer, the molecular beam enters an endsta-
tion compatible with COMO, e.g., the nano-size quantum systems
(NQS), or the reaction microscope (REMI) experimental stations
at the SQS instrument at EuXFEL.9,57 The distance between the tip
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of the third skimmer and the interaction region with the x rays is
15.76 cm in the case of the NQS setup.

II. CHARACTERIZATION OF THE SETUP
A. Molecular-beam temporal profile

To characterize the performance of the COMO setup in-house
before its delivery to EuXFEL, it was combined with a time-
of-flight mass spectrometer (TOF-MS, Jordan C-677) and tested
with a Ti:sapphire femtosecond laser system (Coherent Astrella) to
strong-field-ionize the sample. The laser pulses with a duration of
FWHMI ∼ 30 fs and a wavelength centered at 800 nm were focused
to FWHMI ≈ 50 μm and directed perpendicular to the molecu-
lar beam along the negative x direction to ionize molecules in the
extraction region of the TOF-MS. The TOF-MS had a distance of
17.6 cm with respect to the last skimmer tip along the z direction,
reflecting the geometry at the EuXFEL SQS instrument. The peak
intensity of the laser pulse was I0 ∼ 6 × 1013 W/cm2. We used pyr-
role as a sample to characterize the temporal and spatial profiles
of the molecular beam.58 Pyrrole (Sigma-Aldrich Chemie GmbH
131709) was placed in the sample reservoir of the valve and heated
up to 70 ○C, which resulted in a pyrrole vapor pressure on the order
of 100 mbar.59 Helium was used as the carrier gas at a stagnation
pressure of 20100 bar.

Figure 2(a) shows the temporal density profiles of molecular-
beam pulses obtained, gating the signal on the parent cation of
pyrrole (m/q = 67 u/e), for a long-pulse (violet) and a standard EL
valve (green). A pulse duration of τ ∼ 100 μs is observed for the
long-pulse valve in contrast to τ ∼ 25 μs in the case of the normal

FIG. 2. (a) Temporal molecular-beam-density profiles provided by a long-pulse EL
valve (violet) and a normal EL valve (green) obtained from pyrrole+. The density
of the normal EL valve is not to scale. The dashed line indicates the relative tim-
ing where the spatial molecular-beam density profiles were measured. (b) Spatial
molecular-beam-density profiles for the deflector switched off (blue) and on (red)
at a stagnation pressure of 20 bar and a probe time of 610 μs.

EL valve. In addition, for the long-pulse EL valve, two maxima can
be identified during the pulse, resulting from the two current pulses
of the driver unit. Furthermore, post pulses were detected at delays
between 700 and 850 μs, which are attributed to the bouncing of
the plunger in the EL valve driven by the two current pulses. The
post pulses are expected to gradually disappear with increasing stag-
nation pressure.60 The absolute density for the long-pulse EL valve
was determined by a laser-pulse-energy scan as described below. The
density of the normal EL valve is not to scale, but from a signal
strengths comparison, we assume similar densities as obtained for
the long-pulse EL valve.

B. Molecular-beam spatial profiles
To characterize the separation of pyrrole from the direct

molecular-beam, measurements were carried out with and without
voltages on the deflector. Figure 2(b) shows the measured (dots)
and simulated31 (lines) profiles for the direct (deflector off, blue)
and the 14 kV (±7 kV) deflected (red) molecular beams. Both pro-
files were obtained by scanning the molecular beam along the y
direction making use of the motorized translation stages to move
the beam with respect to the laser propagation axis. The parent-
ion yields were obtained by integrating over the pyrrole+ peak in
the TOF-MS. The timing of the laser pulses with respect to the
molecular-beam-valve trigger was 610 μs, as indicated by the ver-
tical dashed line in Fig. 2(a). Comparing both profiles, a clear shift
toward negative y values is observed when the deflector is switched
on. This is expected, as all quantum states of pyrrole are strong-field
seeking at the relevant electric-field strengths in the deflector.58 The
solid lines in Fig. 2(b) are simulated pyrrole beam profiles obtained
from Monte Carlo trajectory calculations that take into account the
geometrical constraints of the mechanical apertures and the rota-
tional temperature Trot of the molecular beam.58,61 The experimental
data of pyrrole’s deflection profiles match well with the simulated
results, which assume an initial temperature of Trot = 1 K for the
molecular beam entering the deflector. Furthermore, the results are
comparable to those obtained in earlier measurements.58,62

C. Molecular-beam density determination
The pyrrole molecular-beam sample densities were estimated

based on a strong-field ionization model:62–64 The asymptotic slope
of an integral ionization signal with respect to the natural log-
arithm of peak intensity can be expressed as S = 𝜚πR2Dα. Here,
𝜚 represents the sample density, R represents the I0/e radius of
the transverse laser intensity distribution, D represents the length
of the focal volume in the molecular beam, and α represents the
detection efficiency. The detected number of pyrrole ions per laser
pulse as a function of the logarithm of the laser peak intensity
ln(I0) is shown in Fig. 3. The vertical laser position, molecular-
beam timing, and stagnation pressure were y = 0 mm, t = 600 μs,
and 90 bar, respectively. A typical increase and saturation behav-
ior of the ion yield with increasing laser intensity is observed. The
purple curve depicts a fit to the asymptotic slope. From the fit, a sat-
uration onset of I0 = (6.8 ± 1.1syst) × 1013 W/cm2 was deduced. A
sample density of 𝜚 = (8.4 ± 4.2syst) × 107 cm−3 was obtained, taking
into account the measured laser-beam waist of ω0 = 2σ = 52(2) μm,
the measured molecular-beam diameter of D = 2.0(3) mm, and an
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FIG. 3. Number of pyrrole ions per laser pulse (red circles) as a function of the laser
peak-intensity logarithm ln(I0) for a stagnation pressure of 90 bar. The purple line
indicates the asymptotic-slope fit, see text for details. The inset shows tempo-
ral molecular-beam-density profiles under different valve stagnation pressures of
20 bar (black), 50 bar (blue), and 90 bar (red).

estimated detection efficiency of 50%.65 The measured molecular-
beam density is consistent with typical previously reported
values48,62,64 obtained with an EL valve. The inset in Fig. 3 shows
the temporal profiles of the pyrrole molecular beam for stagnation
pressures of 20, 50, and 90 bar. A decrease in the pulse duration
is observed with increasing stagnation pressure accompanied by a
reduction in the peak density. This behavior could be due to the
complex gas dynamics in the source chamber and is subject to fur-
ther investigations. Currently, this limits the long-pulse operation
to samples where sufficient cooling is achieved at 20 bar stagnation
pressure. Improvements in the valve-driving-electronics parameters
are foreseen for samples of controlled and species-selected molecu-
lar clusters40,58,66 or applications of strong molecular orientation,42,67

which require higher stagnation pressures for efficient formation or
cooling.

D. Characterization experiments with x rays
The COMO setup was assembled and further tested with the

nano-sized quantum systems (NQS) experimental station at the SQS
instrument at EuXFEL. A pure pyrrole-water (PW) heterodimer
sample58,62 was investigated. The molecular beam was produced
using a stagnation pressure of 80 bar of helium with traces of water
and pyrrole added. The driver settings were similar to the ones
used during the characterization measurements with the optical
laser described above. These conditions resulted in a similar spatial
molecular-beam profile and a purity of pyrrole-water heterodimer as
published previously58,62 and also shown in Fig. 2(b). The EuXFEL
and the optical laser were operated in burst mode at a base frequency
of 10 Hz with 20 FEL pulses, synchronized to the same number of
1030 nm optical laser pulses per train at an intra-train repetition rate
of 250 kHz and a photon energy of 600 eV. Figure 4 depicts the typi-
cal ion-yield spectrum as a function of the relative timing Δt between
the molecular-beam arrival time and the train of combined x-ray and
1030 nm optical laser pulses. Vertical red dotted lines indicate the
timing of each specific x-ray pulse in the train. The signal envelope

FIG. 4. Ion-yield spectrum induced by the combination of FEL and 1030 nm optical
laser pulse trains at a base frequency of 10 Hz with 20 FEL/1030 nm pulses per
train at an intra-train repetition rate of 250 kHz and a photon energy of 600 eV.
Δt is the relative timing between the molecular-beam arrival time and the train of
x-ray pulses. The red vertical dotted lines indicate the arrival of each FEL/1030 nm
pulse in the train. The blue-shaded area indicates the temporal envelope of the
molecular-beam density. One bin corresponds to 1.136 ns. The inset is a zoomed-
in TOF-MS spectrum corresponding to one of the FEL/1030 nm pulses with the
main peaks labeled.

as depicted by the blue-shaded area indicates the overall temporal
profile of the molecular beam in the deflected part. The pulse dura-
tion of the molecular beam was on the order of 40 μs during the
commissioning time. The temporal molecular-beam profile is fully
covered by the 20 FEL/1030 nm pulses and the specific molecular-
beam TOF spectra and the background are detected simultaneously
in one pulse train. The shorter pulse duration with respect to the
duration obtained with the laser shown in Fig. 3 is attributed to
the 80 bar stagnation pressure required to produce pyrrole–water
clusters at high density.

The inset in Fig. 4 shows a zoomed-in TOF-MS spectrum. The
complete, integrated time trace was split into individual traces to
obtain a TOF spectrum for each specific x-ray pulse. Afterward,
the TOF spectrum corresponding to a specific x-ray pulse was con-
verted to the mass-over-charge ratio in units of u/e. The main ion
peaks of the TOF-MS spectrum are labeled and attributed to the
pyrrole-water parent ion (PW+), pyrrole-water fragment ions, and
remaining seed-gas contributions (He+). A detailed analysis of the
TOF-MS spectrum is beyond the scope of this paper and will be dis-
cussed in a future publication. However, all ion signals induced by
the x rays can be clearly resolved in the TOF-MS spectrum, demon-
strating that the COMO setup is fully compatible with the chosen
burst-mode operation at the EuXFEL. This will significantly increase
the data-acquisition duty cycle and, thus, the utilization of x-ray
pulses, compared to experiments using standard short-pulse valves
up to a factor of ∼4. It should be mentioned here that there are no
relevant restrictions on the number of pulses with which the valve
is operated, up to several 100 pulses per second. By modifying the
electric driver, longer molecular pulses will be possible to cover the
400 μs duration of the EuXFEL pulse trains. Furthermore, our results
demonstrate that the obtained molecular sample densities are clearly
sufficient to conduct experiments with x rays at free-electron lasers

Rev. Sci. Instrum. 95, 113301 (2024); doi: 10.1063/5.0219086 95, 113301-5

© Author(s) 2024

 18 N
ovem

ber 2024 07:01:47

https://pubs.aip.org/aip/rsi


Review of
Scientific Instruments

ARTICLE pubs.aip.org/aip/rsi

using COMO. In addition, by exploiting the electrostatic deflec-
tor, the x-ray-induced helium-ion signal, from the molecular-beam
seed gas, is highly suppressed. However, to implement 100 μs or
longer molecular-beam pulses under conditions to produce signifi-
cant densities of molecular clusters, further optimization of the valve
performance is required.

III. CONCLUSION
In summary, the permanently available molecular-beam injec-

tor setup COMO was developed, set up, and commissioned using
TOF-MS experiments both in-house at CFEL with optical laser
ionization and at EuXFEL with x-ray ionization detection. The
performance of the long-pulse-valve molecular-beam source was
characterized and proven to be compatible with the burst-mode
operation of the EuXFEL. Our results show that the COMO setup
can generate cold (T ∼ 1 K) and dense (ρ ∼ 108 cm−3) molecular-
beam pulses with pulse durations on the order of 100 μs. The high
molecular-beam density allows experiments with data recorded in
single-shot mode. In general, the COMO molecular-beam source
can be combined with various electron and ion spectrometers,
along with large-area x-ray detectors. With the included electrostatic
deflector, pure state-, size-, and isomer-selected samples of polar
molecules and clusters can be provided to the interaction region.

Hence, COMO proves to be an excellent source for various
experiments at the EuXFEL, such as the recording of molecular
movies using ion, electron, and x-ray imaging. This enables a diverse
range of science from atomic, molecular, and cluster physics to
materials and energy science, as well as chemistry and biology.
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(equal). Sadia Bari: Data curation (equal); Writing – review & edit-
ing (equal). Rebecca Boll: Data curation (equal); Writing – review
& editing (equal). Hubertus Bromberger: Data curation (equal);
Writing – review & editing (equal). Marcello Coreno: Data curation
(equal); Writing – review & editing (equal). Alberto De Fanis:
Data curation (equal). Michele Di Fraia: Data curation (equal);
Writing – review & editing (equal). Benjamin Erk: Data curation
(equal); Writing – review & editing (equal). Mathieu Gisselbrecht:
Data curation (equal); Funding acquisition (equal); Writing – review
& editing (equal). Patrik Grychtol: Data curation (equal); Writing –
review & editing (equal). Per Eng-Johnsson: Data curation (equal);
Funding acquisition (equal); Writing – review & editing (equal).
Tommaso Mazza: Data curation (equal); Writing – review &
editing (equal). Jolijn Onvlee: Data curation (equal); Software
(equal); Writing – review & editing (equal). Yevheniy Ovcharenko:
Data curation (equal); Writing – review & editing (equal).
Jovana Petrovic: Data curation (equal); Writing – review
& editing (equal). Nils Rennhack: Data curation (equal).
Daniel E. Rivas: Data curation (equal); Writing – review
& editing (equal). Artem Rudenko: Data curation (equal).
Eckart Rühl: Data curation (equal); Writing – review & editing
(equal). Lucas Schwob: Data curation (equal). Marc Simon: Data
curation (equal). Florian Trinter: Data curation (equal); Writing –
review & editing (equal). Sergey Usenko: Data curation (equal);
Writing – review & editing (equal). Joss Wiese: Data curation
(equal); Software (equal); Writing – review & editing (equal).
Michael Meyer: Conceptualization (equal); Data curation (equal);
Funding acquisition (equal); Investigation (equal); Project admin-
istration (equal); Resources (equal); Software (equal); Supervision
(equal); Writing – review & editing (equal). Sebastian Trippel:
Conceptualization (equal); Data curation (equal); Formal analysis
(equal); Investigation (equal); Project administration (equal);

Rev. Sci. Instrum. 95, 113301 (2024); doi: 10.1063/5.0219086 95, 113301-6

© Author(s) 2024

 18 N
ovem

ber 2024 07:01:47

https://pubs.aip.org/aip/rsi


Review of
Scientific Instruments

ARTICLE pubs.aip.org/aip/rsi

Software (equal); Supervision (equal); Validation (equal); Visual-
ization (equal); Writing – original draft (equal); Writing – review
& editing (equal). Jochen Küpper: Conceptualization (equal); Data
curation (equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Project administration (equal); Resources
(equal); Supervision (equal); Validation (equal); Visualization
(equal); Writing – review & editing (equal).

DATA AVAILABILITY
The data recorded for the experiment at the EuXFEL are avail-

able at https://doi.org/10.22003/XFEL.EU-DATA-002388-00. The
data recorded in the laser lab at DESY are available from the corre-
sponding author upon reasonable request. The data that support the
findings of this study are available from the corresponding author
upon reasonable request.

REFERENCES
1B. W. J. McNeil and N. R. Thompson, “X-ray free-electron lasers,” Nat. Photonics
4, 814–821 (2010).
2P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann,
P. Bucksbaum, R. Coffee, F. J. Decker, Y. Ding, D. Dowell, S. Edstrom, A. Fisher,
J. Frisch, S. Gilevich, J. Hastings, G. Hays, P. Hering, Z. Huang, R. Iverson,
H. Loos, M. Messerschmidt, A. Miahnahri, S. Moeller, H. D. Nuhn, G. Pile,
D. Ratner, J. Rzepiela, D. Schultz, T. Smith, P. Stefan, H. Tompkins, J. Turner,
J. Welch, W. White, J. Wu, G. Yocky, and J. Galayda, “First lasing and operation of
an Ångstrom-wavelength free-electron laser,” Nat. Photonics 4, 641–647 (2010).
3M. Altarelli, “The European X-ray free-electron laser facility in Hamburg,” Nucl.
Instrum. Methods Phys. Res., Sect. B 269, 2845–2849 (2011).
4T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi, T. Bizen, H. Ego,
K. Fukami, T. Fukui, Y. Furukawa, S. Goto, H. Hanaki, T. Hara, T. Hasegawa,
T. Hatsui, A. Higashiya, T. Hirono, N. Hosoda, M. Ishii, T. Inagaki, Y. Inubushi,
T. Itoga, Y. Joti, M. Kago, T. Kameshima, H. Kimura, Y. Kirihara, A. Kiyomichi,
T. Kobayashi, C. Kondo, T. Kudo, H. Maesaka, X. M. Marechal, T. Masuda,
S. Matsubara, T. Matsumoto, T. Matsushita, S. Matsui, M. Nagasono,
N. Nariyama, H. Ohashi, T. Ohata, T. Ohshima, S. Ono, Y. Otake, C. Saji,
T. Sakurai, T. Sato, K. Sawada, T. Seike, K. Shirasawa, T. Sugimoto,
S. Suzuki, S. Takahashi, H. Takebe, K. Takeshita, K. Tamasaku, H. Tanaka,
R. Tanaka, T. Tanaka, T. Togashi, K. Togawa, A. Tokuhisa, H. Tomizawa, K. Tono,
S. Wu, M. Yabashi, M. Yamaga, A. Yamashita, K. Yanagida, C. Zhang, T. Shintake,
H. Kitamura, and N. Kumagai, “A compact X-ray free-electron laser emitting in
the sub-Ångstrom region,” Nat. Photonics 6, 540–544 (2012).
5C. J. Milne, T. Schietinger, M. Aiba, A. Alarcon, J. Alex, A. Anghel, V. Arsov,
C. Beard, P. Beaud, S. Bettoni, M. Bopp, H. Brands, M. Brönnimann,
I. Brunnenkant, M. Calvi, A. Citterio, P. Craievich, M. Csatari Divall,
M. Dällenbach, M. D’Amico, A. Dax, Y. Deng, A. Dietrich, R. Dinapoli, E. Divall,
S. Dordevic, S. Ebner, C. Erny, H. Fitze, U. Flechsig, R. Follath, F. Frei, F. Gärt-
ner, R. Ganter, T. Garvey, Z. Geng, I. Gorgisyan, C. Gough, A. Hauff, C. P. Hauri,
N. Hiller, T. Humar, S. Hunziker, G. Ingold, R. Ischebeck, M. Janousch, P. Juranić,
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