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Abstract

Random fluctuations and their representations are ubiquitous in our everyday life, some
are mundane like the distribution of bubblegum on floor tiles at train stations, others are
rare like a winning streak in your favorite board game and yet others are mesmerizing like
the sudden gust of wind that swirls up leaves in autumn. In physics we have observed
them in phenomena at all length scales, from the cosmic microwave background over
the Brownian motion of dust grains down to decay rates of fundamental particles. Their
study has been extremely influential and sparked the development of statistical mechanics
as well as quantum physics. From a mathematical perspective statistics has taught us
that there are different kinds of randomness which can be described by the probability
distribution pX assigned to a random variableX. Moreover the, knowledge about averages
of the from ⟨X⟩, ⟨X2⟩, . . . , called moments of X, uniquely determines pX , i.e. the kind
of randomness of X.

In the field of single-particle imaging (SPI) randomness manifests itself in the distri-
bution of rotation states of several instances of the particle to be imaged. The technique
of fluctuation X-ray scattering (FXS) seeks to merge the concept of statistical moments
with SPI and use randomness to its advantage. It can be understood as natural extension
to the study of the averaged diffraction pattern ⟨I⟩, which is a common analysis method
in Small- and Wide-angle X-ray scattering (SAXS/WAXS). Specifically, FXS aims to
characterize the structural information that averages of the form ⟨I⟩, ⟨I2⟩, . . . contain and
therefore quite literally seeks structure in randomness. Despite its development in the late
1970s and early 1980s [1–3], applications of FXS have only recently become possible with
the emergence of X-ray free-electron lasers (XFEL). Interestingly XFELs themselves rely
on the use of fluctuations as they produce highly intense and coherent X-ray pulses via
the process of self-amplified spontaneous emission (SASE), i.e. the amplification of X-ray
noise. Their introduction made it possible to carry out “diffraction before destruction”
experiments on individual bio-particles [4–10], which have been theorized before [11–13].
These measurements allow to record diffraction patterns from random orientation states
of the studied particles. Alongside of FXS this lead to the development of the previously
mentioned single-particle imaging (SPI) technique [14–18], which holds the prospect of
providing high resolution structure recovery. FXS shares this prospect with SPI [19, 20],
but it also allows for single-particle reconstructions from multi-particle scattering [21].
This makes FXS especially interesting for the study of particles in solution. It can also
be used in a forward modeling approach to understand dynamical changes in optically
exited particles, as has been recently demonstrated [22].

This thesis pursues three goals. Firstly it aims to provide a generalized theoretical
description of fluctuation X-ray scattering. The second goal is, to report on the develop-
ment of a software suite [23] for single-particle structure recovery from FXS data and its
applications to experimental datasets. Finally, it describes an extension to the theoretical
concepts of FXS, that allows the treatment of systems of particles following arbitrary
nonuniform rotational probability distributions. The latter is relevant in the analysis of
optically excited particles which are known to follow nonuniform distributions [22, 24–26],
as well as in studies of molecular alignment [24].
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Zusammenfassung

Zufällige Schwankungen und deren Auswirkungen sind in unserem Alltag allgegenwär-
tig. Einige sind banal, wie die Verteilung von Kaugummiflecken auf den Fliesen eines
Bahnsteiges, andere sind selten, wie die Gewinnsträhne in Ihrem Lieblingsbrettspiel und
wieder andere sind bezaubernd, wie der zufällige Windstoß, der im Herbst das Laub
aufwirbelt. Wir beobachten sie in physikalischen Phänomenen aller Längenskalen, ange-
fangen bei der kosmischen Hintergrundstrahlung über die Brownsche Bewegung von einzel-
nen Staubteilchen, bis hin zu den Zerfallsraten elementarer Teilchen. Die Erforschung
zufälliger Schwankungen war von großer Bedeutung für die Entwicklung der statistischen
Mechanik sowie der Quantenphysik. Aus dem Blickwinkel der Statistik betrachtet wis-
sen wir, dass es unterschiedliche Arten von Zufälligkeit gibt, die wir mit Hilfe von einer
Zufallsvariable X und ihrer Wahrscheinlichkeisverteilung pX beschreiben können. Ferner
erlaubt das Wissen über Erwartungswerte der Form ⟨X⟩, ⟨X2⟩, . . . , welche auch Momente
von X genannt werden, die eindeutige Bestimmung der Wahrscheinlichkeitsverteilung pX
und damit die Bestimmung der Art der Zufälligkeit von X.

Im Wissenschaftszweig des single-particle imaging (SPI) manifestiert sich Zufälligkeit
in der Verteilung von Rotationszuständen einzelner Teilchen. Die Analysemethode der
Fluktuationsröntgenstreuung (FXS) setzt sich zum Ziel, das Konzept von statistischen
Momenten mit SPI zu Verbinden und die vorhandenen Schwankungen zu ihrem Vorteil
zu nutzen. FXS kann als natürliche Erweiterung zur Untersuchung des gemittelten Beu-
gungsbildes ⟨I⟩ verstanden werden, die eine übliche Analysemethode für Klein- und
Weitwinkelröntgenstreuung (SAXS/WAXS) ist. Im Speziellen hat FXS zum Ziel, die
in Erwartungswerten der Form ⟨I⟩, ⟨I2⟩, . . . enthaltenen Informationen über die Teilchen-
struktur sowohl zu charakterisieren als auch zu extrahieren und sucht damit im dop-
pelten Sinne nach Struktur in der Zufälligkeit. Obwohl sie zwischen Ende der 1970er
und Anfang der 1980er entwickelt wurde [1–3], sind Anwendungen von FXS erst kür-
zlich durch das Aufkommen von Freien Elektronen Laser im Röntegenbereich (XFEL)
möglich geworden. Interessanterweise nutzen XFELs ebenfalls zufällige Schwankungen,
da sie zur Erzeugung von kohärenten Röntgenpulsen extrem hoher Intensität auf den
Prozess der selbstverstärkenden spontanen Emission (SASE), also die Verstärkung von
Röntgenrauschen, zurückgreifen. Ihre Entwicklung machte es möglich diffraction before
destruction Experimente mit einzelnen biologischen Teilchen durchzuführen [4–10], deren
Möglichkeit zuvor prognostiziert wurde [11–13]. Experimente dieser Form erlauben die
Messung von Beugungsbildern der zu untersuchenden Teilchen in einzelnen zufälligen Ori-
entierungszuständen. Neben FXS führte dies auch zu der Entwicklung des zuvor erwäh-
nten single-particle imaging (SPI) [14–18], welches hochauflösende Strukturbestimmung
in Aussicht stellt. Fluktuationsröntgenstreuung teilt dieses Potential mit SPI [19, 20], ist
jedoch zusätzlich in der Lage die Struktur einzelner Teilchen aus Beugungsbildern von
Mehrteilchensystemen abzuleiten [21]. Diese Eigenschaft macht FXS besonderes interes-
sant für die Untersuchung von in Lösungen vorliegenden Teilchen. Zudem kann FXS in
modelierungsbasierten Analysemethoden eingesetzt werden, um dynamische Prozesse in
optisch angeregten Molekülen zu untersuchen [22].

Die vorgelegte Dissertation verfolgt drei Ziele. Zu Beginn führt sie eine verallgemeinerte
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theoretische Beschreibung von Fluktuationsröntgenstreuung ein. Daraufhin beschreibt
sie die Entwicklung und Anwendung einer Softwaresuite [23], welche die Strukturbestim-
mung einzelner Teilchen basierend auf FXS Messungen ermöglicht. Es werden sowohl
simulierte als auch experimentelle Datensätze untersucht. Zuletzt beschreibt sie eine
Erweiterung von FXS, die es ermöglicht, Systeme von Teilchen zu betrachten, deren Ro-
tationswahrscheinlichkeitsverteilungen keine Gleichverteilung ist. Dies ist zum Einen von
Interesse für die Analyse von optisch angeregten Molekülen [22, 24–26] und zum Anderen
für Untersuchungen von molekularer Ausrichtung [24].
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Structure and notation

Section 1 has the purpose of introducing all prerequisites necessary for the description of
fluctuation X-ray scattering in section 2. A description of our workflow for FXS-based
structure determination and the associated software suite can be found in sections 3 and
4, while its applications are covered in section 5. After discussing its applications, the
concept of FXS is extended to cover nonuniform rotational distributions in section 6.

The reader may have noticed the list of theorems after the table of contents. Its presence
reflects the attempt of this thesis to merge the strength of physics literature, which lies in
its description of thought processes, with the strength of its mathematical counterpart, the
clarity and conciseness of theorems and definitions. This thesis will however not contain
proofs in the mathematical sense. Correspondingly, Theorems (which always require
proofs) are only mentioned in conjunction with their corresponding reference. Instead of
theorems we will use “observations”, their purpose is to summarize results that have been
obtained in prior derivations. Irrespective of the type (definition, observation, example,
...), the statements are numbered consecutively within each section of this thesis. The
purpose of the “list of theorems” is to provide the reader with an additional tool to locate
specific statements.
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1. Introduction

1.1. Thomson scattering

Throughout this thesis we will consider X-ray scattering processes, in which a fully coher-
ent light pulse scatters elastically from a particle with electron density ρ(r). For a single
photon this scattering process is shown in figure 1.

ρ(r)
kin, ϵin

kout, ϵout

D
et

ec
to

r y

x

z

L

Figure 1: An incoming photon with wave vector kin and polarization direction ϵin, propagates
along the z-axis of a local coordinate system and scatters from a collection of electrons given
by their density ρ(r). The outgoing photon has the new wave vector kout and new polarization
direction ϵout. It propagates freely until it is recorded on a detector surface in the xy-plane,
which is placed at a distance L from the scattering center (measured along the z axis).

We will further more restrict our considerations to the simplest type of such scattering
processes, which is known as Thomson scattering. Its differential cross section is given by
[27, equation 12.34]

dσ

dΩ
=

(
αℏc
mec2

)2

| ⟨ϵin, ϵout⟩ |2|ρ̂(kout − kin)|2 , (1)

ρ̂(q) =

∫

R3

drρ(r)e−i⟨q,r⟩ = [Fρ] (q) , (2)

where ⟨ϵin, ϵout⟩ denotes the scalar product between the incoming and outgoing polariza-
tion directions, α ≈ 1

137
is the fine structure constant, me is the electron mass and c, ℏ

denote the speed of light and the reduced Planck constant, respectively. We shall call ρ̂(q)
the scattering amplitude, which is given as the Fourier transform (symbolized by F) of
the electron density ρ(r). In case the considered particle is an atom, ρ̂(q) coincides with
the atomic form factor. For linear polarized photons both ϵin and ϵout are real valued and
the outgoing polarization direction is, up to normalization, given by the cross-products

ϵout = (kout × ϵin)× kout . (3)

It is interesting to note that the above scattering cross section, equation (1), can be ob-
tained from purely classical considerations as well as from perturbation theory in quantum
physics.

In the former case, the incident plane electromagnetic wave exerts a periodic force on
the electrons within the considered particle. This force causes each electron to oscillate
and act as an oscillating electric dipole, which radiates a scattered electromagnetic wave.
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In order for the intensity of the emitted dipole radiation to obey equation (1), it has to be
measured in the far field, that is at large enough distances L from the scattering center
such that D2|kin|

L2π
≪ 1, where D is the largest distance within the particle. More detailed

derivations can be found in text books such as [28, chapter 1.2],[27, chapter 6.2] or [29,
volume 2, part VI].

From a quantum theoretic perspective, equation (1) is well known for ρ̂(q) = 1, i.e. in
the case of a photon scattering from a single free electron. It is the result of considering
the two lowest order Feynman diagrams, displayed in figure 2, while averaging over all
possible spin states and demanding that the energy of the electron remains conserved
throughout the scattering process. Detailed derivation of this result can be found, as low
energy limit of Compton scattering, in many text books, such as [30–32]. A derivation

e·

e−p,s

γ;kinεin γ;koutεout

e−p′,s′

e·

e−p,s

γ;kinεin γ;koutεout

e−p′,s′

Figure 2: Feynman diagrams considered in Thomson scattering. (left) An electron e−p,s, with
momentum p and spin state s, first absorbs the incident photon γ;kinϵin, then propagates as
intermediate electron until it emits the outgoing photon. (right) The initial electron first emits
the outgoing photon, then propagates as intermediate electron and finally absorbs the photon
that has been present in the initial state.

considering multiple bound electrons, as encountered in atoms or molecules, is given in [27,
chapter 12.5]. Here we shall loosely follow this derivation, to motivate the appearance
of the scattering amplitude in equation (1). We may describe the interaction between
charged particles and electromagnetic fields via the non-relativistic hamiltonian1

Hint =
e

me

⟨p,A⟩+ e2

2me

⟨A,A⟩ , (4)

A(r, t) =
∑

k

1∑

l=0

A(k)(ϵlalke
i(⟨k,r⟩−ωkt) + ϵ∗la

†
lke

−i(⟨k,r⟩−ωkt)) , (5)

where A is the quantized vector potential [27, equation 3.55], l is the quantum number
associated to the two polarization states and a†

lk,alk denote the bosonic creation and
annihilation operators, respectively. The photon energy is given by ℏωk = ℏc|k| and
A(k) =

√
ℏ

2ϵ0V ωk
, whose precise form is not relevant for the following argument.2 We

now seek to treat the interaction given by Hint using the framework of perturbation
theory. Let us assume, that the eigenstates of the non-interacting theory, represented by

1Hint as given in (4) neglects terms describing interaction between the electron spin and EM fields, for
details see [27].

2V in the definition of Ak is the quantization volume and ϵ0 denotes the vacuum permittivity.
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a Hamiltonian H0, are known. If the initial and final state, |i⟩ and |f⟩, of the scattering
process are eigenstates of H0 we may use Fermi’s golden rule to describe the scattering
rate Γi→f up to first order in Hint and find

Γi→f ∝ |⟨f |Hint|i⟩|2 . (6)

In order to describe Thomson scattering we only consider initial and final states that
differ by a single occupation number, i.e.

|i⟩ = |ψ, n(kin, ϵin), 0⟩ , (7)
|f⟩ = |ψ, (n− 1)(kin, ϵin), 1(kout, ϵout)⟩ . (8)

In equations (7)-(8), |ψ⟩ describes the electronic state, which remains unchanged during
the scattering process, |n(kin, ϵin), 0⟩ describes n free photons in the mode (kin, ϵin) and
|(n−1)(kin, ϵin), 1(kout, ϵout)⟩ describes the state in which a single photon changed its mode
to (kout, ϵout). It becomes immediately clear that only the term proportional ⟨A,A⟩ in
Hint contributes to such a scattering process, since only it contains products of the form
alka

†
l′k′ or a†

lkal′k′ , that conserve the total number of photons. In computing the matrix
elements given in equation (6) one directly finds

Γi→f ∝
∣∣∣
〈
ψ, (n− 1)(kin, ϵin), 1(kout, ϵout)

∣∣ ⟨A,A⟩
∣∣ψ, n(kin, ϵin), 0

〉∣∣∣
2

∝
∣∣∣
〈
ψ
∣∣e−i⟨kout−kin,r⟩

∣∣ψ
〉∣∣∣

2

=
∣∣∣ρ̂(kout − kin)

∣∣∣
2

, (9)

where in the last step we used that, by definition, ψ(r)ψ(r)∗ describes the electron density

ρ(r) of the free state |ψ⟩. This appearance of
∣∣∣ρ̂(kout − kin)

∣∣∣
2

in the transition rate for
Thomson scattering ultimately leads to its presence in the differential cross section, shown
in equation (1).

From now on, we shall assume that the polarization state of the incident X-ray pulse
is known and that the intensity patterns IM , for scattering geometries as described by
figure 1, provide direct measurements of the differential cross section (1). Equivalently
we can demand that the diffraction patterns IM are simply given by 3

IM =
∣∣∣ρ̂(kout − kin)

∣∣∣
2

. (10)

It is hard to overstate the importance of equation (10), as it constitutes the foundation
on which many imaging techniques are build, including single-particle imaging (SPI) [11,
12, 33], fluctuation X-ray scattering (FXS) [1] and also X-ray crystallography [34, equa-
tion 3.27]. Equation (10) states that Thompson scattering from a particle can be used as
probe for its electron density ρ(r), albeit with a builtin limitation in form of the abso-
lute value squared | · |2, which will be discussed in the next section. It is instructive to
think of the scattering amplitude ρ̂(q) as a complex valued three-dimensional function in

3The knowledge about ϵin together with equation (3) allows one to compute the polarization factor in
the Thompson cross section (1) and remove its contribution.
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momentum space, whose absolute value squared I(q) = ρ̂(q)ρ̂(q)∗ shall be called the scat-
tering intensity. We may now connect the measured two-dimensional diffraction patterns
IM to portions of the three-dimensional intensity I(q), using the energy conservation of
elastic scattering. Specifically, elasticity implies that the wavelength λ of incident X-ray
photons does not change during the scattering process and we find |kout| = |kin| = 2π

λ
.

The vector kout − kin, present in equation (10), therefore lies on a sphere in momentum
space, whose radius is given by 2π

λ
. This sphere is known as Ewald’s sphere Eλ and it

is convenient to denote all momentum transfer vectors lying on this sphere by qλ. The
points qλ = kout − kin have a particularly simple representation in spherical coordinates,
if one assumes that kin points along the z-axis. In this case one finds

qλ = (q, θλ(q), ϕ) , (11)

θλ(q) = arccos

(
q

2

1

|kin|

)
= arccos

(
qλ

4π

)
(12)

and we are able to express IM through the scattered intensity I via

IM(q, ϕ) = I(qλ) = I(q, θλ(q), ϕ) . (13)

A graphical representation of this relationship is given in figure 3.

(a)

EλEλ

ϕ

k out

kin

q IM(q,ϕ)

(b)

z
θλ

xq

Eλ

momentum
transfer
origin

2|kin|k
ou

t

Figure 3: (a) 3D representation of the scattering geometry of figure 1 in momentum space. The
origin of the spherical coordinate system lies at the end of the kin vector and the z-axis is directed
along −kin, such that the momentum transfer vector q has the coordinate representation (q, θ, ϕ).
Each momentum transfer vector q has an associated scattering angle β. A portion of the Ewald’s
sphere Eλ is visualized as grid and the visible diffraction pattern lies on the part of Eλ associated
with a square shaped detector plane in real space. (b) Two-dimensional representation of (a) for
q lying in the zx-plane. The Ewald’s sphere is represented by the solid circle touching the red
coordinate origin. The legs of the right triangle leading to equation (12) are given by q/2 and
the red dashed line.
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The connection between θλ and the scattering angle β, visible in figure 3(b), is given by

θλ =
π − β

2
. (14)

In the limit of small scattering angles β, one finds θλ ≈ π
2

and the surface spanned by
(q, θλ = π

2
, ϕ) is precisely the xy-plane in momentum space. For this reason, the small

scattering angle limit is also known as the flat Ewald’s sphere limit. In this case one
can use the Fourier projection-slice theorem to directly connect the measured diffraction
patterns, given by equation (10), to the absolute value squared of the 2D Fourier transform
of the studied particle on to the xy-plane in real space, i.e.

IM(q, ϕ) =
∣∣[FPxyρ ] (q

λ)
∣∣2 , (15)

where Pxy denotes the projection on to the xy-plane. Equation (15) is one example
of how the Fourier transform relationship between the scattering amplitude ρ̂(q) and
the structure of the studied sample, encoded in ρ(r), allows to draw conclusions on the
observed scattering patterns. In general, any property of the Fourier transform translates
directly into a specific relationship between the real space structure and the observed
scattering pattern via the fundamental equation (10). Leaving the realm of small-angle
scattering, we will discuss four basic properties that result in general symmetries and
transformation properties of IM .

1. (point inversion) Under point inversion (ρ(r) → ρ(−r)) the Fourier transform of a
real function changes by a complex conjugation (ρ̂(q) → ρ̂(q)∗), i.e.

[Fρ(−r)] (q) = ρ̂(q)∗ = ρ̂(−q) (16)

On the level of intensities this implies I(q) = I(−q), which is known as Friedel
symmetry in the context of X-ray scattering [35]. A direct consequence of this
symmetry is that the measurement of Thompson scattering patterns does not allow
to distinguish between a particle and its point inverse.

2. (shift theorem) Consider Tx to describe translations by a vector x such that Txρ(r) =
ρ(r − x). The shift theorem for the Fourier transform states

[FTxρ] (q) = ρ̂(q)e−i⟨q,x⟩ . (17)

Since the change is completely captured by the phase e−i⟨q,x⟩ one finds that the scat-
tered intensity I and by extension IM , are independent under particle translation,
that is

|[FTxρ] (q)|2 =
∣∣ρ̂(q)e−i⟨q,x⟩∣∣2 = |ρ̂(q)|2 = I(q) (18)

3. (rotations) Let ω be an element of the rotation group SO(3) and define its action,
Rω, on a function, by applying the inverse rotation to its argument, i.e.

Rωρ(r) = ρ(Rω−1r) . (19)
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Since the Fourier transform commutes with rotations [36, chapter IV theorem 1.1]
we directly find that a rotation of the particle causes the scattering amplitude ρ̂ and
its intensity I to transform according to the same rotation, i.e.

|[FRωρ] (q)|2 = |Rω [Fρ] (q)|2 = |Rωρ̂(q)|2 = RωI(q) . (20)

This relationship has deep implications on the amount of information that can be
extracted from scattering patterns IM . Equation (20) tells us, that rotating the
sample in real space is equivalent to rotating the Ewald’s sphere in momentum space,
along which the intensities IM are recorded. By measuring these 2D diffraction
patterns for different orientation states of the particle, one can map out the values
of the scattered intensity I(q) in a 3D spherical volume. The extend of this volume
is ultimately limited by the radius of the Ewald’s sphere, i.e. the X-ray wavelength
λ, and indicated by the big dashed circle in figure 3 (b).4

4. (convolution/cross-correlation theorem) Given two functions f(r) and g(r) the cross-
correlation theorem states

[
F
∫

R3

dr′ f(r′ + r)g(r′)

]
=
[
Ff
][
Fg
]∗ (21)

In our context this allows us to understand the scattered intensity I, by choosing
f(r) = g(r) = ρ(r), as Fourier transformed cross-correlation of the electron density
ρ with itself, i.e. its auto-correlation

[
F−1I

]
(r) =

∫

R3

dr′ ρ(r′ + r)ρ(r′) (22)

1.2. The phase problem

If we seek to determine the structure of a particle from measurements of its X-ray Thomson
scattering patterns IM alone, we are faced with an ill defined inverse problem, that is
caused by the absolute value squared in equation (10). Let us for a moment disregard the
challenges associated with the measurement of 2D Ewald’s sphere slices and assume full
knowledge about the 3D scattered intensity I(q). The structure recovery task can then
be formulated as follows:

Determine ρ′(r) such that |[Fρ′] (q)|2 = I(q) (23)

The ill definition of (23) relates to the fact, that different structures can have the same
scattering intensity. In equation (16) we have already seen this for a structure and its
point inverse. In general, any electron density ρ′ whose Fourier transform differs from ρ̂
by a complex phase, will have the same scattering intensity. Consider ρ′(r) to be given
via

Fρ′(r) = ρ̂(q)eiξ(q) ,

4In practice the detector shape limits the accessible momentum space volume, as is indicated by the
scattering pattern visible in figure 3(a).
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for an arbitrary real valued function ξ(q), then

I ′(q) = |Fρ′(r)|2 = |ρ̂(q)eiξ(q)|2 = I(q) (24)

and the measured IM will not allow us to differentiate between the “correct” structure
ρ(r) and ρ′(r). One may equivalently think of this as a loss of information that occurs
during the measurement process. The scattered electromagnetic wave has the complex
scattering amplitude ρ̂, which using its intensity can be expressed via

ρ̂(q) =
√
I(q)eiξ(q) . (25)

Current detectors, such as charge coupled device (CCD) sensors, are not sensitive to the
phase term eiξ(q) in equation (25) and only the intensity can be observed. This loss of
information is commonly referred to as the phase problem [27, 28, 38–40]. In real space
the phase problem can be stated as the loss of information that occurs under substitution
of an electron density ρ(r) with its auto-correlation given by equation (22). These two
equivalent perspectives on the phase problem are visualized in figure 4. A “solution” to the
phase problem is knowledge about the missing information and consequently knowledge
about the particle structure ρ(r). Solving the phase problem therefore means to pick the
“correct” electron density out of all densities ρ′ characterized by (23). It is clear that such
a choice requires some form of a priori information, which acts as additional constraint
and allows one to differentiate between all possible ρ′. Depending on the strength of
these constraints they may cause the structure recovery task to have a unique solution
or even provide a concrete algorithm by which the optimal solution can be found. In the
following we list examples of different fields of structure determination and the kind of a
priori information they employ to provide solutions to the phase problem.

X-ray crystallography: Several different types of a priori information have been used to
solve the phase problem in X-ray crystallography. The most prominent methods are based
on isomorphous replacement, molecular replacement and anomalous scattering (resonant
scattering) [34, 41, 42]. In isomorphous replacement one demands to measure diffraction
from a crystal of interest as well as an isomorphic crystals, in which one atom is replaced
with a heavier element without altering the atomic position in the unit cell. For molecular
replacement one demands knowledge about the structure of a similar crystal, such that the
search space for ρ can be restricted to small variations around this known structure. While
these two techniques place constraints on the studied crystal, in anomalous dispersion
one instead requires resonant scattering patterns to be recorded. The effect of resonant
scattering can be understood by adding a complex-valued energy dependent term f(ℏω)
to the scattering amplitude [28, equation 1.12], i.e.

ρ̂(q, ℏω) = ρ̂0(q) + f(ℏω) ,

where ρ̂0(q) is the ordinary scattering amplitude from equation (2). Since f(ℏω) is com-
plex the Friedel symmetry expressed in equation (16) is broken and phase information
about ρ̂0(q) becomes accessible form the measured diffraction patterns IM(qλ, ℏω) =
|ρ̂(q, ℏω)|2.
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Scattered amplitude ρ̂ Scattered intensity I

Auto-correlation ρ ⋆ ρDensity ρ

Re

Im

F−1 F−1

∫
drρ(r′ + r)ρ(r)

Measurement

?

(a)

(b)

(c)

(d)

Figure 4: (a) Complex scattering amplitude ρ̂(q) in the xy-plane of momentum space. Complex
numbers z = xeiξ are represented using the HSV color scheme. The phase ξ determines the color,
i.e. the hue (H), the absolute value x determines the black level, i.e. the value (V), and the
Saturation (S) remains fixed to its maximum value of 1. The corresponding color map is given by
the circular inset to the right of (a). (b) Inverse Fourier transform of (a). By the projection-slice
theorem (b) is the projection of the electron density ρ(r) on to the xy-plane in real space. The
visible structure belongs to the human apoptosome complex [PDBa entry 3j2t [37]]. (c) Scattered
intensity I(q) = |ρ̂(q)|2 corresponding to (a), displayed in log scale. (d) Inverse Fourier transform
of (c), or equivalently the auto-correlation of (b). The phase problem manifests itself as the loss
of information that occurs in going from the left column of this figure, (a) and (b), to the right
column, (c) and (d). The gray arrow symbolizes the problem of structure recovery (23).

aProtein data bank https://www.rcsb.org/
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Fourier transform Holography: Here one demands that the electron density ρ̃(r), of
which diffraction patterns are recorded, is the sum of a shifted known electron density
Txρ0(r) and the unknown structure of interest ρ(r), i.e.

ρ̃(r) = Txρ0(r) + ρ(r) .

Using the cross correlation theorem from equations (21) and (22) one finds the inverse
Fourier transform of the scattering intensity Ĩ(q) = | [F ρ̃] (q)|2 to contain four terms, that
is [

F−1Ĩ
]
(r) = [ρ0 ⋆ ρ0](r) + [ρ ⋆ ρ](r) + Tx[ρ ⋆ ρ0](r) + T−x[ρ0 ⋆ ρ](r) ,

where ⋆ denotes cross correlations. If the shift length |x| is large enough the auto-
correlations of ρ and ρ0 do not overlap with the shifted cross correlations in real space.
More over, if ρ0 is small5 compared to ρ, then one finds [ρ⋆ρ0] = [ρ0 ⋆ρ] ≈ ρ which allows
direct access to the unknown structure, see [29, volume 2 part VI] for details.

Single-particle imaging: The phase problem in single-particle imaging (SPI) [9, 11–13,
15] is solved using iterative phase retrieval [39, 43]. Both iterative phase retrieval as well
as SPI are discussed in more detail in 1.3 and 1.5, respectively. The main additional
constraint used to solve the phase problem relies on knowledge about the finite support of
the structure to be determined [44], i.e. the area where ρ(r) does not vanish. Interestingly,
this also places a lower boundary on the sampling rate of the momentum transfer value
|qmax| at which scattering patterns should optimally be measured. This can be seen as
follows. The condition of finite support also implies that the scattering intensity I(q) is
band limited with “frequency” 2Rmax, where Rmax is the largest absolute radial distance
|r| for which ρ(r) ̸= 0 [45, 46]. Since we are only able to sample the diffraction patterns
on a finite grid, the Shannon sampling theorem [47, theorem 3.2] states that, in order to
avoid artifacts due to aliasing, IM(q) has to be sampled with sampling rates higher than
4Rmax, i.e. momentum transfer steps ∆q ≤ π

2Rmax
. Sampling conditions due to the finite

support of ρ are usually referred to as oversampling constraints in the context of iterative
phase retrieval [45, 46, 48–50] [51, chapter 5].

Ptychography: In ptychography [52–54] one employs a modified version of iterative
phase retrieval to solve the phase problem. It demands that the sample is partially il-
luminated by coherent X-ray radiation, such that the recorded scattering patterns IM
correspond to overlapping regions on the sample. A single diffraction pattern is thus
not a probe for the entire sample structure ρ(r), but rather its product with a shifted
illumination function [TxP ](r) = P (r − x), that takes values in the range [0, 1] and is
characterized by the beam shape of the incident X-ray pulse. The overlapping constraint
is strong enough to allow for both the structure ρ(r) as well as the illumination function
P (r) to be determined from the recorded diffraction patterns [54].

5Where, by ρ0 is small compared to ρ, we mean, that the volume of space on which ρ0 is non-zero, i.e.
its support supp(ρ0), is small compared to supp(ρ).
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1.3. Iterative phase retrieval

As mentioned before, single-particle imaging employs a class of phase retrieval algorithms,
know as method of alternating projections or just iterative phase retrieval [38, 55]. In fact,
the algorithm implemented as part of this thesis and discussed in sections 2.4 and 3.4 also
belongs to this class of algorithms. The main idea behind iterative phase retrieval may
be formulated as follows.

In the presence of additional constraints, due to prior information, the description of the
set of electron densities satisfying all constraints generally becomes extremely complicated.
This is not surprising, since ideally this set should only contain a single element, i.e. the
solution to the phase problem. It is however often possible to split all constraints into two
parts, such that the set of densities satisfying either one of these collections of constraints
becomes “simple” to describe. Let us call these sets of densities Q and X . By the phrase
“simple” to describe we shall mean numerical access to projections PQ and PX that project
any given density to the closest density belonging to Q and X , respectively.

As an example one may consider Q to be described by constraints formulated in re-
ciprocal space and X by those formulated in real space. In the simplest case, the only
reciprocal space constraints are given via the scattering intensity I(q). The set Q then
contains densities satisfying |ρ̂(q)|2 = I(q), i.e. solutions to (23), and the corresponding
projection PQ maps any given density ρ into Q by substituting the absolute value of its
associated scattering amplitude with the square root of I, that is

Q =
{
ρ
∣∣ |ρ̂(q)|2 = I(q)

}
, (26)

PQρ = F−1PIFρ = F−1PI ρ̂ , (27)

where F is the Fourier transform and PI is the intensity projection

PI ρ̂ =

{
ρ̂
| ρ̂ |

√
I if ρ̂ ̸= 0√

I otw.
. (28)

Assuming that the combined constraints are strong enough to make the structure deter-
mination problem well posed, one can use the sets Q and X , irrespective of their precise
formulation, to reformulate the structure determination as the following feasibility prob-
lem

find ρ

such that ρ is in the intersection of X and Q (i.e. ρ ∈ X ∩Q ).
(29)

Starting from an initial electron density guess ρ0, one may now try to find a solution by
successive applications of the projections PQ and PX until a suitable stopping criterion is
reached. If ρi is the density guess in the i-th step of this iterative process, then the next
guess (ρi+1) is given by

ρi+1 = PXPQρi . (30)

Figure 5 illustrates this procedure in two examples, where both Q and X are simple
one-dimensional sets. Alternating projection methods of this kind have a long history in
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(a)

Q

X

Initial quess ρ0

PQ

PX

(b)

X

Initial guess
ρ0

PQ

PX

Q

Figure 5: (a) illustrates how iterative projections allow two find the intersection between to
lines. (b) serves as a warning that this method is not always guarantied to work, even if a unique
solution exists. The key difference between figure (a) and (b) is, that in the latter the set Q is
not convex.

convex optimization [56, section III] and their convergence properties are well understood
[57]. Unfortunately, the set Q representing our knowledge about the intensity profile I(q)
from equation (26) is not convex and many of the results obtained in the convex setting
are lost, see figure 5 (b). Nevertheless, such algorithms have been applied with great
success [15, 48] and, as already mentioned, form the foundation of single-particle imaging.
Their first introduction into the field of electron microscopy is due to Gerchberg & Saxton
[38], which used intensity measurements in the image plane as additional constraints. The
well known error-reduction method (ER) [39] is a relaxation of the Gerchberg & Saxton
algorithm. ER only employs the finite size of the studied particle, i.e. the finite support
of its electron density, as additional constraint, which allowed its use in single-particle
imaging. If S is the support of the studied particle, that is the region of space in which
ρ(r) takes non-zero values, then the corresponding real-space constraint is

X =
{
ρ
∣∣ ρ(r) = 0 for all r /∈ S

}
(31)

[PXρ] (r) = [PSρ] (r) =

{
ρ(r) r ∈ S
0 otw.

, (32)

where r ∈ S denotes all points r that belong to the support, conversely r /∈ S stands
for all points outside of it, and we defined PS to be the support projection. A schematic
representation of the error-reduction algorithm can be found in figure 6.

Since its initial development many modifications and adaptations of the error-reduction
algorithm [43, 52, 58–62], as well as entirely different optimizations schemes [63] have been
proposed. All of these variants target different shortcomings of the ER method, such as
slow convergence [43, 59–62], high dependence on the given support S [58] or the lack of
convergence guaranties [63]. In the following we shall highlight some of these variants, as
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well as other extensions, that will be part of the phase retrieval algorithm described in
section 3.4.

Support
Projection PS

Fourier Transform

Initial density
ρ0

Intensity
Projection PI

Inverse
Fourier Transform

PQPX

ρi+1 ρ̂i

ρ̂′iρ′i

Figure 6: Schematic illustration of the error-reduction algorithm.

Additional real-space constraints: Common additions to the support constraint of ER
include the realness and positivity of the electron density. In general, constraints of this
type can be represented by a “value” projection PV that places bounds on the real and
imaginary values of a density ρ, via

PV ρ
′(r) = ρRe(r) + iρIm(r) , (33a)

with

ρRe(r) =





V min
Re if Re[ρ′(r)] < V min

Re

V max
Re if Re[ρ′(r)] > V max

Re

Re[ρ′(r)] otherwise
(33b)

and

ρIm(r) =





V min
Im if Im[ρ′(r)] < V min

Im

V max
Im if Im[ρ′(r)] > V max

Im

Im[ρ′(r)] otherwise
, (33c)

where Re(·) and Im(·) define the real and imaginary parts of the corresponding arguments,
and V min

Re , V max
Re , V min

Im and V max
Im are free parameters.
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Hybrid input-output method: One of the mayor short comings of the error-reduction
algorithm is its tendency to stagnate in local minima [43]. To combat this behavior the
hybrid input-output (HIO) scheme for optimizing the feasibility problem given in (29),
was proposed [43]. It changes the update rule presented in equation (30) to

ρi+1(r) =

{
ρ′i(r) if ρ′i(r) = PX [ρ′i](r)

ρi(r)− β
(
ρ′i(r)− PX [ρ′i(r)]

)
otw.

, (34)

where ρ′i(r) = PQ[ρi(r)], as shown in figure 6. One can show that for β = 1 this method
coincides with the Douglas-Rachford splitting method known in convex optimization [44,
64]. Douglas-Rachford splitting is connected to proximal algorithms [65, 66], around
which some interesting alternatives to HIO have been proposed [62].

Shrinkwrap: The Shrinkwarp (SW) algorithm [58], seeks to remove the necessity to have
precise a prior information about the support of ρ(r). It does so via periodic updates of
the support constraint. Given the electron density candidate at the i-th step of iterative
phase retrieval, ρi(r). Shrinkwrap then defines the updated support, as the area inside
an isosurface of the convolution of ρi with a Gaussian, i.e. via the isosurface of a blurred
version of the current electron density guess. If S′ denotes the updated support then we
may formalize its connection to ρi via

S′ =

{
r

∣∣∣∣∣

[
|ρ′(r)| ⋆

(
1

σ
√
2π
e−

|r|2
2σ2

)]
> γ

}
, (35)

where ⋆ denotes convolution and the free parameters σ and γ define the standard deviation
of the Gaussian function and the isosurface threshold value, respectively.

1.4. X-ray free-electron laser (XFEL)

Free-electron lasers (FEL) are devices in which an electron bunch propagates colinearly
with an electromagnetic wave through a sinusoidaly alternating magnetic field [29], that
is typically generated by an undulator. The alternating magnetic field of the undulator
forces the electrons to move along a sinusoidal trajectory. This forced oscillation has two
effects, it causes the electron to spontaneously emit electromagnetic radiation and allows
electrons to interact with the already co-propagating electromagnetic wave. This inter-
action depends on the combined phase of the sinusoidal electron motion and the phase
of the electromagnetic wave, it is known as the ponderomotive phase [67]. Depending on
it electrons either loose or gain kinetic energy, which results in a density modulation of
the electron bunch itself, known as micro bunching. The periodicity of this longitudinal
density modulation is equal to the wavelength of the co-propagating electromagnetic wave
and causes the electrons to emit radiation in phase with the existing EM field. A positive
feedback loop is formed, in which the emitted electromagnetic field grows exponentially
[68]. In this period of exponential growth, the relative phase between the density mod-
ulation and the emitted EM field is such, that the electrons in a bunch predominantly
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loose kinetic energy. This energy-loss in turn continuously changes the relative phase of
the density modulation, until it causes the electrons to start absorbing energy from the
EM field and saturation is reached [69]. This process can also be started from sponta-
neously emitted photons without an initially present EM wave, in this case it is known
as self-amplified spontaneous emission (SASE) [69, 70]. SASE is currently the standard
operation mode for FELs in the X-ray regime (XFELs). During the exponential growth
phase of the SASE process, one can describe the power of the EM wave P (z), as function
of the longitudinal travel distance z, via [67, equation 7.7]

P (z) ∝ ρ2FEL

√
Lg

z
e

z
Lg , (36)

where Lg is the FEL gain length and ρFEL is the dimensionless FEL parameter that also
appears in the saturation power [67, equation 5.16], which is roughly approximated by

Psat ≈ ρFELPbeam , (37)

where Pbeam denotes the electron beam power. Typical XFEL gain length are on the order
of 1-10m [71, 72], while the saturation power is approximately reached after 10-20 gain
length [72]. The SASE process thus requires undulator length on the order of 100m which
is roughly a factor of 100 longer than typical undulators used in synchrotron facilities [73].
Moreover, the SASE process places strong requirements on the electron beam properties
in form of low emittance, high charge density and low energy spread, which can currently
only be satisfied by linear accelerators [67, 74]. In such an accelerator electron bunches
with charges around 1 nC are typically created by a photoemission radio frequency gun
[72, 74] and subsequently accelerated using several super-conducting or normal-conducting
acceleration modules up to bunch energies of 5 to 20GeV. Table 1 lists key parameters of
several operational XFEL facilities, it is a modified version of [75, Table 1].

Parameter LCLS SACLA PAL-XFEL SwissFEL EuXFEL
Beam energy [GeV] 13.6 8.5 10 5.8 17.5
Bunch charge [nC] 0.25 0.2-0.3 0.2 0.2 1
Slice emittance [µm] 0.4 1.8 0.5 0.4 0.4-1
Peak current [kA] 2.5-3.5 3 3 3 5
User operation 2009 2012 2017 2018 2017
Reference [71] [76] [77] [78, 79] [72, 75, 80]

Table 1: Parameters of operational XFEL facilities.

The important property of XFELs, in the scope of this thesis, is their ability to produce
coherent X-ray radiation with pulse durations shorter than 100 fs and a peak brightness
that is 10 orders of magnitudes larger compared to the brightness achievable at syn-
chrotron light sources.
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Figure 7: SPI scattering geometry. An incident X-ray pulse diffracts from a single randomly
oriented particle with electron density ρ(r). The corresponding intensity pattern IM (q, ϕ) is
recorded on a 2D pixel detector.

1.5. Single-particle imaging (SPI)

That short coherent pulses of X-ray radiation may enable diffraction limited structure
determination under biologically relevant conditions, has been theorized since the 1980’s
[11]. The potential of sidestepping the need to crystalize biological samples for imaging has
ever since been a major driving force and lead to the first descriptions of diffraction before
destruction experiments [12]. In such experiments ultra short X-ray pulses, with pulse
durations below 100 fs, are used [81] in order to “outrun” radiation damage and preserve
structural information in scattering patterns. Single-particle imaging, in similarity to
FXS, represents a concrete scattering technique based on diffraction before destruction
experiments and has been made possible by X-ray free-electron lasers [9, 15, 18]. Figure
7 depicts a typical experimental setup within SPI. As the name suggests, SPI relies on
the measurement of diffraction patterns from individual reproducible randomly oriented
particles. Its structure reconstruction workflow can be understood as a two step process.
Initially the recorded single-particle scattering patterns IM(qλ) are used to construct a
model of the full 3D scattered intensity I(q). This step is usually [9, 15, 18] performed
using the “expand-maximize-compress” (EMC) algorithm [33], which is a derivative of
the maximum likelihood algorithm [82]. With access to the full 3D scattered intensity
I(q) one is able to apply iterative phase retrieval in the second step and reconstruct the
electron density ρ(r) of the studied particle, as described in section 1.3.

One of the main differences between FXS and SPI is how they use the measured diffrac-
tion patterns IM(qλ) to access information about I(q). It is therefore interesting to
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understand the principles behind the EMC algorithm [33].
At its core EMC is an iterative optimization algorithm build around the following

two observations. Assume, we are given a candidate 3D scattering intensity I(q). By
applying a rotation ω to this intensity and restricting q to the Ewald’s sphere, it is possible
to simulate diffraction patterns corresponding to arbitrary particle rotations. One may
think of this process as the function, J (ω, qλ) = RωI(q

λ), that maps a rotation ω to its
scattering pattern under the intensity candidate I, i.e.

ω ∈ SO(3)
J (ω, qλ)

(38)

The second observation is that the probability of measuring photons on a detector pixel
follows Poisson statistics. For any measured diffraction pattern IMi (qλ) we are then able
to compute the probability Pi(ω, I) of it being a measurement of the simulated patterns
J (ω, qλ), which are based on our current guess for I(q), i.e.

measured IM
i

Probability of IMi (qλ)
being a measurement
of J (ω, qλ)

Pi(ω, I) (39)

The probability Pi(ω, I) takes the form [33, equation 9]

Pi(ω, I) =
Ri(ω, I)∫

SO(3)
dω Ri(ω, I)

Ri(ω, I) =
∏

k

J (ω, qλ
k )

IMi (qλ
k ) exp

(
−J (ω, qλ

k )
)

= exp

(∑

k

IMi (qλ
k ) ln

(
J (ω, qλ

k )
)
− J (ω, qλ

k )

)
,

where k indexes the pixels of the detector and qλ
k is the Ewald’s sphere point corresponding

to the k’th detector pixel. The probabilities Pi(ω, I) together with the set of diffraction
patterns IMi (qλ), indexed by i, now allow us to obtain an updated guess for the function
J from (38) by simply computing the probability weighted sum of all IMi [33, equation
11],

J ′(ω, qλ
k ) =

∑
i Pi(ω, I)I

M
i (qλ

k )∑
i Pi(ω, I)

. (40)
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This new function J ′ does, in general, not have the form J ′(ω, qλ) = RωI
′(qλ) for some

new candidate intensity I ′. Physically we know that such a function has to exist6, so we
may use this knowledge as additional constraint and compute our new candidate intensity
I ′ such that RωI

′(qλ) is as close as possible to J ′. This can be done by defining I ′(q)
for each fixed q as the average over all values of J ′(ω, qλ

k ) that satisfy q = Rω−1qλ
k

[33, equation 14]7. This last step is called “condensation/compression” step. We may
summarize the EMC algorithm as the following iterative procedure

1. Choose a starting guess for I(q) called I0.

2. In the j-th step of the algorithm: Compute Jj(ω, q
λ) = RωIj(q

λ) and the associated
probabilities Pi(ω, Ij).

3. Compute the updated map J ′
j via equation (40).

4. “Condensate/Compress” J ′
j (ω, q

λ) into an updated intensity Ij+1

5. Repeat steps 2-4 until a suitable convergence criterion is reached.

In summary one can say that EMC uses an assumption about photon statistics8 to
compute I(q) directly from the measured IM(qλ), while, as we shall see in section 2, FXS
uses an assumption about the rotational statistics of the measured particles and extracts
information about I(q) from certain averages over all collected diffraction patterns.

1.6. Small and wide angle x-ray scattering (SAXS/WAXS)

Small and wide angle X-ray scattering is the study of the averaged scattering pattern of
a sample, where the average is taken over all possible realizations of the studied sample
[83–85]. The difference between SAXS and WAXS lies purely in the range of momentum
transfer values for which this average is measured (or computed), i.e. if the flat Ewald’s
sphere limit applies or not. In diffraction before destruction experiments the SAXS/WAXS
intensity ISAXS simply has the form

ISAXS(q, ϕ) = ⟨IM(q, ϕ)⟩M , (41)

where ⟨·⟩M denotes the average over all measured diffraction patterns. In many cases
ISAXS(q, ϕ) is angularly isotropic, if experimental factors, such as the polarization contri-
bution [equation (1)], have been compensated. Under these conditions one may further
reduce ISAXS(q, ϕ) to a 1D profile [see figure 8], i.e.

ISAXS(q) =
1

2π

∫ 2π

0

dϕ ISAXS(q, ϕ) = ISAXS(q, 0) . (42)

6In form of the correct scattering intensity I(q) corresponding to the electron density ρ(r) of the
measured particle.

7In practice this average becomes an interpolation task since q and Rω−1qλ
k are most likely correspond

to different samplings of momentum space.
8The assumption, that the probability of a photon being measured on a detector pixel follows a Poisson

distribution.
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Figure 8: (a) Isotropic SAXS pattern (b) Line cut of (a) along the black line or equivalently
its azimutal average as defined in equation (42).

In general, ISAXS is not angularly isotropic and the reduction to its azimutal average, as
depicted in figure 8 (b), unnecessarily hides some of the structural information contained
in the averaged scattering signal. This will become especially important in section 6,
where we discuss systems of particles whose rotation states are not uniformly distributed.
For this reason we will always regard ISAXS in its 2D form, unless explicitly written as
ISAXS(q).

We shall see in section 2 that, if the considered sample is a dilute solution of randomly
oriented particles obeying a uniform orientational distribution, ISAXS is proportional
to the rotational average of the single-particle scattering intensity

∫
SO(3)

dωRωI(q) =〈
RωI(q)

〉
SO(3)

. While this average hides much of the information contained in I(q), it
allows to estimate the size and low-resolution shape of the studied particle [84, 85]. The
process of averaging is at the same time the greatest strength of SAXS/WAXS since it
makes the analysis method comparatively simple and inherently robust to noise.

1.7. Rotations and harmonic analysis

Rotations and their actions on functions will play an important role in the formulation of
fluctuation X-ray scattering . Moreover, they are tightly connected to harmonic analysis
in polar and spherical coordinates. This section is dedicated to introduce basic statements
and conventions that will be used throughout the thesis. All the presented results are
readily available in text books, such as [36, 86–89].

We shall follow the standard conventions for polar and spherical coordinate systems.
In polar coordinates a vector v is specified by the pair (r, ϕ) where r = ||v|| denotes its
norm and ϕ is its angle with the x-axis. In spherical coordinates a vector is described by
the triple (r, θ, ϕ), where r is defined as before, θ represents its angle to the z-axis and ϕ
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denotes the angle between the x-axis and the projection of v to the xy-plane, see figure
9 (a).

A two-dimensional rotation, i.e. an element of the group SO(2), will be denoted by
its rotation angle α. Conversely, an element of the three-dimensional rotation group
SO(3) will be either symbolically represented by ω, or through its associated Euler angles
(α, β, γ). We shall follow the zyz convention for Euler angles. One may either think of
(α, β, γ) as defining rotation angles around the z and y axes of a rotating reference frame,
or with respect to the fixed coordinate system. Let (x,y, z) denote the axis directions

x

y

z

r

v = (r, θ, ϕ)

ϕ

θ

(a) (b) (c)

Figure 9: (a) Representation of a vector v in spherical coordinates. (b) Depiction of a rotation
by (α, β, γ) using the zyz Euler angle convention interpreted with respect to a rotating coordinate
frame. The vectors xrot,yrot and zrot are rotated by (α, β, γ) with respect to x,y and z. (c) The
same rotation as in (b), that transforms y to yrot, but executed in a fixed coordinate system.

of the original coordinate system. In the co-rotating interpretation (α, β, γ) acts, as
represented in figure 9 (b), via

1. Rotate by α around z, which results in a new coordinate frame (x′,y′, z).

2. Rotate by β around y′, which yields the coordinate frame (x′′,y′, z′).

3. Rotate by γ around z′.

The same rotation can be described in a fixed coordinate system via [see figure 9 (c)]

1. Rotate by γ around z.

2. Rotate by β around y.

3. Rotate by α around z.

The action of a rotation α, ω or (α, β, γ) on a point in space will be denoted by Rα, Rω

or R(α,β,γ) respectively. This definition can be extended to the rotation action on a scalar
function f(r), by applying the inverse rotation to its argument vector. We will write
Rαf(r), Rωf(r) or R(α,β,γ)f(r) to denote the rotated function, that is

Rαf(r) = f(R−αr) and Rωf(r) = f(Rω−1r) = f(R(−γ,−β,−α)r) . (43)

19



Using the above conventions we will now introduce basic concepts from harmonic anal-
ysis starting in two-dimensions. Consider a sufficiently smooth complex valued function
f(r, ϕ). By definition this implies, that f is periodic in its angular variable and we may
expand f(r, ϕ), for constant r, in a Fourier series

f(r, ϕ) =
∞∑

n=−∞
fn(r)e

inϕ with fn =
1

2π

∫ 2π

0

dϕ f(r, ϕ)e−inϕ , (44)

where we call fn(r) the harmonic coefficients or Fourier coefficients of f . This notion can
be generalized from a circle to a sphere using spherical harmonics

Y l
m(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
P

|m|
l (cos(θ))eimϕ with l = 0, . . . ,∞

m = −l, . . . , l , (45)

with P
|m|
l being associated Legendre polynomials where l and m are called the degree

and order of Y l
m respectively. It will be convenient to introduce the following notation for

spherical harmonics

Y l
m(θ, ϕ) = P̃m

l (θ)eimϕ with P̃m
l (θ) =

√
2l + 1

4π

(l −m)!

(l +m)!
P

|m|
l (cos(θ)) . (46)

Given a complex valued function f(r, θ, ϕ) in spherical coordinates, which for fixed r is
defined on a sphere, one may consider its spherical harmonic expansion

f(r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

f l
m(r)Y

l
m(θ, ϕ) (47)

f l
m(r) =

∫

S2

dΩf(r, θ, ϕ)Y l
m(θ, ϕ)

∗ =

∫ π

0

dθ sin(θ)

∫ 2π

0

dϕf(r, θ, ϕ)Y l
m(θ, ϕ)

∗, (48)

here ∗ indicates complex conjugation. The f l
m(r) are typically called spherical harmonic

coefficients of f . In case f is a real valued function it is important to note that not all of
its harmonic coefficients are independent, but rather obey the symmetry relations

fn(r)
∗ = f−n(r) and f l

m(r)
∗ = (−1)mf l

−m(r) , (49)

which are a direct consequences of analogue symmetries in the expansion functions einϕ
and Y l

m(θ, ϕ), respectively.

It will be useful to extend the notion of a Fourier series even further to the spaces of
rotations SO(2) and SO(3)9. For functions f(α), that take two-dimensional rotations as
argument, we already encountered the proper notion of a Fourier transform in eq. (44).
This is because two-dimensional rotations are completely specified by a single angle and

9In fact, the notion of Fourier series can be defined on any compact Lie group [88] of which the rotation
group SO(3) is an example.
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thus SO(2) itself behaves like a circle10. For SO(3) a Fourier series analogue can be defined
using Wigner D-matrices [87, equation 19.15]

Dl
nm(α, β, γ) = e−inαdln,m(β)e

−imγ (50)

dlnm(β) =
√
(l +m)!(l −m)!(l + n)!(l − n)! (51)

×
min(l+m,l−n)∑

κ=min(0,m−n)

(−1)κ
cos(β/2)2l+m−n−2κ sin(β/2)n−m+2κ

(l − n− κ)!(l +m− κ)!(κ+ n−m)!κ!
,

where l = 0, . . . ,∞ and n,m = −l, . . . , l and dln,m are called small Wigner D-matrices. A
possibly complex valued function f(α, β, γ) on SO(3) may then be expanded via [90]

f(α, β, γ) =
∞∑

l=0

l∑

n=−l

l∑

m=−l

(2l + 1)f l
nmD

l
nm(α, β, γ) (52)

f l
nm =

1

8π2

∫

SO(3)

dω f(ω)

=
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγf(α, β, γ)Dl
nm(α, β, γ)

∗ , (53)

with f l
nm denoting the Fourier transform of f . We will see in section 3.5 and 6 that this

Fourier series will allow us to efficiently align functions that differ by a rotation and further
more plays a major role in an extension of the FXS formalism. The most important use
case of Wigner D-matrices, in the context of FXS, is however the description of rotations
acting on spherical harmonics. A rotated spherical harmonic R(α,β,γ)Y

l
m(θ, ϕ) is a linear

combination of all sphical harmonics of the same degree l whose coefficients are determined
by the Wigner D-matrices associated to the rotation (α, β, γ), i.e.

R(α,β,γ)Y
l
m(θ, ϕ) =

l∑

n=−l

Y l
n(θ, ϕ)D

l
nm(α, β, γ)

∗ . (54)

In combining equation (54) with the spherical harmonic series in equation(47) we obtain
an expression for the rotation action on an arbitrary function f(r, θ, ϕ), given in spherical
coordinates, that is

R(α,β,γ)f(r, θ, ϕ) =
∑

l,m

f l
m(r)

∑

n

Dl
nm(α, β, γ)

∗Y l
n(θ, ϕ)

=
∑

l,n

(∑

m

f l
m(r)D

l
nm(α, β, γ)

∗
)
Y l
n(θ, ϕ)

=
∑

l,m

(∑

n

f l
n(r)D

l
mn(α, β, γ)

∗
)
Y l
m(θ, ϕ) , (55)

10SO(2) and the circle group S1 are isomorphic as groups.
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where in the last line the roles of the indices n and m have been swapped. Note, that the
last equality in eq. (55) has again the form of a spherical harmonic series with coefficients∑

n f
l
n(r)D

l
mn(α, β, γ)

∗. This allows us to identify the rotation action on the level of
spherical harmonic coefficients and we may write

R(α,β,γ)f
l
m(r) =

∑

n

f l
n(r)D

l
mn(α, β, γ)

∗ . (56)

Similarly one can realize that the action of a two-dimensional rotation α on a polar
function, i.e. Rαf(r, ϕ) = f(r, ϕ−α), multiplies its Fourier series coefficients by a constant
phase and we arrive at

Rαfn(r) = fn(r)e
−inα . (57)

Equation (56) and (57) are the rotational analogues of the Fourier shift theorem from
equation (17) and represent the main takeaways from our introduction to harmonic anal-
ysis.

22



2. Fluctuation X-ray scattering (FXS)

The goal behind the invention of fluctuation X-ray scattering [1] was to access structural
information of particles in solution, that goes beyond the rotationally averaged informa-
tion extractable from SAXS or WAXS measurements. To do so FXS demands to measure
diffraction patterns using coherent X-ray pulses on time scales shorter than the rotational
diffusion times of the considered particles. An instantaneous diffraction pattern of this
kind can be thought of as the sum between the ensemble averaged SAXS pattern and
fluctuations around this average, see figure 10. These fluctuations and their study via av-

(a) (b)

Intensity IM(q,ϕ)

= +

ISAXS(q,ϕ)

Fluctuations

M

ϕ (rad)

In
te

ns
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(a
rb

.)

Figure 10: (a) The left hand side depicts a simulated instantaneous scattering pattern IM (q, ϕ)
for a cluster of four proteins (PDB 6B3R [91]), while the right hand side displays its decomposition
into a SAXS pattern, corresponding to the average over many realizations of such 4 particle
clusters, plus fluctuations around this average. (b) Shows line cuts of IM (q, ϕ) and ISAXS(q, ϕ)
along the circles visible in (a) at q = q0, where fluctuations become visible as differences between
the two curves.

erages, as proposed by Kam [1–3], are what ultimately coined the term fluctuation X-ray
scattering. It however turned out, that the X-ray pulses available at the time where neither
short enough nor intense enough to measure diffraction patterns of the needed quality,
despite efforts such as freezing particles prior to their illumination [3]. In particular for bi-
ological samples, e.g. proteins or viruses, it turned out, that the observation of a sufficient
scattering signal necessitates X-ray pulses of such brightness that the sample is destroy
after a single exposure, due to coulomb explosion. In this case the limiting timescale
for the pulse duration became the time scale at which radiation damage occurs within
samples, which is on the order of 1-100fs [12]. As we have seen in sections 1.4 and 1.5,
such measurements became possible [4–8, 15] and are called diffraction before destruction
experiments. With the availability of experimental data, interest in FXS resurged. This
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gave rise to the first phase retrieval algorithm modified to fit FXS [19] and also sparked
important adjacent fields such as X-ray cross-correlation analysis (XCCA) [92–94], the
use of triple and higher correlations [95–97], as well as methods targeting the local order
of liquids and glasses using the pair-angle distribution function (PADF) [98]. XCCA, in
particular, is centered around the computation of the angular cross-correlation function
C(q1, q2,∆) for each individual scattering pattern IM(q, ϕ) and subsequent analysis of its
statistical average.

C(q1, q2,∆) =

∫ 2π

0

dϕ I(q1, ϕ+∆)I(q2, ϕ) (58)

Sometimes XCCA is used synonymousely with FXS. While the concept of the cross-
correlation function is numerically useful within FXS, as we shall see in section 3.1, it is
not necessary for its definition and in some ways also distracts from the core principle
behind FXS, which lies in the use of averages. Because of this we prefer to differentiate
between the two techniques.

In the following we shall provide a rather general definition of fluctuation X-ray scat-
tering , including the studied objects as well as the assumptions necessary for their inter-
pretation. Its goal is to provide a center around which the remainder of this thesis will
be structured.

Definition 2.1 (Fluctuation X-ray scattering in 3D) Let ρ(r) be the electron den-
sity of a particle and consider ρM(r) to be a sample configuration containing a random
number N of randomly oriented realizations of ρ, that are randomly distributed inside an
interaction volume Vint, i.e.

ρM(r) =
N∑

i=1

Txi
Rωi

ρ(r) =
N∑

i=1

ρ(Rω−1
i
r − xi) , (59)

where ωi are elements of the rotation group SO(3) and xi are vectors pointing to the
origin of the i-th particle within Vint. Furthermore, let ρ̂M(q) and ρ̂(q) be the scattering
amplitudes with corresponding intensities IM(q) = |ρ̂M(q)|2 and I(q) = |ρ̂(q)|2 of the
electron densities ρM and ρ at momentum transfer vector q, respectively. We will write
IM(qλ) or IM(q, ϕ) for a recorded two-dimensional scattering pattern11 of the sample ρM
and introduce the FXS moments of degree d ≥ 1 as ensemble averages of the form

Md
N(q1, . . . , qd, ϕ1, . . . , ϕd) =

〈
d∏

i=1

IM(qi, ϕi)

〉

M

(60)

or, using the harmonic coefficients IMn (qi) of a scattering pattern IM(q, ϕ), as

Md
N(q1, . . . , qd, n1, . . . , nd) =

〈
d∏

i=1
odd i

IMni
(qi)

d∏

i=2
even i

IMni
(qi)

∗
〉

M

=
〈
IMn1

(q1)I
M
n2
(q2)

∗ . . .
〉
M

(61)

Fluctuation X-ray scattering is the study of the moments Md
N , with the goal of obtaining

structural information about the considered particle, if the following assumptions hold.
11As introduced in section 1.1, qλ denotes a point on the Ewald’s sphere, see equations (12) and (13).
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1. (diffraction before destruction) The measured intensity patterns are the result of
Thompson scattering, see section 1.1, and are created on time scales shorter than
any dynamical processes within a sample that would alter its electron density, in-
cluding radiation damage. That is, we can assume the measured intensity pattern
of an individual particle to be given by

IM(q, ϕ) =
∣∣ρ̂(qλ)

∣∣2 =
∣∣∣∣
∫
dr ρ(r)e−i⟨qλ,r⟩

∣∣∣∣
2

. (62)

2. (nature of randomness)

a) The rotational random variables {ω0, ω1, . . .} are independently and identically
distributed as well as independent from the random variable N describing the
number of particles.

b) Particle rotations ωi follow a uniform distribution.

3. (dilute limit) The transverse coherence length Lt of the X-ray pulse is much shorter
than the average distance between particles, and we may approximate the scattering
intensity of a sample realization IM by the incoherent sum over scattering intensities
of its constituents

IM(qλ) =
N∑

i=1

Rωi
I(qλ), (63)

Figure 11 shows a typical FXS experimental setup for single-particle structure determina-
tion from solution scattering. It is worth to explain some of the peculiarities in the above
definition. For d = 2 the moment M2

N(q1, q2, ϕ1, ϕ2) coincides precisely with the function
C(κ1,κ2) that was considered in the founding paper of FXS [1]. In case of d = 1 one
retrieves the average over the diffraction patterns themselves, which is the object studied
in SAXS or WAXS experiments, see section 1.6, whereas for d ≥ 3 one is in the realm
studied by triple and higher correlations. The letter M was chosen to reserve C for the
angular cross-correlation function, as well as for the similarity of the right hand side of
equation 60 to statistical moments (⟨X⟩, ⟨X2⟩, ⟨X3⟩, . . .) of some random variable X.

While assumption 2 b) is usually explicitly mentioned in descriptions of FXS [1, 19, 99],
assumption 2 a) is often only implied indirectly and the number of particles is restricted
to be constant. We shall see, in section 2.5, that especially in the case of the number of
particles, its treatment as fluctuating random variable, N , affects the equations connecting
the multi-particle moments Md

N to the single-particle structural information and opens
up new possibilities. In section 6 we will drop assumption 2 b) and explore the connection
between the moments Md

N and the single-particle scattered intensity I(q) in case of
arbitrary rotational probability distributions. As special case, for d = 1, this also includes
the study of SAXS/WAXS patterns under these conditions.

The main reason behind the presence of the dilute-limit limit condition in the above
definition, is that it allows to generalize many results within FXS from the case of a
single particle per sample, that is N = 1, to the case of N being a random variable with
arbitrary mean value. We will give a detailed derivation of this result in subsection 2.5.3.
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Figure 11: Typical scattering geometry within FXS. An incident X-ray pulse is diffracted from
a sample solution or aerosol with density ρM , that contains multiple randomly oriented but
otherwise identical particles. The corresponding diffraction pattern IM is recorded in the far-
field on a two-dimensional detector.

Before we continue with the description of the formalism of fluctuation X-ray scattering
let us introduce a simplified version of the general three-dimensional problem which we
shall call the two-dimensional case.

Definition 2.2 (Fluctuation X-ray scattering in 2D) Consider the setting and as-
sumptions as described in the general 3D case of definition 2.1 and add the following
constraints.

1. Assume small scattering angles, i.e. use the flat Ewald’s sphere approximation.

2. Allow particle rotations only around axes parallel to the incoming X-ray pulse. That
means, only two-dimensional rotations are allowed.

Together these two assumptions imply that only intensity values along the xy-plane, I(q, π
2
, ϕ),

can be measured and the considered rotations preserve this plane.

Note, that two-dimensional here does not stand for two-dimensional samples but rather
two-dimensional rotations or two-dimensional projection. Since the measurable momen-
tum transfer vectors qλ are confined to the xy-plane, we can use the Fourier projection-
slice theorem to conclude that the measured diffraction patterns IM(qλ), correspond to
projections of the electron density ρ(r) to the aforementioned plane, see equation (15).
Hence, in 2D FXS one seeks to recover the projected density Pxyρ. This model has found
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applications in the imaging of proteins bound to membranes [100], at the same time many
concepts are easier to introduce within this 2D setting. This stems from the fact that the
rotation group SO(2) is in many aspects simpler than SO(3), which has to be used in the
general case. Sample configurations of these two cases can be seen in Figure 12.

Figure 12: Sample configurations for two-dimensional FXS (a), (b) and three-dimensional FXS
(c), (d). Here the incident X-ray pulse is assumed to propagate along the z-axis. In accordance
with definition 2.2 particles in (a) and (b) only vary by two-dimensional rotations around axes
parallel to the z-axis, while particles in (c) and (d) can vary by arbitrary rotations in SO(3). (a)
and (c) symbolize bulk three-dimensional samples, while (b) and (d) represent planar samples,
for both cases of FXS respectively. Planar samples are for example encountered if particles are
deposited on a membrane [100]

The approach we shall follow in the remainder of this section, is to strip away all
complicated details of definition 2.1, such as multiple-particles per diffraction pattern or
the restriction of measurements to the Ewald’s sphere, analyze the resulting situation and
reintroduce the details, one at a time.

Initially we will take a dive into mathematical invariant theory and study orbit-recovery
problems, which assume measurements of randomly rotated versions of the full 3D inten-
sity I(q) in the case of a single particle, i.e. N = 1. This will allow us to understand what
type of information about the single-particle intensity I(q) we may hope to obtain within
FXS. We shall see, that this information takes the form of rotational invariants formulated
in terms of harmonic coefficients of the single-particle intensity I(q). In section 2.2 we
will derive explicit forms for these single-particle invariants. This will be followed by a
discussion of how these invariants can be used for structure determination in sections 2.3
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and 2.4. Finally, in section 2.5 we will first discuss how the single-particle invariants can
be extracted from the FXS moments Md

N for N = 1, i.e. for one particle per sample ρM ,
and then describe how the general multi-particle moments Md

N can be represented using
their single-particle counterparts.

2.1. Connection to invariant theory

Invariant theory is a sub-field of mathematical algebra, that is concerned with the study
of polynomials that are invariant under the action of some group G. For FXS we are
especially interested in the case where G is one of the two rotation groups SO(3) or SO(2).
It turns out, that invariant theory has deep connections to a set of mathematical problems
called orbit-recovery problems, which are almost equivalent to the problem encountered in
FXS. In this section we shall summarize some of the results presented in [101] and [102].
Despite the fact that FXS is not explicitly mentioned in these works and they are not well
know within our field, their disposition represent an alternative view on fluctuation X-ray
scattering that is extremely powerful and provides a good intuition for its core principles.
Given that the target audience of [101] are mathematicians, while this thesis belongs to
the field of physics, we shall neglect some mathematical details in favor of presenting the
underlying ideas.

The following list represents a quick summary of the results discussed in this section.

1. FXS is equivalent to the study of rotation invariant polynomials whose variables are
the harmonic coefficients I lm(q) or In(q) of the single-particle intensity I(q).

2. The rotational invariants can be computed by averages from noisy measurements of
I lm(q) (3D case)12 or In(q) (2D case). (theorem 2.10)

3. Knowledge about a small finite number of invariant polynomials uniquely determines
the single-particle intensity, up to a global rotation. (theorem 2.11)

4. In case of thee-dimensional FXS we may only access sums over the invariant polyno-
mials of points 2 and 3 directly. More concretely, the moments Md

N , from definition
2.1, are sums over invariant polynomials of degree ≤ d given below in equations
(73a) and (73b). Special cases of this statement include the ensemble average of
angular cross-correlations (eq. (58)) for d=2, as well as triple correlations studied
in [95, 96] (d=3) and even higher correlations for d > 3.

2.1.1. Orbit-recovery problems

Consider a space of functions, e.g. the space of all possible single-particle scattered
intensities I(q), on which we can act with a group G. In our case G acts by rotating
a given intensity. This action then divides the space of all possible scattering intensities
into orbits of intensities that are connected by rotations, i.e. the group action. A schematic
representation of this can be seen in figure 13.
12In 3D FXS such measurements are not possible since they would require experimental access to noisy

version of the 3D intensity I(q).

28



I1

I ′1

I4

I3

I2

Figure 13: Visualization of orbits. Consider the entire displayed set to be the space of single-
particle intensities I(q). Points in this set, e.g. I1, . . . , I4 and I ′1, correspond to different inten-
sities. For example, you may think of I1 as the 3D scattering intensity of a solid cube with a
particular density and size, while I2 is the intensity corresponding to a particular protein. Each
point in this abstract set is connected to other points by the group action, indicated by the thin
black loops. These loops are the orbits of all intensities that lie within them. For example I1 and
I ′1 belong to the same orbit while I1 and I2 do not. Roughly speaking this means, our protein
is not a cube. To be more precise it means, that the intensity I ′1 is a rotated version of I1, but
I2 is not. Since each point has to lie in a unique orbit, this causes the entire space of intensities
to decompose into a collection of orbits. The orbits that only contain a single point, such as
the orbit of I3, are orbits of isotropic intensities, i.e. orbits of intensities that are them selves
invariant under rotations.

The orbit-recovery problem can be formulated as follows [101, problem 2.1]. Identify
the orbit of a function I(q) from a given set of noisy measurements of the form

ηi(q) = Rωi
I(q) + ξi(q) , (64)

where the rotations ωi are uniformly distributed as random variables and ξi denotes a
normal distributed noise term with mean 0. Hence, solving the orbit-recovery problem
means to determine the function I(q) up to a global rotation, from the randomly rotated
and noisy measurements ηi(q).

Note that the problem we are faced with in FXS, concerning the single-particle scattered
intensity I(q), can be formulated in complete analogy if one considers a single-particle
per sample, i.e. N = 1, and we may call it a sliced orbit-recovery problem. Given a set of
possibly noisy measurements IM of the form

IM(qλ) = Rωi
I(qλ) + ξi(q

λ) (65)

that is

IM(q, ϕ) = Rωi
I(q, θλ(q), ϕ) + ξi(q, ϕ) ,

we want to determine I(q) up to a global rotation, in other words we want to determine
the orbit of I(q) under the action of rotations. The term sliced reflects the fact that
in FXS we can only access noisy Ewald’s sphere slices I(qλ) directly, but not the full
intensity as demanded in equation (64).
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In the flat Ewald’s sphere limit, where qλ simply describes the xy-plane in momen-
tum space, there exists an interesting connection between FXS and cryo-electron mi-
croscopy. The case of an additional restriction to the xy-plane is directly studied in [101],
as the special case of orbit-recovery for cryo-electron microscopy . The observables in
cryo-electron microscopy are given by noisy projections, on to the xy-plane, of randomly
rotated versions of the electron density ρ(r) of the studied particle. By virtue of the
Fourier projection-slice theorem, these are equivalent to slices of the scattered amplitude
ρ̂(q) = [Fρ](q) along the xy-plane. Therefore, one finds that, in the limit of small-
scattering angles, the sliced orbit-recovery problem of FXS (eq. (65)) transforms into the
cryo-electron microscopy problem under substitution of I(q) with the Fourier transform
of the electron density ρ̂(q).

Observation 2.3 (Single-particle 2D FXS is a general orbit-recovery problem)
The single-particle (N = 1) case of two-dimensional FXS as defined in 2.2 is an orbit-
recovery problem over SO(2), with regard to information obtainable about the scattering
Intensity I(q, π

2
, ϕ) on the xy-plane. To see this, observe that in definition 2.2 both mea-

surements as well as rotations are limited to the xy-plane. Moreover, each measured
diffraction pattern IM corresponds to a randomly oriented, possibly noisy, version of the
target intensity I(q, π

2
, ϕ), via

IM(q, ϕ) = ρ̂(R−1
α1
(qλ)− x1)ρ̂(R

−1
α1
(qλ)− x1)

∗ = ρ̂(R−1
α1
(qλ))ρ̂(R−1

α1
(qλ))∗

= Rα1I(q
λ) = Rα1I(q,

π

2
, ϕ) = I(q,

π

2
, ϕ− α) , (66)

where the second equality is due to the Fourier shift theorem, see (17). Hence two-
dimensional FXS measurements are of the from given in equation (64).

2.1.2. Orbit-recovery and invariant polynomials

In order to avoid the troubles associated with infinite dimensional spaces of functions, as
well as to make numerical solutions possible, we have to restrict our considerations to a
finite dimensional space of functions. We shall do so, by considering functions whose har-
monic expansions are band limited up to some finite maximal degree L, i.e. functions that
are given by finite versions of equations (44) and (47) for the two and three dimensional
cases

I(q, ϕ) =
L∑

n=−L

In(q)e
inϕ fn =

1

2π

∫ 2π

0

dϕ f(q, ϕ)e−inϕ (67a)

I(q, θ, ϕ) =
L∑

l=0

l∑

m=−l

I lm(q)Y
l
m(θ, ϕ) f l

m(q) =

∫

S2

dΩ I(q, θ, ϕ)Y l
m(θ, ϕ)

∗ . (67b)

Additionally, we have to consider a finite number of radial sampling points given by
q1, . . . , qS, also called shells. Thus, a three dimensional function is now fully specified by
S(L + 1)2 complex numbers I lm(qi), similarly a two dimensional function is specified by
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the S(2L+1) complex values given by its harmonic coefficients13 In(qi). We may think of
our space of functions as a D = S(L+ 1)2 or D = S(2L+ 1) dimensional complex vector
space V = CD with SO(2) or SO(3) actions as defined in equations (57) and (56).

Note that for any fixed point (qi, θ, ϕ), in spherical coordinates, we can interpret equa-
tion (67b) as a simple14 polynomial whose variables are the harmonic coefficients I lm(qi)
and the values of Y l

m(θ, ϕ) represent the corresponding complex coefficients.15 From this
viewpoint any concrete scattering intensity, say I, is obtained by evaluating the above
polynomial on a particular choice of its variables I lm(qi). In the orbit-recovery problem
we have direct access to noisy estimates of randomly rotated versions of these variables in
form of the spherical harmonic coefficients ηlm(qi) of η(q), as defined in equation (64). At
the same time this implies, that we are able to compute, possibly noisy, values of arbitrary
polynomials in I lm(qi) and not just the ones corresponding to equation (67).

Definition 2.4 (Polynomials in harmonic coefficients) By C[I lm(qi)] we shall mean
the set of polynomials in I lm(qi) with complex coefficients. Correspondingly we define
C[In(qi)] to be the set of polynomials in In(qi) with complex coefficients16.

Example 2.5 (Polynomials in harmonic coefficients) Examples of such polynomi-
als are :

•
∑l

m=−l I
l
m(qi)I

l
m(qj) for any triple of indices l, i, j. Here each term is a product of

two of the polynomial variables and all coefficients are just 1.

• An example with coefficients different from 1 would be: 2I20 (qi) + i(I00 (qi))
6.

Since we have defined the notion of a rotation action on the level of harmonic coef-
ficients, see equations (57) and (56), this action now naturally extends to an action on
the polynomials in C[I lm(qi)] and C[In(qi)]. While most of these polynomials can not be
estimated with increasing precision as the number of observed patterns in the form of η(q)
from eq. (64) increases, there is a subset of polynomials for which this is the case. This
subset is given by polynomials that are invariant under the group action, i.e. rotations.
In the simplified case where the noise term in η(q) is neglected this becomes evident since
a rotation invariant polynomial f , by definition, has to have the same values f(η) when
evaluated on observations that differ by rotations. Let us give an example.

Example 2.6 (Averaged polynomials in harmonic coefficients) Consider the fol-
lowing polynomials in the 2D case,

A = 2I1(qi) + I4(qi)I2(qi)
∗

B = 2I0(qi) + I4(qi)I2(qi)
∗

C = 2I0(qi) + I2(qi)I2(qi)
∗ .

13Since intensities have to be real valued functions, the actual number of independent harmonic coeffi-
cients is lower. Using the symmetry relations (49) one finds the number of independent variables to
be S(L+ 1)(L+ 2)/2 and S(L+ 1) for the two cases, but we shall ignore this for the moment.

14Simple in the sense that this polynomial is linear in all of its variables.
15In the same way one may interpret (67a) as a polynomial whose variables are In(qi)
16Mathematically C[I lm(qi)] is the ring of polynomials whose variables are given by a basis x1, . . . ,xD

of the dual vector space, V ∗
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We shall later see, using equations (78a) and (80a), that their averages under rotations
are given by

⟨A⟩SO(2) = 0 ̸= A

⟨B⟩SO(2) = 2I0(qi) ̸= B

⟨C⟩SO(2) = 2I0(qi) + I2(qi)I2(qi)
∗ = C .

Clearly polynomials A and B can not be estimated with increasing precision by averaging
over more and more observations. For C this is possible.

In the general case, including the noise term in (64), it was shown [101, lemma 6.5] that
for any rotation invariant polynomial f one can define an estimator polynomial f̃ , such
that in the limit of an infinite set M of observations in the form of eq (64), we find

〈
f̃(η)

〉
M

= f(I) , (68)

where f̃(η) and f(I) denote the evaluation17 of the corresponding polynomials on the
harmonic coefficients of an observation η and the single-particle intensity I, respectively.
This implies that we can access invariant polynomials in the target quantity I, i.e. the
single-particle intensity I, from noisy observables η by means of averages.

Definition 2.7 (Invariant Polynomials) Let us denote by C[I lm(qi)]SO(3) the subset of
polynomials in C[I lm(qi)] that are invariant under rotations in SO(3). That is, all polyno-
mials f(I lm(qi)) such that f(RωI

l
m(qi)) = f(I lm(qi)) for any rotation ω in SO(3). Similarly

let C[In(qi)]SO(2) be the subset of polynomials in C[In(qi)] invariant under the action of
SO(2).

Using the notion of invariant polynomials, we can now reformulate what solving the
orbit-recovery problem means. First, observe that invariant polynomials by definition
have the same value when evaluated on scattering intensities I belonging to the same
orbit, i.e. when evaluated on intensities that differ by a rotation. If f is an invariant
polynomial and o1 is an orbit of intensities, we may write f(o1) for the unique value that
f attains when evaluated on any intensity belonging to o1.

Definition 2.8 (orbit-recovery via invariant polynomials) A subset Uinv of the in-
variant polynomials represents a solution to the orbit-recovery problem if it can uniquely
identify (resolve) each orbit. That is, if for any intensity I(q) there exists a single unique
orbit o such that

f(o) = f(I) for all polynomials f in Uinv . (69)

This definition is the analog to [101, definition 2.12]. One may equivalently demand that
for any pair of different orbits o1 and o2, with o1¸ ̸= o2, there has to exist at least one
invariant polynomial f in Uinv, such that

f(o1) ̸= f(o2) .
17Evaluating a polynomial whose variables are I lm(qi) on a specific intensity, e.g. J(q), simply means

substituting the variables I lm(qi) with their corresponding value for J(q), which in this case are the
complex numbers J l

m(qi).
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Note that if Uinv is such a solution, it is possible to recover the single-particle intensity I,
up to a global rotation, from evaluations of the polynomials in Uinv on the measurements
defined in equation (64).

2.1.3. Solutions to the orbit-recovery problem

It turns out that the set of all invariant polynomials, is a solution to the orbit-recovery
problem [101, theorem A.32] and we may formulate the following theorem.

Theorem 2.9 (Solution to orbit-recovery) The sets C[I lm(qi)]SO(3) and C[In(qi)]SO(2)

are solutions, in the sense of definition 2.8, to their corresponding orbit-recovery problems
for SO(3) and SO(2).

We can however find much smaller sets of polynomials that are solutions. To do so we
need the following statement about the behavior of polynomials if they are averaged over
rotations [101, definition 3.11].

Theorem 2.10 (Rotational average as Reynolds operator) The rotational average
⟨Rω·⟩SO(3) maps each polynomial f in C[I lm(qi)] to an invariant polynomial ⟨Rωf⟩SO(3)

in C[I lm(qi)]SO(3) and this map is surjective. The same statement holds for the two-
dimensional case with group SO(2).

In our example 2.6 the above theorem 2.10 merely states that, while A and B are not
invariant under rotations the new polynomials ⟨A⟩SO(2) and ⟨B⟩SO(2) are.

Since averages are linear, they preserve the degree of polynomials. We can use this to
obtain a generating set for all invariant polynomials as follows. Consider monomials of
degree-d defined by

d∏

j=1

Inj
(qij) and

d∏

j=1

I ljmj
(qij) (70)

for all possible values of nj and ij in the two-dimensional case and all triples lj,mj, ij for
the three-dimensional case. Since any polynomial is a linear combination of monomials
of arbitrary degree d we find that any invariant polynomial must be given by a linear
combination over the averaged monomials of degree-d, i.e.
〈
Rα

d∏

j=1

Inj
(qij)

〉

SO(2)

=

〈
d∏

j=1

RαInj
(qij)

〉

SO(2)

=
1

2π

∫ 2π

0

dα
d∏

j=1

RαInj
(qij) (71a)

〈
Rω

d∏

j=1

I ljmj
(qij)

〉

SO(3)

=

〈
d∏

j=1

RωI
lj
mj
(qij)

〉

SO(3)

=
1

8π2

∫

SO(3)

dω

d∏

j=1

RωI
lj
nj
(qij) . (71b)

We shall call the polynomials from equation (71) invariant generators of degree-d and can
use them to formulate the main result of this section, the analog of [101, theorem 4.19]
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Theorem 2.11 (Better solution to orbit-recovery) Consider the orbit-recovery prob-
lem formulated in eq. (64) over the space V of functions with finite maximal harmonic
degree L and S different momentum transfer values q1, . . . , qS, such that L ≥ 1 and S ≥ 3.
Then, the sets consisting of invariant generators with degree d ≤ 3 solve the orbit-recovery
problem. That is, the sets containing
〈
RαIn0(qi0)

〉
SO(2)

,
〈
RαIn1(qi1)In2(qi2)

〉
SO(2)

,
〈
RαIn3(qi3)In4(qi4)In5(qi5)

〉
SO(2)

and
〈
RωI

l0
m0

(qi0)
〉
SO(3)

,
〈
RωI

l1
m1

(qi1)I
l2
m2

(qi2)
〉
SO(3)

,
〈
RωI

l3
m3

(qi3)I
l4
m4

(qi4)I
l5
m5

(qi5)
〉
SO(3)

,

for all possible indices ij ≤ S, |nj| ≤ L, lj ≤ L and |mj| ≤ lj with j = 0, . . . , 5 are
solutions to the orbit-recovery problem for the cases of SO(2) and SO(3), respectively.

At this point we shall deviate slightly from the exposition in [101]. Instead of monomials
as defined in (70) we will, for the remainder of the thesis, use monomials where each second
variable is complex conjugated, i.e.

d∏

j=1
odd j

I ljmj
(qij)

d∏

j=2
even j

I ljmj
(qij)

∗ = I l1m1
(qi1) I

l2
m2

(qi2)
∗ I l3m3

(qi3) . . . (72)

for all possible values of lj,mj and ij. Using the fact that we are interested in real valued
functions, i.e. single-particle intensities I(q), we may use equation (49) to see that these
monomials are identical to the ones from equation (70) up to a constant prefactor.

d∏

j=1
odd j

I ljmj
(qij)

d∏

j=2
even j

I ljmj
(qij)

∗ =




d∏

j=2
even j

(−1)mj




d∏

j=1
odd j

I ljmj
(qij)

d∏

j=2
even j

I
lj
−mj

(qij) .

Since all of the results derived from the monomials given in (70) (the equation (71) and
theorem 2.12) only depend on the set of possible linear combinations of monomials for a
fixed degree d, they can be directly generalized to monomials in the form of (72).

The invariant generators for the two-dimensional and three-dimensional case, thus take
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the form

Id
SO(2) =

〈
Rα

d∏

j=1
odd j

Inj
(qij)

d∏

j=2
even j

Inj
(qij)

∗
〉

SO(2)

=
1

2π

∫ 2π

0

dα
d∏

j=1
odd j

RαInj
(qij)

d∏

j=2
even j

[
RαInj

(qij)
]∗ (73a)

Id
SO(3) =

〈
Rω

d∏

j=1
odd j

I ljmj
(qij)

d∏

j=2
even j

I ljmj
(qij)

∗
〉

SO(3)

=
1

8π2

∫

SO(3)

dω
d∏

j=1
odd j

RωI
lj
mj
(qij)

d∏

j=2
even j

[
RωI

lj
mj
(qij)

]∗
(73b)

and theorem 2.11 may be restated via

Theorem 2.12 (FXS version of theorem 2.11) Consider the general orbit-recovery
problem formulated in eq. (64) over the space V of functions with finite maximal harmonic
degree L and S different momentum transfer values q1, . . . , qS, such that L ≥ 1 and S ≥ 3.
Then, the sets consisting of invariant generators with degree d ≤ 3 solve the orbit-recovery
problem. That is, the sets containing
〈
RαIn0(qi0)

〉
SO(2)

,
〈
RαIn1(qi1)In2(qi2)

∗
〉
SO(2)

,
〈
RαIn3(qi3)In4(qi4)

∗In5(qi5)
〉
SO(2)

(74)

and
〈
RωI

l0
m0

(qi0)
〉
SO(3)

,
〈
RωI

l1
m1

(qi1)I
l2
m2

(qi2)
∗
〉
SO(3)

,
〈
RωI

l3
m3

(qi3)I
l4
m4

(qi4)
∗I l5m5

(qi5)
〉
SO(3)

, (75)

for all possible indices ij ≤ S, |nj| ≤ L, lj ≤ L and |mj| ≤ lj with j = 0, . . . , 5 are
solutions to the orbit-recovery problem for the cases of SO(2) and SO(3), respectively.

The motivation for this deviation is to keep the explicit expressions for the invariant
polynomials consistent with the ones commonly used in FXS [1, 19, 23, 94, 99]. Other
wise they would differ by constant prefactors of the form (−1)

∑d
j=1 gjmj , where the gj are

either 0 or one 1 and only depend on the degree of the considered invariant polynomial.

2.1.4. Implications for FXS

Two dimensional FXS In observation 2.3 we have seen that the two dimensional version
of FXS, as defined in 2.2, has the form of an orbit-recovery problem, if one assumes that
each sample ρM only consist of single particle, i.e. N = 1. By virtue of theorem 2.12
we can expect that the single particle intensity I(q, π/2, ϕ), restricted to the xy-plane, is
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recoverable18 from the invariant generators of degree smaller than 4. This is precisely the
result given in [95] where triple correlations, i.e. degree-3 invariant polynomials, are use
to determine I(q, π/2, ϕ). In particular [95] shows how to determine the single-particle
intensity in case of an arbitrary but fixed number of particles N . Moreover the algorithm
outlined in [95] is conceptually very similar to the frequency-marching algorithm presented
in [101, 102] for the orbit-recovery problem on SO(3). We want to additionally point out
that, in the two-dimensional case with N = 1, the moments Md

N in the definition of
FXS 2.1 for d ≤ 3 exactly correspond to evaluations of the invariant generators listed in
equation (74).

Three dimensional FXS As outlined in section 2.1.1 the three dimensional FXS prob-
lem is not given by an orbit-recovery problem. That is because, even for N = 1, we only
have access to Ewald’s sphere slices of the single-particle intensity in form of eq. (65),
but the considered rotations act on the full three-dimensional single-particle intensity.
Another invocation of this is, that the measurements considered in orbit-recovery would
allow us to compute noisy versions (ηlm) of the spherical harmonic coefficients I lm of the
single-particle intensity. Note that by their definition in equation (48), this involves an
integration over both angles, θ and ϕ, of the spherical coordinate system. The same
computation can not be done in FXS, since the restriction to the Ewald’s sphere links
the measurable θ values via equation (12) to the momentum transfer value q and thus
prevents an integration over θ. However, we may perform the integration over ϕ, which
motivates the second version of the moments Md

N given in our definition of fluctuation
X-ray scattering , see equation (61). The intuition behind their introduction is to use
quantities that are as close as possible to the natural formulation of the orbit-recovery
problem in terms of spherical harmonic coefficients. We shall see in section 2.5, that
this second version results in a simpler connection between M2

N and the single-particle
invariants of degree-2 from equation (73b).

Despite the fundamental limitation in the general FXS case, we may use theorem 2.10
to gain a general understanding about the form of Md

N which is valid for both of its
definitions. To keep the following derivations simple, let us restrict to the case N = 1.
All subsequent statements remain valid in the case of N being a random variable. The
measured quantities IM of FXS are slices along Eλ of randomly rotated versions of the
single-particle intensity I, that is

IM(q, ϕ) = RωI(q
λ) = Rω

∑

l,m

I lm(q)Y
l
m(θλ(q), ϕ))

=
∑

l,n

I ln(q)
∑

m

Dl
mn(ω)

∗Y l
m(θλ(q), ϕ) , (76)

where in the second equality we used the spherical harmonic expansion (equation (47))
of I and in the third equality we used the action of rotations on spherical harmonic
coefficients from equation (56). We may observe using equation (76), that IM(q, ϕ) itself
is a degree-1 polynomial in the harmonic coefficients I lm(q). Consequently k-fold products,
18up to a global rotation.

36



such as IM(q1, ϕ1) . . . I
M(qk, ϕk), are simply given by sums over the monomials specified

in equation (72) with degree-d ≤ k and complex coefficients.19 The same statement holds
for products of the form IMn1

(q1) . . . I
M
nd
(qd) since the computation of the polar harmonic

coefficients IMn (q) only involves an integration over ϕ which preserves the property of
equation (76) being a degree 1 polynomial in spherical harmonic coefficients. By the same
reasoning one may observe that the angular cross-correlations calculated from IM(q, ϕ),
i.e. 1

2π

∫ 2π

0
dϕ IM(q1, ϕ+∆)IM(q2, ϕ), have to be sums over the corresponding monomials

with d ≤ 2. Angular triple correlations consequently are sums over monomials with
d ≤ 3, with an equivalent extension to higher angular correlations and higher degree
monomials. Since the ensemble average is linear and, by theorem 2.10, maps monomials
to the corresponding invariant generators given in equations (73a)-(73b), we arrive at the
following observation

Observation 2.13 (FXS moments are sums over invariants) The moments Md
N of

FXS, as defined in equations (60) and (61), are given by sums over the invariant genera-
tors with degree smaller or equal to d, that are evaluated on the single-particle intensity
I(q). The same is true for ensemble averaged angular cross-correlations, angular triple
correlations as well as higher angular correlations.

In fact, this result is true for ensemble averages of products of arbitrary polynomials in
spherical harmonic coefficients evaluated on the measured scattering patterns IM(q, ϕ).
A direct consequence of the above observation is the following

Observation 2.14 (Information limit for FXS) Within FXS we may at most gain
access to all single-particle invariants given in equation (73b), that is

〈
Rω

d∏

j=1
odd j

I ljmj
(qij)

d∏

j=2
even j

I ljmj
(qij)

∗
〉

SO(3)

for arbitrary degree d

By theorem 2.12 this is equivalent to knowing the single-particle intensity I(q) up to an
overall rotation.

We shall see in the following sections and chapters that the invariants ⟨I lm(q1)I lm(q2)∗⟩SO(3),
as well as their extraction from the moments M2

N , form the backbone of practical appli-
cations of FXS. Combining this with observations 2.13 and 2.14 it is no overstatement to
conclude that FXS itself is the study of invariant polynomials, which was stated as point
1 in the summary presented at the beginning of this section.

19Since the scattering patterns IM (q, ϕ) are real valued we may conveniently place com-
plex conjugations without altering the product, i.e. IM (q1, ϕ1)I

M (q2, ϕ2)I
M (q3, ϕ3) . . . =

IM (q1, ϕ1)I
M (q2, ϕ2)

∗IM (q3, ϕ3) . . ., which yield the necessary complex conjugations on I
lj
mj (q) for

this statement to be true. Otherwise one would obtain monomials in form of equation (70).
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2.2. Single-particle invariants

This section is devoted to the derivation of explicit forms for the single-particle invariants
given in theorem 2.12. Many of the following expressions are already well known in the
literature under various names [2, 19, 99] and presented here as part of an overview of fluc-
tuation X-ray scattering . We want to briefly mention, that from this section onward by the
terms single-particle invariants or just invariants of degree-d, we shall mean evaluations
of the invariant generators given in equation (73a) or (73b) on the single-particle intensity
I(q), depending on whether they are mentioned in the context of two-dimensional FXS
or three-dimensional FXS. By slight abuse of notation we will also denote them by Id

SO(2)

and Id
SO(3) or just Id if the dimensionality of the rotation group does not matter.

2.2.1. Degree 1 invariants

The degree-1 invariants are given as simple averages over the harmonic coefficients them
selves, that is

I1
SO(2) =

〈
RαIn(q)

〉
SO(2)

and I1
SO(3) =

〈
RωI

l
m(q)

〉
SO(3)

. (77)

We can now explicitly evaluate these averages by expanding the rotation action, given in
equations (56) and (57). In the 2D case this results in

⟨RαIn(q)⟩SO(2) =
〈
In(q)e

−inα
〉
SO(2)

= In(q)
〈
e−inα

〉
SO(2)

= In(q)
1

2π

∫ 2π

0

dα e−inα

= δn,0I0(q) ,

where δn,0 is the standard Kronecker delta. Similarly we find

〈
RωI

l
m(q)

〉
SO(3)

=

〈
l∑

n=−l

I ln(q)D
l
mn(α, β, γ)

∗
〉

SO(3)

=
l∑

n=−l

I ln(q)
〈
Dl

mn(α, β, γ)
∗〉

SO(3)

=
l∑

n=−l

I ln(q)

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ Dl
mn(α, β, γ)

∗

= δl,0δm,0I
0
0 (q) ,

where in the last equality we used the orthogonality relation for Wigner D-matrices over
SO(3), given in equation (264), together with the fact that D0

0,0(α, β, γ) = 1.
The invariants for both cases can be related to the SAXS profiles ISAXS(q), as defined in

section 1.6. One may intuitively understand this by realizing that the harmonic coefficient
of degree 0 is, by definition in (44) or (48), simply the average of the intensity I over its
angular coordinates. That this average is the same as ISAXS, i.e. the degree-1 moments
M1

N=1, will be shown in section 2.5.1 and we may summarize our findings as follows

I1
SO(2)(q) = ⟨RαIn(q)⟩SO(2) = δn,0I0(q) = δn,0 I

SAXS(q) (78a)

I1
SO(3)(q) =

〈
RωI

l
m(q)

〉
SO(3)

= δl,0δm,0I
0
0 (q) = δl,0δm,0

√
4π ISAXS(q) . (78b)

The coefficient
√
4π in the three-dimensional case is due to our convention for the spherical

harmonics from equation (45), which implies Y 0
0 (θ, ϕ) =

1√
4π

.
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2.2.2. Degree 2 invariants

Single-particle invariants of degree-2 have been defined via

I2
SO(2) =

〈
RαIn(q)In′(q′)∗

〉
SO(2)

and I2
SO(3) =

〈
RωI

l
m(q)I

l′
m′(q′)∗

〉
SO(3)

,

for the two FXS cases. Let us again derive their explicit form starting with the two-
dimensional case.
〈
RαIn(q)In′(q′)∗

〉
SO(2)

=
〈
RαIn(q) [RαIn′(q′)]

∗
〉
SO(2)

= In(q)In′(q)∗
〈
ei(n

′−n)α
〉
SO(2)

=
In(q)In′(q′)∗

2π

∫ 2π

0

dα ei(n
′−n)α = δn,n′In(q)In(q

′)∗ .

In the interest of readability we will suppress summation ranges for the three-dimensional
case, where one may find

〈
RωI

l
m(q)I

l′
m′(q′)∗

〉

SO(3)

=

〈[∑

n

I ln(q)D
l
mn(ω)

∗
][∑

n′

I l
′
n′(q′)Dl′

m′n′(ω)∗
]∗〉

SO(3)

=
∑

n,n′

I ln(q)I
l′
n′(q′)∗

〈
Dl

mn(ω)
∗Dl′

m′n′(ω)
〉
SO(3)

. (79)

One may recognize the remaining average over Wigner-D matrices to be, up to a constant
prefactor of 1

8π2 , the orthogonality relation from equation (264), that has already been
used in the computation of the degree-1 invariants. Substituting this relation into equation
(79) results in

〈
RωI

l
m(q)I

l′
m′(q′)∗

〉

SO(3)

=
δl,l′δm,m′

2l + 1

∑

n

I ln(q)I
l
n(q

′)∗ .

In summary we found the degree-2 invariants to be given by

I2
SO(2)(q, q

′) =
〈
RαIn(q)In′(q′)∗

〉
SO(2)

= δn,n′In(q)In(q
′)∗ (80a)

I2
SO(3)(q, q

′) =
〈
RωI

l
m(q)I

l′
m′(q′)∗

〉
SO(3)

=
δl,l′δm,m′

2l + 1

∑

n

I ln(q)I
l
n(q

′)∗ (80b)

For the three-dimensional case it is common to denote the non-vanishing invariants, at
m = m′ and l = l′, as Bl coefficients [19, 23, 99], i.e.

Bl(q, q
′) =

∑

n

I ln(q)I
l
n(q

′)∗ (81)

Adopting a similar naming convention in the two-dimensional case yields

Bn(q, q
′) = In(q)In(q

′)∗ (82)
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The reader may verify that the equations (80a)-(82) are indeed invariant under the action
of rotations. In the two-dimensional case this directly follows from the rotation action
whereas in the three-dimensional case it is convenient to additionally use the Wigner
D-matrix property presented in equation (265). A geometric interpretation of their in-
variance under rotations can be found in appendix A.1. The remainder of this section
will be devoted to show the following two useful observations

Observation 2.15 (Properties of Bl and Bn)

1. The quantities Bl(q, q
′) from equations (81) are real valued and symmetric, that is

Bl(q, q
′) = Bl(q, q

′)∗ and Bl(q, q
′) = Bl(q

′, q)

2. In the two-dimensional case Bn(q, q
′), as specified in equation (82), are self-adjoint

and satisfy
Bn(q, q

′) = B−n(q, q
′)∗

Observation 2.16 (Connection to degree 1 invariants) The invariantsBl=0(q, q
′) and

Bn=0(q, q
′) are in fact given by the degree-1 invariants from equation (78) via

Bn=0(q, q
′) = I0(q)I0(q

′) = ISAXS(q)ISAXS(q′)

Bl=0(q, q
′) = I00 (q)I

0
0 (q

′) = 4πISAXS(q)ISAXS(q′)

Consequently they are proportional to the “square” of the SAXS intensity.

Observation 2.15 is a direct consequence of the real valuedness of the single-particle in-
tensity which allows us to use the symmetry relations from equation (49) and show

Bn(q, q
′) = In(q)In(q

′)∗ = I−n(q)
∗I−n(q

′) = B−n(q
′, q)

Bl(q, q
′) =

∑

n

I ln(q)I
l
n(q

′)∗ =
∑

n

(−1)2nI l−n(q)
∗I l−n(q

′) = Bl(q
′, q) ,

which together with

Bn(q, q
′) = In(q)In(q

′)∗ = Bn(q
′, q)∗ and Bl(q

′, q) =
∑

n

I ln(q
′)I ln(q)

∗ = Bl(q, q
′)∗

completes our derivation.

2.2.3. Degree 3 invariants

While studied less than their degree 2 and degree 1 counterparts one can readily find
explicit forms of the degree 3 invariants in the literature [95, 96, 101]. At this point we
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simply want to mention their form and shall refer any interested reader to appendix A.2
for the corresponding derivation.

I3
SO(2)(q1, q2, q3) =

〈
RαIn1(q1)In2(q2)

∗In3(q3)
〉
SO(2)

= δn2,(n1+n3) In1+n3(q2)
∗In1(q1)In3(q3) (83a)

I3
SO(3)(q1, q2, q3) =

〈
RωI

l1
m1

(q1)I
l2
m2

(q2)
∗I l3m3

(q3)
〉
SO(3)

= δm2,(m1+m3)

C l1,l3,l2
m1,m3

2l2 + 1

∑

n1,n3

I l2n1+n3
(q2)

∗I l1n1
(q1)I

l3
n3
(q3)C

l1,l3,l2
n1,n3

, (83b)

where symbols of type C l,l′,L
m,m′ are a shorthand notation for the Clebsch-Gordan coefficients

⟨lm l′m′|L(m+m′)⟩. In analogy to the degree 2 case one may define

Bn1,n3(q1, q2, q3) = In1+n3(q2)
∗In1(q1)In3(q3) (84)

Bl1,l2,l3(q1, q2, q3) =
∑

n1,n3

I l2n1+n3
(q2)

∗I l1n1
(q1)I

l3
n3
(q3)C

l1,l3,l2
n1,n3

(85)

2.3. Information content of degree-2 invariants

So far we have seen that rotational invariants Id in general and especially the invariants
with degree-d smaller than 4 are of fundamental importance in FXS, since they specify
the single-particle intensity up to a global rotation (theorem 2.12). One might already
suspect that the same does not hold if we restrict ourselves to degree-1 and degree-2
invariants exclusively, or for that matter, just to degree-2 invariants. This is because the
positivity of the single-particle intensity I(q) implies together with observation 2.16 that
the degree-1 invariants can be obtained from their degree-2 counterparts.20, i.e.

⟨In(q)⟩SO(2) =
√
Bn=0(q, q) and

〈
I lm(q)

〉
SO(3)

=
√
Bl=0(q, q)

In accordance with this suspicion one may formulate the following questions, which shall
be the topic of this section.

• How much does Bl(q, q
′) "know" about the single-particle intensity I(q) ?

• How can the information contained in Bl(q, q
′) be used ?

The answer to the first questions was provided in [2, appendix A] and hence goes back
to the very beginning of fluctuation X-ray scattering. Let us again consider our discrete
set of single-particle harmonic coefficients In(qi) and I lm(qi) with S momentum transfer

20Using these relations to actually compute the degree-1 invariants, i.e. the SAXS curves, if one has
access to measurements of either one of In(q),I lm(q),I(q, π/2, ϕ) or I(q, θλ(q), ϕ) is numerically always
inferior to their direct computation, as in equation (41). For more details on the numerical challenges
encountered in computing the degree-2 invariants we refer the reader to section 3.3.
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points qi. For fixed harmonic degrees n and l one can then represent In(qi) and I lm(qi) as
matrices of size (S × 1) (i.e. a column vector) and S × (2l + 1), respectively

(In)i,1 = In(qi) and (Il)i,m = I lm(qi) , (86)

where bold symbols represent matrices (or vectors) and the bracket notation (A)i,j denotes
the matrix coefficient in the i-th row and j-th column of A. Correspondingly, one can
interprete the invariants Bn(qi, qj) and Bl(qi, qj) as (S × S) matrices which take the form
of simple matrix products

Bn = InI
†
n and Bl = IlI

†
l , (87)

where “†” denotes the conjugate transpose. From observation 2.15 we already know that
the matrix Bn is self-adjoint and Bl is symmetric, therefore they have to be diagonalizable
by a unitary matrix and an orthogonal matix, respectively. The form of eq. (87), which
identifies the invariants as positive semidefinite matrices, furthermore enforces their eigen-
values to be positive. By construction the maximal rank of Bn is the maximal rank of In,
which is 1. Similarly one finds the maximal rank of Bl to be given by Sl = min (S, 2l + 1).
Together this means that there exist a complex vector vn of length S, a positive eigenvalue
λn, as well as a real S × Sl matrix Vl together with a diagonal matrix Λl of eigenvalues
λl,1, . . . , λl,Sl

> 0, such that

Bn = vnλnv
†
n = ṽnṽ

†
n and Bl = VlΛlV

T
l = ṼlṼ

T
l , (88)

where for brevity we defined ṽn = vn

√
λn and Ṽl = Vl

√
Λl. Equations (87) and (88)

show two different decompositions of the same positive semidefinite matrices Bn and Bl.
Since such decompositions are unique up to unitary transformations [103, theorem 7.3.11]
there exist a (1× 1) unitary matrix un (i.e. a complex phase) as well as a complex matrix
Ul of size (Sl × 2l + 1) such that UlU

†
l = id (here id stands for the identity matrix),

which satisfy

In = ṽnun and Il = ṼlUl . (89)

This equation formulates an answer to our first question about how much knowledge the
inveriants of degree-2 contain about the single-particle intensity I(q). To be precise, ṽn

and Ṽl correspond to the information contained in the degree-2 invariants while un and
Ul represent the missing information.

Observation 2.17 (Information content of Bn and Bl) The invariants Bn and Bl

specify the harmonic coefficients of the single-particle intensity In and Il for each corre-
sponding harmonic degree n and l up to an unknown (semi-)unitary21 matrix un or Ul

of shapes (1× 1) and (min (S, 2l + 1)× 2l + 1) respectively. Hence, the unknowns un are
elements of U(1) while the Ul are in general elements of U(Sl, 2l + 1).
21For harmonic degrees l such that S < 2l+1 the matrix Ul is non-square and hence can not be unitary.

We shall call a possibly non-square (n,m) matrix U semi-unitary if it satisfies UU † = id and n ≤ m.
We will denote the set of semi-unitary matrices of shape (n,m) by U(n,m).
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At this point we want to make two side remarks on the above result.

• Notice that the reasoning leading from the eigen-decomposition in equation (88) to
equation (89) remains valid if we substitute ṽn and Ṽl with arbitrary matrices of
the same shape, say wn and Wl, as long as they provide decompositions of the form

Bn = wnw
†
n and Bl = WlW

†
l

and we would find

In = wnun and Il = WlUl .

In section 3.3 we will use this fact to propose a regularization scheme that circum-
vents some of the difficulties encountered in the computation of Ṽl from experimental
data.

• The second remark concerns the total maximal number of real unknown parameters
contained in un or Ul. This number does not depend on S, the number of momentum
transfer values qi, and instead only depends on the maximal considered harmonic
order L. Informally one could say that the degree-2 invariants contain the complete
radial information about I(q) and only lack part of its angular information. This is
easy to see in the two-dimensional case, where we only have a single unknown phase
un per harmonic degree n. Therefore the total number of unknown parameters is
given by the maximal harmonic degree L (for l = 0 one has u0 = 1 since In=0 has
to be real).22 In the three-dimensional case one finds the maximal number of real
unknowns to be given by

∑L
l=1 dimR(U(2l+ 1)) =

∑L
l=1(2l+ 1)2 = 1

3
(11L+ 12L2 +

4L3), where dimR(U(2l + 1)) = (2l + 1)2 is the real dimension23 of the group of
unitary matrices of size 2l + 1.

With the first question answered we may now turn to the second and investigate how
the information in form of ṽn and Ṽl from equation (89) may be used. One possible use
case has been proposed in [19] and centers around the following question.

Given the degree-2 invariant matrix Bl of a single-particle intensity I and an ar-
bitrary function f(qi) with harmonic coefficient matrix fl. What is the “closest”
function f ′(qi) to f(qi) such that it has the same degree-2 invariants as the consid-
ered single-particle intensity, i.e. such that f ′

lf
′†
l = Bl ?

Before answering that question we first have to agree on a notion of "closest" discrete
function. Here we want to borrow the definition of "closest", that is induced by the scalar
product of square integrable functions24 and formulate a discrete version of it. For paris
22Because of Friedel’s symmetry, I(q) = I(−q), all harmonic coefficients of the single-particle intensity

with odd degrees vanish and the number of free parameters is even lower than L. The fact that odd
harmonic degrees vanish is valid in the three-dimensional case as well.

23dimR(U(2l + 1)) denotes the dimension of U(2l + 1) as vector space over the field of real numbers R.
24The Hilbert space of square integrable functions over K, with K being real or complex numbers, is

commonly denoted by L2(Kd), where d is the dimension of the vector space on which functions are
formulated.

43



of functions in polar and spherical coordinates, f(q, ϕ), g(q, ϕ) and f(q, θ, ϕ), g(q, θ, ϕ), the
L2 scalar product is given by

⟨f(q, ϕ), g(q, ϕ)⟩L2 =

∫ ∞

0

dq q

∫ 2π

0

dϕ f(q, ϕ)g(q, ϕ)∗ (90a)

=
∞∑

n=−∞

∫ ∞

0

dq qfn(q)gn(q)
∗

⟨f(q, θ, ϕ), g(q, θ, ϕ)⟩L2 =

∫ ∞

0

dq q2
∫ π

0

dθ sin(θ)

∫ 2π

0

dϕf(q, θ, ϕ)g(q, θ, ϕ)∗ (90b)

=
∞∑

l=0

l∑

m=−l

∫ ∞

0

dq q2f l
m(q)g

l
m(q)

∗ ,

where in each case the second equation is obtained by expanding f in its harmonic series
and subsequently using the orthogonality relation for the respective expansion functions.
We shall discretize this scalar product by replacing the remaining integral with a sum as
well as introducing a maximal harmonic degree L, i.e.

〈∑

n

fn(qi)e
inϕ,
∑

n

gn(qi)e
inϕ

〉

L2

=
L∑

n=−L

S∑

i=1

qifn(qi)gn(qi)
∗ (91)

〈∑

l,m

f l
m(q)Y

l
m(θ, ϕ),

∑

l,m

glm(q)Y
l
m(θ, ϕ)

〉

L2

=
L∑

l=0

l∑

m=−l

S∑

i=1

q2i f
l
m(qi)g

l
m(qi)

∗ (92)

Correspondingly we will define the discrete L2 norm via

∣∣∣∣∣

∣∣∣∣∣
∑

n

fn(qi)e
inϕ

∣∣∣∣∣

∣∣∣∣∣
L2

=

√√√√
〈∑

n

fn(qi)einϕ,
∑

n

fn(qi)einϕ

〉

L2

(93)

∣∣∣∣∣

∣∣∣∣∣
∑

l,m

f l
m(q)Y

l
m(θ, ϕ)

∣∣∣∣∣

∣∣∣∣∣
L2

=

√√√√
〈∑

l,m

f l
m(q)Y

l
m(θ, ϕ),

∑

l,m

f l
m(q)Y

l
m(θ, ϕ)

〉

L2

. (94)

For a single harmonic matrix(or vector) fl or fn we find

||fn||2L2 =
S∑

i=1

qi |(fn)i,1|2 ||fl||2L2 =
l∑

m=−l

S∑

i=1

q2i |(fl)i,m|2 (95)

Note that in this case the discrete L2 norm is equivalent25 to the well known Frobenius
norm [104] of matrices, ||A||2F =

∑
i,j |Ai,j|2. The closeness of two functions f and f ′ can

now be quantified via the norm of their difference ||f − f ′||L2 .

25Up to scaling factors depending on the radial points qi.
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Observe, that a function f ′ has the same degree-2 invariant as the considered single-
particle intensity I(qi) if and only if its harmonic coefficients have the form

f ′
n = ṽnun and f ′

l = ṼlUl ,

where ṽn and Ṽl are the same as in equation (89), un is a phase and Ul a complex
(Sl × 2l + 1) semi-unitary matrix (see observaiton 2.17). We are now able to reformulate
the question of finding the closest function f ′ as the following optimization problems in
the free parameters un and Ul,

un = argmin
un in U(1)

||fn − ṽnun||L2 and Ul = argmin
Ul in U(Sl,2l+1)

∣∣∣
∣∣∣fl − ṼlUl

∣∣∣
∣∣∣
L2
. (96)

Both of these optimization problems have unique solutions [19]. In the two-dimensional
case one may derive

un = argmin
un in U(1)

||fn − ṽnun||L2 = argmax
un in U(1)

Re [⟨fn, ṽnun⟩L2 ]

=
⟨fn, ṽn⟩L2

|⟨fn, ṽn⟩L2|
=

∑S
i=1 fn(qi)(ṽn)

∗
i qi∣∣∣

∑S
i=1 fn(qi)(ṽn)∗i qi

∣∣∣
,

here Re[·] means projeciton to the real part. In the third step we used the fact that the
real part of ⟨fn, ṽnun⟩L2 becomes maximal for the phase un that causes the entire scalar
product to become real, as well as ⟨fn, ṽnun⟩L2 = ⟨fn, ṽn⟩L2 u∗n. For the three-dimensional
case it has been realized that the optimization problem given on the right hand side of
equation (96) is, for Sl = 2l + 1, equivalent to a scaled unitary version of the orthogonal
procrustes problem which is well known in linear algebra [105]. The solution to which can
be given, following [19], as

Ul = V lU †
l ,

where U l and V l are the unitary matrices given by a singular value decomposition of the
(Sl×2l+1) matrix Ṽ †

l Dfl. The matrix D in this expression is the diagonal (S×S) matrix
with elements (D)i,i = q2i , that incorporate the scaling factors present in our definition of
the discrete L2 norm. Together this means

SVD[Ṽ †
l Dfl] = V lΣlU †

l , (97)

where Σl is the diagonal matrix of singular values. This solution directly generalizes to
the case where Sl < 2l+1 using the compact version of the singular value decomposition,
in which V l is a unitary (Sl × Sl) and U †

l a semi-unitary matrices of shape (Sl × 2l + 1)
[23]. In conclusion of this chapter let us formulate the answer to our second question,
regarding the possible uses of the information contained in the degree-2 invariants, as the
following observation.

Observation 2.18 (Invariant projection) Given the degree-2 invariants of a single-
particle intensity I(qi) with associated matrix ṽn or Ṽl(see equations (88)-(89)) and an
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arbitrary complex function f(qi). Then, the closest function f ′ to f , in the discrete L2

norm, that has the same degree-2 invariants as I is given by the harmonic coefficient
matrices

Pinv[fn] = f ′
n = ṽn

⟨fn, ṽn⟩L2

|⟨fn, ṽn⟩L2|
and Pinv[fl] = f ′

l = ṼlV lU †
l (98)

for the two-dimensional and three-dimensional case respectively. Here we have introduced
the symbol Pinv to denote the corresponding projection on the level of the harmonic
coefficients, which we shall call the invariant projection. The matrices V l and U †

l in (98)
are given by the singular value decomposition specified in equation (97).

While this observation might seem a bit vague, it has major practical implications. As we
shall see in the following section it enables one to formulate a phase retrieval algorithm,
that is solely based on the invariants accessible within FXS.

2.4. FXS based phase retrieval via MTIP

The basic idea is to use observation 2.18 to modify the iterative phase retrieval algorithm
presented in section 1.3, such that full knowledge about the single-particle intensity I may
be substituted with the degree-2 and degree-1 invariants of FXS. In each phasing loop
iteration the intensity projection, as defined in equation (28), is split into three steps

1. In the i-th iteration use the current estimate of the scattering-amplitude to compute
its corresponding intensity Ii = ρ̂iρ̂

∗
i

2. Apply observation 2.18 to find the closest intensity for given degree-2 and degree-1
invariants, I ′i = Pinv(Ii).

3. Use I ′i to perform the intensity projection as in standard iterative phase retrieval,
i.e. ρ̂i′ = PI′i [ρ̂i] with PI′i as defined in (28).

Apart from the change in the reciprocal space constraint the rest of the phasing loop and
associated methods such as shrink wrap [58] or the hybrid input-output method [39], stay
the same with one exception. Since the algorithm relies on frequent applications of obser-
vation 2.18 it has to frequently compute the polar or spherical harmonic decomposition
of the current intensity candidate, necessitating access to a description of this quantity
in polar or spherical coordinates. As consequence the entire phasing loop is formulated
in polar or spherical coordinates. The resulting algorithm is called multi-tiered iterative
phase retrieval (MTIP) and was first proposed in [19, 106]. A schematic representation
of the discussed MTIP phasing loop can be found in figure 14. As part of this thesis a
structure reconstruction workflow has been developed, that is based on a modified version
of the MTIP algorithm. Details about the modifications and the precise implementation
will be discussed in section 3.4.
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Figure 14: Representation of the MTIP loop. The filled orange squares mark the entry points
for constraints, and the black square denotes the initial density guess. The quantities labeled by
(ρ, I, In and Iml ) should be interpreted as iterative estimates of the corresponding theoretical
quantities.

2.5. FXS moments and single-particle invariants

While we have now learned a lot about the single-particle invariants Id of various degrees,
starting from their role in FXS (theorem 2.12 and observation 2.13) over their concrete
form (section 2.2) to their information content and possible usage for structure recovery
(observations 2.17-2.18 and section 2.4), there remains a missing link in our presentation.
We have not jet fully connected the single-particle invariants with the moments Md

N from
equations (60)-(61), that can be directly computed within fluctuation X-ray scattering.

In the two-dimensional version of FXS we identified Md
N with the single-particle in-

variants directly (section 2.1.4), but only in the case of N = 1. That is, in the case in
which each sample ρM(r) consists precisely of a single randomly oriented and positioned
copy of the studied particle. In the three-dimensional case we know even less. The only
connection, so far, was given in observation 2.13, which tells us that the moments Md

N

have to be sums over single-particle invariants. The precise characterization of those sums
for d ≤ 3 as well as the description of methods by which one can recover the degree-2
single-particle invariants Bl(q1, q2) will be the topic of this section. While some of the
corresponding results are well known [1, 2, 99], the disposition in this section will contain
original contributions. They mostly center around the presentation of a new approach
to the extraction of the single-particle degree-2 invariants from the moments M2

N in the
three-dimensional case and the treatment of the multi-particle case, in which the number
of particles N is allowed to be a random variable.

2.5.1. FXS moments in the single-particle case

Let us for now assume, that the number of particles per scattering pattern N is constant
and equal to 1. We will denote the corresponding moments Md

N=1 simply by Md. As
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stated, in the two-dimensional version of FXS we already found that the moments Md

are directly given by the single-particle invariants Id
SO(2) from equation (73a), that is

Md(q1, . . . , qd, n1, . . . , nd) = Id
SO(2) =

〈
Rα

d∏

j=1
odd j

Inj
(qij)

d∏

j=2
even j

Inj
(qij)

∗
〉

SO(2)

(99)

We shall now derive the corresponding relationships in the general three-dimensional case
for degrees smaller than 4. Note that for N = 1 the dilute limit assumption 3 is always
true, since there are no other particles in the interaction volume. By the Fourier shift
theorem (18) the diffraction patterns IM have to be independent on the position x1 of
the corresponding particle and the ensemble average ⟨·⟩M , present in the definition of the
moments Md in equations (60) and (61) , reduces to a simple average over the uniformly
distributed rotation states of the considered particle ⟨·⟩SO(3).

Expansion of moments: The general procedure of obtaining explicit expressions for
Md will be as follows.

1. Expand the definition of Md using the spherical harmonic series expression of IM ,
that is

IM(q, ϕ) = RωI(q, θλ(q), ϕ) =
L∑

l=1

l∑

m=−l

[
RωI

l
m(q)

]
Y l
m(θλ(q), ϕ) ,

where θλ(q) represents the restriction to the Ewald’s sphere. This allows one to
recognize Md as a sum over the single-particle invariants Id.

2. Use the known expressions for Id from section 2.2 and simplify the resulting equa-
tion.

d = 1: In this case we find

M1(q, ϕ) =
〈
IM(q, ϕ)

〉
SO(3)

=
L∑

l=0

l∑

m=−l

〈
RωI

l
m(q)

〉
SO(3)

Y l
m(θλ(q), ϕ) (100)

and we can use equation (78b) for the single-particle invariant I1
SO(3)(q) to obtain

M1(q, ϕ) = ISAXS(q) = I00 (q)Y
0
0 (θλ(q), ϕ) . (101)

Equation (101) simply states that the degree-1 moments are, up to a constant prefactor,
precisely the single-particle invariants of the same degree. Note that using the second
version of the moments M1(q, n), given in equation (61), yields almost the same result

M1(q, n) =
〈
IMn (q, ϕ)

〉
SO(3)

=
L∑

l=0

l∑

m=−l

〈
RωI

l
m(q)

〉
SO(3)

(
Y l
m(θλ(q), ϕ)

)
n
.
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Using equations (46) and (44) one can find the Fourier series coefficient of a spherical
harmonic (Y l

m(θλ(q), ϕ))n to be given by

(Y l
m(θλ(q), ϕ))n =

1

2π

∫ 2π

0

dϕP̃m
l (θλ(q))e

imϕe−inϕ

= δn,mP̃
n
l (θλ(q)) (102)

and hence

M1(q, n) =
L∑

l=0

〈
RωI

l
m(q)

〉
SO(3)

P̃ n
l (θλ(q)) = δn,0 I

0
0 (q)P̃

0
0 (θλ(q)) = δn,0 I

SAXS(q) , (103)

where in the second step we used that by equation (46) P̃ 0
0 (θλ(q)) =

1√
4π

. Comparing the
right hand side of equation (100) for M1(q, ϕ) with the first step in equation (103) for
M1(q, n), one can see that the latter is simpler, in the sense that it lacked the sum over the
harmonic order m. Ultimately this resulted in no significant difference26 for the degree-1
moments, for higher degrees it will however affect the final results and give an advantage
to moments in their second form, Md(q1, . . . , qd, n1, . . . , nd), introduced in equation (61).

d = 2: Let us begin deriving an explicit expression for M2(q1, q2, ϕ1, ϕ2). In order to
keep the resulting equations as concise as possible we shall omit the summation ranges
of all indices. Indices li will always correspond to a spherical harmonic degree and take
values from 0 to L, correspondingly mi and ni represent spherical harmonic orders with
values between −li and li.

M2(q1, q2, ϕ1, ϕ2) =
〈
IM(q1, ϕ1)I

M(q2, ϕ2)
∗〉

SO(3)

=
∑

l1,l2
m1,m2

〈
RωI

l1
m1

(q1)I
l2
m2

(q2)
∗〉

SO(3)
Y l1
m1

(θλ(q1), ϕ1)Y
l2
m2

(θλ(q2), ϕ2)
∗

=
∑

l,m,n

I ln(q1)I
l
n(q2)

∗Y
l
m(θλ(q1), ϕ1)Y

l
m(θλ(q2), ϕ2)

∗

2l + 1
,

where the simplification in the last step is due to equation (80b) that specifies the single-
particle invariant I2

SO(3)(q1, q2) of degree-2. Using the addition theorem for spherical
harmonics, given in equation (263) and the definition of Bl(q1, q2) from equation (81),
this results in

M2(q1, q2, ϕ1, ϕ2) =
L∑

l=0

F l(q1, q2, ϕ1 − ϕ2)Bl(q1, q2) , (104)

with

F l(q1, q2, ϕ1 − ϕ2) =
P l(cos(θλ(q1)) cos(θλ(q2)) + sin(θλ(q1)) sin(θλ(q2)) cos(ϕ1 − ϕ2))

4π
,

26The difference for d = 1 lies in the Kronecker delta δn,0 present in (103), whereas (101) is independent
on ϕ.
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where P l are Legendre polynomials and we simply wrote F l(q1, q2, ϕ1 − ϕ2) instead of
F l(θλ(q1), θλ(q1), ϕ1 − ϕ2). We want to point out that M2(q1, q2, ϕ1, ϕ2) as given in the
above equation is the most common expression in the literature, that is used to access the
invariants Bl(q1, q2). It corresponds precisely to the function J(q, ϕ; q′, ϕ′) in [99, equation
7] as well as C(κ1,κ2) in [1, equation 17]. Another well known variant of it is given by
the ensemble averaged angular cross-correlation function used in XCCA [92–94],

C(q1, q2,∆) = ⟨C(q1, q2,∆)⟩SO(3) =
1

2π

∫ 2π

0

dϕ
〈
IM(q1, ϕ+∆)IM(q2, ϕ)

〉
SO(3)

, (105)

which is the result of choosing ϕ1 = ϕ+∆ and ϕ2 = ϕ in M2(q1, q2, ϕ1, ϕ2), i.e.

C(q1, q2,∆) = M2(q1, q2, ϕ+∆, ϕ) =
L∑

l=0

F l(q1, q2,∆)Bl(q1, q2) . (106)

Let us continue by computing the moments in their second form M2(q1, q2, n1, n2).
Similarly to the d = 1 case we can use equation (102) to connect M2 to the single-particle
invariants as follows

M2(q1, q2, n1, n2) =
〈
IMn1

(q1)I
M
n2
(q2)

∗〉
SO(3)

=
∑

l1,l2

〈
RωI

l1
n1
(q1)I

l2
n2
(q2)

∗〉
SO(3)

P̃ n1
l (θλ(q1))P̃

n2
l (θλ(q2)) ,

which under application of equations (80b) and (81) transforms to

M2(q1, q2, n1, n2) = δn1,n2

L∑

l=|n1|
F̃ l
n1
(q1, q2)Bl(q1, q2) (107)

F̃ l
n(q1, q2) =

1

2l + 1
P̃ n
l (θλ(q1))P̃

n
l (θλ(q2))

The reason that the summation over l does not start at zero in (107), as opposed to equa-
tion (104), is due to the fact that the associated Legendre polynomials P |n|

l contained in
F̃ l
n are identically zero for l < |n|. It is interesting to note that the non-zero contributions

in equation (107) can be associated with the averaged cross-correlation C via its harmonic
coefficients, i.e.

Cn(q1, q2) =
L∑

l=|n|
F̃ l
n(q1, q2)Bl(q1, q2) (108)

The simplest way to see this, is via the cross-correlation theorem for the Fourier transform
which implies, that the harmonic coefficients of the angular cross-correlation C(q1, q2,∆)
are given by Cn(q1, q2) = IMn (q1)I

M
n (q2)

∗ and hence

M2(q1, q2, n, n) =
〈
IMn (q1)I

M
n (q2)

∗〉
SO(3)

= ⟨Cn(q1, q2)⟩SO(3) = Cn(q1, q2) (109)
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Note that this equation also holds in the two-dimensional case, since its derivation did not
use any specific form for the average correlation Cn nor for the moments M2. The crucial
simplification of equation (108) over (106) lies precisely in the start of the summation over
the harmonic degree l. While the invariants Bl of a fixed degree l contribute to values of
C(q1, q2,∆) for all angles ∆, they only contribute to values of Cn(q1, q2) for |n| ≤ l. Stated
differently this means, that the information about Bl is completely contained in the first
l non-zero harmonic coefficients Cn(q1, q2) with 0 ≤ n ≤ l, as opposed to being spread out
over all of the possible angular values ∆ in C(q1, q2,∆).27 Note that since we assumed
band limited functions with a maximal harmonic degree L we also find that Cn = 0 for
n > L and one may neglect all of these coefficients in the data analysis. Conversely, if
a given experimental dataset does not allow to compute Cn for n > nmax reliably, then
one may at most gain information about the single-particle invariants Bl with l ≤ nmax

and assume L = nmax, which acts as resolution constraint within FXS. As we shall see in
2.5.2 the link between the harmonic degrees n and l will also allow for simpler and faster
methods to extract the invariants Bl from the moment M2.

d = 3 : For the degree-3 moments we shall again only list the results and refer the
interested reader to their derivation in appendix A.3

M3(q1, q2, q3, ϕ1, ϕ2, ϕ3) =
L∑

l1,l2,l3

F l1,l2,l3(q1, q2, q3, ϕ1, ϕ2, ϕ3)Bl1,l2,l3(q1, q2, q3) (110)

F l1,l2,l3(q1, q2, q3, ϕ1, ϕ2, ϕ3) =
∑

m1,m3

2Y l2
m1+m3

(θλ(q2), ϕ2)
∗

2l2 + 1

× Y l1
m1

(θλ(q1), ϕ1)Y
l3
m3

(θλ(q3), ϕ3)C
l1,l3,l2
m1,m3

M3(q1, q2, q3, n1, n2, n3) = δn2,n1+n3

L∑

l1≥|n1|,l3≥|n3|
l2≥|n1+n3|

F̃ l1,l2,l3
n1,n3

(q1, q2, q3)Bl1,l2,l3(q1, q2, q3)

(111)

F̃ l1,l2,l3
n1,n3

(q1, q2, q3) =
2C l1,l3,l2

n1,n3

2l2 + 1
P̃ n1
l1
(θλ(q1))P̃

n1+n3
l2

(θλ(q2))P̃
n3
l3
(θλ(q3))

Here Bl1,l2,l3 are the single-particle invariants given in (85). Versions of equation (110)
are known and can for example be found in [107, equation 16.7]28, the second equa-
tion (111) has not been published so far. Note that the summation over the triple
l1, l2 and l3 in the latter equation is again restricted by the harmonic degrees n1, n2

and n3. Additionally the summation coefficients F̃ l1,l2,l3
n1,n3

(q1, q2, q3) are simpler compared
to F̃ l1,l2,l3(q1, q2, q3, ϕ1, ϕ2, ϕ3), in the sense that they do not contain large sums.

27Since Bl(q, q
′) is real so is M2(q1, q2, n, n) and one finds M2(q1, q2, n, n) = M2(q1, q2,−n,−n)∗. Hence,

we can restrict our considerations to positive values of n.
28The formula given [107, equation 16.7] corresponds the case where ϕ1 = 0
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2.5.2. Extraction of single-particle invariants

Staying in the setting of the previous subsection, in which we consider each sample con-
figuration ρM(r) to contain exactly one particle (N = 1), we may now discuss methods
by which to extract the single-single particle invariants Id given in section 2.2 from the
moments Md of the previous subsection 2.5.1.

In the two-dimensional case there is nothing to show since the single-particle invariants
exactly correspond to the FXS moments by equation (99). The same holds for degree-1
invariants, i.e. SAXS curves, in the three dimensional case via equations (101) and (103).
Whether the degree-3 or any higher invariants can be extracted from the moments Md is
an open question and will not be solved in this thesis. Our main topic of discussion are
therefore extraction methods for the degree-2 invariants Bl(q1, q2) as specified in equation
(81). For their description we shall use a similar strategy as adopted in section 2.3, where
we applied tools from linear algebra to analyze the information content of the degree-2
invariants. A well known realization of such a method was proposed in [99] and can be
summarized as follows. Recall equation (106), that linked the averaged angular cross
correlation to the Bl coefficients, via

C(q1, q2,∆) = M2(q1, q2,∆, 0) =
L∑

l=1

F l(q1, q2,∆)Bl(q1, q2)

and consider a discretization of the angular variable ∆ into N∆ different values. For
each fixed pair of momentum transfer values q1 and q2 the above equations take the form
a system of N∆ linear equations in the L + 1 invariants Bl. Let us drop the constant
arguments q1 and q2 from our notation and view C(∆) as a vector C of size N∆, Bl as
vector B29 size L+1 and F l(∆) as (N∆ ×L+1) matrix F whose coefficients we will call
F∆,l. With this we may reformulate the linear system as follows

C = FB =



F1,0 · · · F1,L

... . . . ...
FN∆,0 · · · FN∆,L






B0
...
BL


 (112)

In practical applications one typically has N∆ > L causing the matrix F to be non-square.
This implies the system of linear equations is over-determined and may only be solved
approximately. Usually least squares methods such as the pseudo-inverse [108], based on
a singular value decomposition of F , are used to solve such linear systems. Applications
of this procedure on experimental data can be found in [20] and [21].

Tangent on N∆ > L: A justification for why N∆ > L holds in practical applications
can be found by realizing that N∆ is linked to the angular resolution at which the diffrac-
tion patterns IM are recorded. In the single-particle case (N = 1) these diffraction pat-
terns are Ewald’s sphere slices of the target single particle intensity,i.e I(q, θλ(q), ϕ), and
29Note the difference between vector B and the (S × S) matrix Bl from section 2.3. The former is a

vector in l for fixed values of q1, q2 while the latter is a matrix in q1, q2 for a fixed harmonic degree l.
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one can argue that the obtainable information about the unprojected intensity I(q, θ, ϕ)
has to be limited in the same way as the diffraction patterns, i.e. its maximal angular
resolution is tied to the angular sampling N∆. On the other hand discrete computations
of the spherical harmonic coefficients link the spherical grid size to the maximal harmonic
degree L for which coefficients can be computed.30 Typical algorithms to compute spher-
ical harmonic coefficients, such as [109], require at least 2l + 1 sampling points in ϕ to
reliably compute the l-th harmonic coefficient and hence N∆ > L.

We can now turn to the extraction method proposed in [23] which is based on the
second variant of the FXS moments M2(q1, q2, n1, n2). To do so, let us give a matrix
representation of equation (107) for n1 = n2 = n and fixed momentum transfer values
q1 and q2. Here we may interpret M2(q1, q2, n, n) as vector M2 of size (L + 1)31 and
F̃ l
n(q1, q2) as (L+ 1)× (L+ 1) matrix F̃ with coefficients F̃n,l. Together this allows us to

restate equation (107) as

M2 = F̃B =



F̃0,0 · · · F̃0,L

. . . ...
0 F̃L,L






B0
...
BL


 . (113)

The linear system defined by the matrix F̃ is therefore not only square but upper-
triangular as well. This allows to solve equation (113) via back-substitution. Similar
to many SVD algorithms back-substitution is backwards stable [108, chapter 8], which
in particular means that it does not amplify errors in the input parameters. Moreover,
the statistical complexity of back-substitution is O((L + 1)2) which is much lower than
O(N2

∆(L + 1)), the complexity of calculating the singular value decomposition(SVD) of
F required to solve equation (112).32 Even in the case where M2(q1, q2, n, n) are com-
puted from the averaged cross correlation via its Fourier series coefficients (see equation
(109)) one finds that the combined complexity of the harmonic decomposition plus back-
substitution, being O(N∆ log(N∆) + (L + 1)2), is still lower than the SVD counterpart.
All results that will be presented in section 5 where obtained using back-substitution in
the computation of the invariants Bl.

2.5.3. Extension to multi-particle case

We may now drop our assumption that each sample ρM contains exactly one particle.
Instead, let the number of particles per sample be a discrete positive random variable
N , such that the probability to find η = N particles in a sample is given by P (η). For
our derivations in the remainder of this section the notion of set partitions will be very
useful. They will allow us to express the formulas connecting the single-particle moments
Md to the multi-particle moments Md

N in a graphical way. Let us therefore start with
an introduction to set partitions.
30The same phenomenon may be observed for fast Fourier transforms in which the highest accessible

frequency and the real space sampling share a similar connection.
31Neglecting all negative values of n since M2(q1, q2, n, n) = M2(q1, q2,−n,−n).
32Assuming N∆ > l, other wise the complexity of the SVD is O(N∆(L+ 1)2).
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Set partitions: Consider a set with d elements, e.g. d = 3

.

A partition of this set, is a subdivision of its elements into a sequence of non-empty
subsets. For example, a possible partition of the above set into two subsets is given by

,

where the lower two points from one subset and the other one is given by the set that
contains the single upper point. One may now ask, how many possible partitions into k
subsets does a set with d elements have. The answer for d = 3 is given by the following
diagram

, ,

k = 1:

k = 2:

k = 3:

As before, the colored regions denote subsets that contain at least two elements while
isolated points simply denote one-element subsets.

In general the total number of set partitions of a set with d elements is called Bell
number B(d) [110, chapter 1.9], whereas the number number of partitions that have k
subsets is known as Stirling number of the second kind [110]

{
d
k

}
, they satisfy

B(d) =
d∑

k=1

{
d

k

}
and

{
d

k

}
=

k∑

i=1

(−1)k−iin

(k − i)!i!
(114)

Let us denote the space33 of partitions of a set with d elements into k subsets by Sd
k . For

example S3
2 contains 3 partitions and is given by



 , ,





33Sd
k is a set of partitions, i.e. a set containing partitions of another set. In order to not confuse the
different sets with each other we call Sd

k a space.
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The number of partitions in Sd
k is given by |Sd

k | =
{
d
k

}
from equation (114).34 In order to

systematically list all possible partitions in Sd
k , it is useful to subdivide it further into the

spaces Sd
k(o1 ≤ . . . ≤ ok) of partitions, whose k subsets have known sizes o1, . . . , ok. As

example consider a set with 4 elements, then the space S4
2 has two subspaces, S4

2(1 ≤ 3)
and S4

2(2 ≤ 2), i.e.

S4
2 =

{

, , ,
︸ ︷︷ ︸

S4
2(1≤3)

, , ,
︸ ︷︷ ︸

S4
2(2≤2)

}

These subspaces of Sd
k are completely characterized by the conditions o1 ≤ . . . ≤ ok and

o1 + . . . + ok = d, since it makes no sense to consider different orders of subset sizes and
the number of elements in all parts of a partition have to add up to d. Furthermore,
the number of partitions in Sd

k(o1 ≤ . . . ≤ ok) is given by the number of possibilities
to successively draw o1, . . . , ok elements, which is given by the multinomial

(
d

o1,...,ok

)
=(

d
o1

)(
d−o1
o2

)
· . . . ·

(
ok
ok

)
, divided by the number of ways to order oj that have the same

value35, i.e.

|Sd
k(o1 ≤ . . . ≤ ok)| =

(
d

o1,...,ok

)
∏d

i=1 n(i, o1, . . . , ok)!
, (115)

where n(i, o1, . . . , ok) simply counts the number of times the value i appears in the sizes
o1, . . . , ok .

In summary this means that all partitions in Sd
k are characterized by a tuple of the

form (o1 ≤ . . . ≤ ok, σ), in short (o, σ), where o1 ≤ . . . ≤ ok are the subset sizes and
σ represents one of the elements of Sd

k(o1, . . . , ok). For d = 1, 2 and 3 this leads to the
classification shown in figure 15.

d = 1
k o1 |S1

k(o1)|
1 1 1

d = 2
k o1 o2 |S2

k(o1, o2)|
1 2 1
2 1 1 1

d = 3
k o1 o2 o3 |S3

k(o1, o2, o3)|
1 3 1
2 1 2 3
3 1 1 1 1

, ,

Figure 15: Example of the classification of all possible subdivisions of sets with 1,2 or 3 elements

34Here we introduced the notation |A| to denote the number of elements of a set A.
35Since we do not care about the order with which they are drawn.
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The last ingredient we need, is a way to formalize the partition σ in our tuples (o, σ). For
this, note that one may associate a permutation, conveniently called σ, of the sequence
1, 2, . . . , d to each partition of a set with d elements as follows

1. Assign numbers 1, . . . , d to the elements of set to be partitioned (previously called
set with d elements).

2. Order the subsets of a partition (o, σ) ∈ Sd
k increasingly by their size. Subsets of

equal size are ordered increasingly by the lowest number they contain.

3. Demand that the permutation σ maps 1, 2, . . . , d to σ(1), σ(2), . . . , σ(d) such that

a) {σ(1), . . . , σ(o1)} is the first subset of the partition and in general the p-th
subset is given by

{
σ
(
1 +

∑p−1
l=1 ol

)
, . . . , σ

(
op +

∑p−1
l=1 ol

)}
and we introduce

the shorthand notation

σ(p, a) = σ

(
a+

p−1∑

l=1

ol

)
for a ∈ {1, . . . , op} (116)

b) Numbers within a subset are increasingly ordered.

For example consider the following cases of a partitions in S4
2(1 ≤ 3) and S4

2(2 ≤ 2)

1

2 3

41

2 3

4
⇔

1, 2, 3, 4

3, 1, 2, 4

σ and
1

2 3

41

2 3

4
⇔

1, 2, 3, 4

1, 3, 2, 4

σ

This concludes our discussion of set partitions and we can return to the question of how
to represent the multi-particle moments Md

N via their single particle counterparts Md.
Before stating the main result in observation 2.19 we shall give a simplified motivation in
the case of an arbitrary but fixed number of particles N = η, the full derivation in the
general case can be found in appendix A.4.

Motivation for fixed N = η: By the dilute-limit assumption we find that each scatter-
ing pattern IM is given by a sum over the η scattering contributions IMj corresponding to
the η individual particles a sample ρM contains. Using the form of Md

N given in equation
equation (60), representing coordinate pairs (q, ϕ) by their Ewald’s sphere point qλ and
applying the dilute-limit assumption yields

Md
N=η =

〈
IM(qλ

1 ) · . . . · IM(qλ
d )
〉
M

=

η∑

j1,...,jd=1

〈
IMj1 (q

λ
1 ) · . . . · IMjd (q

λ
d )
〉
M
,

which is a sum over all possible d-fold products of single-particle intensity contributions.
Since we assumed a fixed number of particles and the IMj are invariant under translations
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of the corresponding particles, we can substitute the ensemble average over M with the
average over the rotational random variables of all particles ω1, . . . , ωη and obtain

Md
N=η =

η∑

j1,...,jd=1

〈
IMj1 (q

λ
1 ) · . . . · IMjd (q

λ
d )
〉
ω1,...,ωη

.

We may now use the independence of the random variables ω1, . . . , ωη to simplify each
summand. For example, if all particle indices 1 ≤ j1, . . . , jd ≤ η are different, then the
corresponding summands simplify to

〈
IMj1 (q

λ
1 )
〉
ωj1

· . . . ·
〈
IMjd (q

λ
d )
〉
ωjd

= M1
N=1(q

λ
1 ) · . . . · M1

N=1(q
λ
d ) . (117)

Note that the right hand side of (117) does not depend on the single particle indices ji
anymore and there are exactly η(η − 1) · . . . · (η − d+ 1) = η!

(η−d)!
different ways to choose

the indices 1 ≤ j1, . . . , jd ≤ η such that they are all different. This means that the above
factor occurs η!

(η−d)!
times in Md

N=η.
In general we can use set partitions to classify all summands in Md

N=η. To see this
observe, that any summand contains k ≤ d different particle indices and is characterized
by a possible way to distribute these k particle indices over the d intensity contributions
in the product IMj1 · . . . · IMjd , i.e. by one possible way to split the d intensity contributions
into k subsets, each of which representing one of the k different particle indices. In this
way we have identified each summand as a product of single-particle averages of the form

⟨IMi · . . . · IMi︸ ︷︷ ︸
o times

⟩ = Mo ,

which are our single-particle moments and o is the size of one of the k subsets. These
products are again independent from the k different single-particle indices36 and therefore
occur η!

(η−k)!
times in Md

N=η. Remembering that set partitions in Sd
k are characterized by

tuples (o, σ), with o = (o1 ≤ . . . ≤ ok), one arrives at

Md
N=η =

d∑

k=1

η!

(η − k)!

∑

(o,σ)∈Sd
k

k∏

p=1

Mop , (118)

where the permutation σ regulates the distribution of the d arguments qλ
1 , . . . , q

λ
d of Md

N=η

over the products of single particle moments. While this formula seems quite complicated,
it simply means that the distinct summands of Md

N=η correspond to set partitions of a
set with d elements whose multiplicative prefactor η!/(η − k)! depends on the number of
subsets k of a given partition. This interpretation allows for a nice graphical formulation
of equation (118) based on set-partition diagrams, like the ones presented in figure 15, as
we shall see in later examples.

We are now able state the main result of this section for the case in which the number
of particles, N , is a random variable. The full derivation of this result can be found in
appendix A.4.
36Since the products only contain single-particle moments and all particles are assumed to be identical

up to rotations, i.e. they have the same moments.
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Observation 2.19 (Reduction to single-particle moments)
Consider FXS as defined in 2.1 and let Md

N be one of the two types of multi-particle
moments as defined in equation (60) or (61), e.g.

Md
N = Md

N(q1, . . . , qd, ϕ1, . . . , ϕd) or Md
N(q1, . . . , qd, n1, . . . , nd)

Consider Mo
|i1,...,io to denote the corresponding single-particle moment of the same type,

that has degree 1 ≤ o ≤ d and is evaluated on the coordinate pairs with indices 1 ≤
i1, . . . , io ≤ d of the multi particle moment Md

N , e.g.

Mo
|i1,...,io = Mo(qi1 , . . . , qio , ϕi1 , . . . , ϕio) or Mo(qi1 , . . . , qio , ni1 , . . . , nio)

For a set partition (o, σ) ∈ Sd
k with o = (o1 ≤ . . . ≤ ok) we define

Mop
||σ = Mop

|σ(p,1),...,σ(p,op) ,

where σ(p, a) is the shorthand from equation (116).37 Using this notation one finds that
Md

N is given by

Md
N =

d∑

k=1

〈
N !

(N − k)!

〉 ∑

(o,σ)∈Sd
k

k∏

p=1

Mop
||σ , (119)

where ⟨·⟩ is the average with respect to the random variable N . With P (η) being the
probability to observe a sample consisting of η particles this means

〈
N !

(N − k)!

〉
=

∞∑

η=k

P (η)
η!

(η − k)!
=

∞∑

η=k

P (η) η(η − 1) · . . . · (η − k + 1) . (120)

Example 2.20 (d = 1, 2 and 3) The classification of set partitions from figure 15 al-
lows us to directly compute the multi-particle moments with degree smaller than 4. To do
so, identify each black dot in 15 with a single particle intensity I evaluated at qi and place
averages according to the partitions. For d = 3 this means for example38

I(q1) I(q3)

I(q2)

=
〈
I(q1)I(q2)I(q3)

〉
= M3

|1,2,3
=
〈
I(q1)I(q2)

〉 〈
I(q3)

〉

= M2
|1,2M1

|3

37This means Mop
σ defines the single particle moment whose argument indices correspond to the p-th part

of the partition (o, σ), that subdivides the argument indices 1, . . . , d of the multi-particle moment.
38In order to make these examples as clear as possible we are suppressing the additional arguments ϕi

or ni depending on whether equation (60) or (61) is considered.
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With this the multi-particle moments take the form

M1
N = ⟨N⟩ ( )

M2
N = ⟨N⟩ ( ) + ⟨N(N − 1)⟩ ( )

M3
N = ⟨N⟩

( )
+ ⟨N(N − 1)⟩

(
+ +

)

+ ⟨N(N − 1)(N − 2)⟩
( )

which using the corresponding single-particle moments results in

M1
N = ⟨N⟩N M1

|1 = ⟨N⟩ISAXS (121)

M2
N = ⟨N⟩N M2

|1,2 + ⟨N(N − 1)⟩N M1
|1M1

|2 (122)

M3
N = ⟨N⟩N M3

|1,2,3 + ⟨N(N − 1)⟩N
(
M2

|1,2M1
|3 +M2

|1,3M1
|2 +M2

|2,3M1
|1
)

+ ⟨N(N − 1)(N − 2)⟩N M1
|1M1

|2M1
|3 . (123)

In particular we see, that the degree-1 multi-particle moment is simply the single-particle
SAXS intensity ISAXS scaled by the average number of particles.

A direct consequence of observation 2.19 is that knowledge about the first D multi-
particle moments together with the first D statistical moments ⟨Nd≤D⟩ of the particle
number gives access to all single-particle moments of the same degrees. The cause of this
is that, by equation (119), MD

N in general has the form

MD
N = ⟨N⟩MD

|1,...,D + V ,

where the function V only depends on single-particle moments Md with d < D and
averages of the form ⟨Nd⟩ with d ≤ D. Stated differently this simply means that within
fluctuation X-ray scattering one is able to use scattering patterns from multi-particle
samples to retrieve single particle structural-information, provided one has knowledge
about the probability distribution of the number of particles per sample.

In practice knowledge about N is of fundamental importance if one is interested in
obtaining structural information that goes beyond pure SAXS analysis, i.e. if one seeks
to use multi-particle moments of degrees higher than 1. To illustrate this, let us take
a closer look at the degree-2 case. Using the explicit formulas for the single-particle
moments given in equations (101) and (104) we find

M2
N(q1, q2, ϕ1, ϕ2) = ⟨N⟩

L∑

l=0

F l(q1, q2, ϕ1 − ϕ2)Bl(q1, q2)

+
(
⟨N2⟩ − ⟨N⟩

)
ISAXS(q1)I

SAXS(q2)

=
L∑

l=0

F l(q1, q2, ϕ1 − ϕ2)Bl(q1, q2)

{
⟨N2⟩ l = 0

⟨N⟩ otw.
, (124)

59



where the last equality is due to observation 2.16 which identified B0(q1, q2) as product of
SAXS intensities. In the two-dimensional case we can use the equivalence of the FXS mo-
ments Md and the single-particle invariants given in equations (78) and (80a) to similarly
obtain.

M2
N(q1, q2, n, n) = ⟨N⟩M2(q1, q2, n, n) + ⟨N(N − 1)⟩M1(q1, n)M1(q2, n)

= Bn(q1, q2)

{
⟨N2⟩ n = 0

⟨N⟩ otw.
(125)

The versions of this equation for a fixed number of particles N = η, such that ⟨N⟩ = η
and ⟨N2⟩ = η2, have been widely studied [19, 95, 100] and, for the three-dimensional case,
are already contained in the founding paper of the field [1, equation 11]39.

Let us keep the assumption N = η for a moment and continue considering three-
dimensional FXS. If one would directly apply the methods described in section 2.5.2 to
equation (124) and attempt to extract the invariants Bl(q1, q2) one would instead obtain
the scaled versions η2B0(q0, q1) and ηBl>0(q1, q2) of the single-particle invariants. Re-
member that Bl contains information about the harmonic coefficient of the singe-particle
intensity I(q, θ, ϕ), that can be retrieved by essentially computing the matrix “square root”

η/η0 = 1

η/η0 = 1.2 η/η0 = 2 η/η0 = 10

η/η0 = 0.8 η/η0 =
1
2

η/η0 =
1
10

(a)

(b) (c) (d)

(e) (f) (g)

Figure 16: Effect of scaling the I00 coefficients of the simulated noise-free scattered intensity
of a solid cube. Consider η0 to be the estimated number of particles which may differ from
the actual number n. (a) depicts the correct single-particle intensity I. (b)-(d) depict I ′ for an
underestimated number of particles, such that η/η0 takes the values 1.2, 2 and 10. Conversely
(e)-(f) depict cases in which the n0 > n and η/η0 is given by 0.8, 12 and 1

10 . The black areas in
figures (e)-(f) indicate areas with negative values.

39Although with the factor of n2 + n for l = 0 instead of the correct n2.
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of Bl as described in section 2.3. This means that if the scaled versions of Bl are used,
one does not extract information about I but rather about

I ′(q, θ, ϕ) =
√
η
(
I(q, θ, ϕ) + (

√
η − 1)I00 (q)

)
∝ I(q, θ, ϕ) + (

√
η − 1)I00 (q) (126)

whose isotropic part I ′00 ∝ √
ηI00 is overemphasized by a factor of √η in comparison to

its single-particle analogue I00 . This can cause I ′ to significantly deviate from the correct
intensity profile I. An example can be seen in figure 16, which displays the effect of
differently scaled isotropic parts I00 on cuts through the simulated scattered intensity of
a solid cube.

This problem is further complicated by the fact that there is no known way of estimating
the number of particles directly from the moments Md

N , despite their dependence on η.
One might suspect that the situation does not improve when one considers the number
of particles to be a random variable, but in fact this is precisely what happens. Let
us write BN

l (q1, q2) for the scaled invariants that can be obtained by directly using the
multi-particle moments M2

N , that is

BN
l (q1, q2) = Bl(q1, q2)

{
⟨N2⟩ l = 0

⟨N⟩ otw.
(127)

and we find

BN
0 (q1, q2)

M1
N(q1)M1

N(q2)
− 1 =

⟨N2⟩
⟨N⟩2 − 1 =

Var(N)

⟨N⟩2 . (128)

That means, we can compute the normalized variance of the number of particles, whose
square root is also known as coefficient of variation. Depending on the probability distri-
bution of N , this can allow us to compute all moments ⟨Nd⟩, that are necessary to access
the single-particle moments.

For example, if one can assume the particles to be uniformly distributed in space, then
the Poisson distribution becomes a valid model for N , that is P (η) = ζηe−ζ

η!
. In this case

the statistical moments of N take the form ⟨N⟩ = ζ, ⟨N2⟩ = ζ2 + ζ and equation (128)
reduces to

BN
0 (q1, q2)

M1
N(q1)M1

N(q2)
− 1 =

1

ζ
, (129)

which allows direct access to the average number of particles ζ and therefore all higher
moments of the Poisson distribution. While it remains to be seen if equation (129) can
be used to estimate the average number of particles with good enough accuracy to be of
practical value, it shows that FXS in principle provides access to the average number of
particles.

2.6. Summary

We have started this chapter with a generalized definition of fluctuation X-ray scattering ,
see 2.1, that includes moments of arbitrary degree and allows for a fluctuating number
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of particles N . Based on connections to mathematical invariant theory we where able
derive general statements about the information content of the FXS moments in form of
observations 2.12 and 2.13, which told us, that moments are sums over rotational invari-
ants and that knowledge about a finite number of these invariants is in principle enough
to specify the single-particle intensity up to a global rotation. Subsequently we derived
explicit forms for the important invariants of degree smaller then 4 (equations (78),(80)
and (83)) and discussed the information content of degree-2 invariants, which are known
to specify the single particle intensity up to a set of unitary matrices, see observation
2.17. Building on this fact, we saw how to use degree-2 moments to find the closest
single-particle intensity that is compatible with their information content (observation
2.18) which then allowed us to introduce the well known MTIP algorithm for structure
determination in section 2.4. In the final subsection we progressively connected the single
particle invariants to the FXS moments of increasing complexity. Starting in the single-
particle case we derived explicit expression of the moments Md for degrees lower than
4. We realized that the second version of the FXS moments, defined in (61), leads to
simpler connections to the single-particle invariants, which are given in equations (103),
(107) and (111). This fact allowed us to introduce a new approach for the extraction of
the single-particle invariants via the linear system given by equation (113). Last but not
least, we have derived the general connection between multi-particle and single-particle
moments of arbitrary degrees, using the language of set partitions, which resulted in ob-
servation 2.19. As consequence of this observation we have found that FXS is sensitive
to the coefficient of variation in the number of particles N , which holds the potential of
giving access to all statistical moments ⟨Nd⟩ via equation (129) and thereby solving the
scaling issue described in figure 16.

Contributions: All results based on the second version of the FXS moments, given in
equation (61), have been developed as part of this Thesis. This includes the new approach
to invariant extraction via equation (113), that has been published in [23]. Section 2.1 can
be regarded as a contribution, insofar as the connection to orbit-recovery problems and
mathematical invariant theory has previously not been known in the Field of fluctuation
X-ray scattering , nor have the general insights it provided via observations 2.3, 2.12,
2.13 and 2.14. To be clear, the underlying statements about orbit-recovery problems
belong to the authors of [101], this thesis merely realized their connection to FXS and
translated them accordingly. The link between single and multi-particle moments of
arbitrary degrees, under consideration of the number of particles as fluctuating random
variable, has been introduced as part of this thesis via observation 2.19. This connection
was previously only known for a fixed number of particles and degrees smaller than 3.
Finally this thesis showed that FXS provides direct access to the coefficient of variation
in the number of particles.
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3. Single-particle structure reconstruction workflow

With the principles of fluctuation X-ray scattering covered, let
us proceed to its practical applications. This section describes
the numerical details of a single-particle reconstruction work-
flow that was created as part of this thesis and published in
[23]. There are many interesting aspects that the presented
workflow addresses, such as:

• The treatment of missing data.

• A Regularization scheme for the degree-2 invariants, that
takes their natural decaying behavior for increasing mo-
mentum transfer values.

• Modifications to the MTIP routine that improve its con-
vergence.

• Alignment schemes for both 3D and 2D reconstructions.
In the 2D case, they allow for comparison free rotational
alignment.

Most of these topics center around the treatment of real im-
perfect data as well as the numerical stability of the phasing
loop itself and are therefore of major importance for practical
applications of FXS. As shown in figure 17 one can think of the
presented reconstruction workflow can be seen as a four step
process consisting of the following parts

1. Computation of the FXS moments of degree-1 and
degree-2 from masked diffraction patterns using cross-
correlations.

2. The extraction and regularization of the degree-2 invari-
ants.

3. Reconstruction of several candidates for the single-
particle density ρ(r) as well as its intensity I(q) via a
modified MTIP algorithm.

4. Alignment and subsequent averaging of all computed re-
constructions as well as the computation of resolution
metrics.

Each of these steps will be addressed individually, starting with
the computation of the degree-1 and degree-2 moments.

IM

M2
N

Bl

{ρi}

⟨ρi⟩

Average

Extract
Invariants

Reconstruct

Align

Figure 17: Sketch
of the single-particle re-
construction workflow.
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3.1. Calculation of FXS moments from masked data (d=1,2)

Figure 18 displays typical experimental scattering patterns IM(q, ϕ) which feature missing
data in detector gaps as well as areas of bad detector pixels that have to be masked. This is

(a) (b)

Figure 18: Example single-particle diffraction patterns of the PR772 virus collected during
the experiments, (a) amo86615 [111] and (b) amo06516 [112], at the Linac coherent light source
(LCLS). Light blue areas correspond to masked detector regions.

less critical for the determination of the SAXS intensity ISAXS, i.e. the degree-1 moments.
They can be computed by averaging the discretized scattering patterns IM(qi, ϕj), for
any fixed momentum transfer value qi, over their unmasked angular values followed by a
subsequent average over all measured diffraction patterns. Let us write mM(qi, ϕj) for the
mask associated with the diffraction pattern IM(qi, ϕj), such that for masked coordinate
pairs mM(qi, ϕj) = 0, then we may formalize the above as

M1
N(qi) =

〈
1

∑Nϕ−1
j=0 mM(qi, ϕi)

Nϕ−1∑

j=0

IM(qi, ϕj)m
M(qi, ϕj)

〉

M

, (130)

where Nϕ is the number of angular grid points ϕj. The fact that data may be missing
or unusable is however challenging in the computation of the degree-2 moments M2

N ,
since neither of its two definitions in equations (60) and (61) handle masked data. This
is exactly where angular cross-correlations become useful. In equation (109) we have seen
that the harmonic coefficients of the averaged angular cross-correlation correspond to the
non-zero values of the degree-2 moments, i.e.

M2
N(q1, q2, n1, n2) = δn1,nδn2,n

〈
Cn(q1, q2)

〉
M
.

Moreover, it is possible to compute cross-correlations for masked data [23, 113][114, sup-
porting information]. Consider a discretization of the arguments (q, ϕ) into a uniform
polar grid (qi, ϕj) with S momentum transfer values and Nϕ angular grid points. In the
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following we will use both ϕj and ∆j to denote the angular grid points ϕj = ∆j = 2πj/Nϕ.
It is then possible to compute the angular cross-correlation either directly or in Fourier
space. The direct approach is given by the formula

C(qi, qk,∆j) =

∑Nϕ−1
t=0 IM(qi, ϕt)m

M(qi, ϕt)I
M(qk, ϕt +∆j)m

M(qk, ϕt +∆j)∑Nϕ−1
t=0 mM(qi, ϕt)mM(qk, ϕt +∆j)

, (131)

which simply is the angular cross-correlation of the measured intensity, whose masked
area is set to zero, divided by the angular cross-correlation of the mask itself. Using
the cross-correlation theorem for the discrete Fourier transform F applied to the angular
coordinate yields the second version of this equation

C(qi, qk,∆j) =
F−1

[
F
[
IMmM

]
(qi, n)F

[
IMmM

]
(qk, n)

∗
](
qi, qk,∆j

)

F−1
[
F [mM ] (qi, n)F [mM ] (qk, n)∗

](
qi, qk,∆j

) , (132)

where, as usual, F denotes the Fourier transform and F−1 is its inverse. This second
version has an advantage in terms of computational complexity and is the preferred com-
putation method in our implementation. Using fast Fourier transforms (FFT) it requires
O(S2Nϕ log(Nϕ)) operations, which is less than the O(S2N2

ϕ) operations needed to deter-
mine the angular cross-correlation via equation (131).

Finally, in the three-dimensional case we know from equation (106) that the averaged
angular cross-correlation has to be an even function in ∆ and therefore needs to satisfy

C(q1, q2,∆) =
1

2
(C(q1, q2,∆) + C(q1, q2,−∆)) (133)

This allows us to perform an additional average over pairs of angular values (∆,−∆) in the
computation of the final averaged angular cross correlation. This property of the angular
cross-correlation does not hold in the two-dimensional case In the two-dimensional case
the averaged angular cross-correlation does not satisfy this property40 and no further
processing can be done.

3.2. Degree-2 moments from difference patterns

Another interesting feature of FXS is, that it allows to compute the degree-2 moments
M2(q1, q2, n, n) for n, n′ > 0 , from pairwise differences between diffraction patterns,
which significantly reduces the effect of a constant background signal. The following
derivation shows that this computation method preserves the FXS moments41 for all
harmonic degrees other than n = 0. Let us consider the difference between two intensity
patterns IM = IM ;1−IM ;2. Using the linearity in the definition of the harmonic coefficients

40In the 2D case one can use equation (109) to find C(q1, q2,∆) =
∑∞

n=−∞ Bn(q1, q2)e
in∆, which in

general is not even in ∆.
41Upto the multiplication with a constant factor of 2.
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we directly find IMn = IM ;1
n − IM ;2

n . Substituting this result into the definition of the FXS
moments from equation (61) yields

M2
diff(q, q

′, n, n′) =
〈(
IM ;1
n (q)− IM ;2

n (q)
)(

IM ;1
n′ (q′)− IM ;2

n′ (q′)
)∗〉

M

=
〈
IM ;1
n (q)IM ;1

n′ (q′)∗
〉
M

+
〈
IM ;2
n (q)IM ;2

n′ (q′)∗
〉
M

−
〈
IM ;1
n (q)

〉
M

〈
IM ;2
n′ (q′)∗

〉
M

−
〈
IM ;1
n (q)

〉
M

〈
IM ;2
n′ (q′)∗

〉
M

= 2M2(q, q′, n, n′)− 2M1(q, n)M1(q′, n′)∗

= 2M2(q, q′, n, n′)− 2δn,0δn′,0I
SAXS(q)ISAXS(q′) (134)

In the second equality we used the linearity of averages and the statistical independence
between different diffraction patterns, i.e. different samples, to expand the average. The
third equality is a simple application of the definition of the FXS moments and in the final
step we used equation (103) which relates the degree-1 moments to the SAXS intensity.
The additional factors for n = n′ = 0 do not play a significant role since they will only
affect the extracted single particle invariants Bn(q, q

′) and Bl(q, q
′) at n = l = 0 and we

have already seen in observation 2.16, that B0 can be independently obtained from the
SAXS profiles.42 A version of equation (134), formulated in terms of harmonic coefficients
of the angular cross-correlation function can be found in [22, Suplementary equation S17]
and has been developed as part of this thesis.

3.3. Extraction and regularization of rotational invariants

With access to the degree-2 moments M2(q1, q2, n, n) we may now proceed to compute
the scaled degree-2 invariants

BN
n (q1, q2) = Bn(q1, q2)

{
⟨N2⟩ n = 0

⟨N⟩ otw.
BN

l (q1, q2) = Bl(q1, q2)

{
⟨N2⟩ l = 0

⟨N⟩ otw.
, (135)

as described in section 2.5.2. In the three-dimensional case this is achieved by solving
the linear system presented in equation (113) via back-substitution, whereas in the two-
dimensional case equations (125) can be used to directly identify the invariants with the
degree-2 moments, that is M2(q1, q2, n, n) = BN

n (q1, q2).
The constraint on the averaged cross-correlation from equation (133), together with the

definition of the cross-correlation itself, ensure that the extracted degree-2 invariants have
the symmetry properties given in observation 2.15. The extraction routine does however
not enforce other important properties of the invariants such as their rank, which we know
from section 2.3 to be

rank
(
BN

n

)
= 1 and rank

(
BN

l

)
= min(S, 2l + 1) = Sl ,

42That Bl(q, q
′) will only change for l = 0 is directly evident from the triangular shape of the system of

linear equation in equation (113).
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as well as their positive semi-definiteness, which is a direct consequence of their connection
to the harmonic coefficients of the single-particle intensity, given in equation (87). In the
regularization step we therefore seek to find the optimal projection matrices ṽn and Ṽl

such that equation (88) holds ,i.e.

BN
n = ṽnṽ

†
n BN

l = ṼlṼ
T
l (136)

and the matrices ṽn and Ṽl have the theoretical rank of their corresponding invariants.
This decomposition enforces the previous mentioned properties and is a necessary pre-
requisite for the application of the MTIP phasing routine. As outlined in section 2.3 one
approach to their computation, as presented in [19], uses an eigenvalue decomposition of
the corresponding invariants BN

n (q1, q2) and BN
l (q1, q2), seen as matrices in their argu-

ments q1 and q2. The columns of ṽn and Ṽl are then identified with eigenvectors scaled
by the square root of their respective nonzero eigenvalue. We have seen, in section 2.3,
that there should be exactly 1 = rank

(
BN

n

)
nonzero eigenvalue per harmonic degree n

in the two dimensional case and Sl = rank
(
BN

l

)
nonzero eigenvalues at degree l for the

3D case. When computing eigenvalues of BN
n and BN

l in the presence of noise, this is
unfortunately not the case. Both matrices are then almost guarantied to have full rank

S = rank
(
BN

n

)
= rank

(
BN

l

)

and one is faced with the problem of selecting the eigenvalue-eigenvector pairs out of
which the projection matrices should be formed.

One possible solution to this problem is to choose the highest nonzero eigenvalues, until
as many are selected as the theoretical rank of the invariants permit. We shall call this
the direct regularization approach. Following this procedure can however lead to quite
substantial differences between the input invariants and their decomposition in terms of
ṽn and Ṽl, especially at higher momentum-transfer values q1 and q2. Intuitively one may
understand the problem by realizing that the eigenvectors multiplied with the largest
eigenvalues are connected to the first principal components of the invariant matrices and
thus represent their dominant features.43 At the same time we know that the absolute
value of the invariants have to decrease fast for increasing momentum transfer values.44

Together these two facts imply that the direct approach tends to maximize the agreement
between the input invariants and ṽnṽn

† or ṼlṼl
T at low momentum transfer values, i.e.

in regions that contain their largest values, while neglecting higher parameter ranges.
Here we propose an alternative way of computing the projection matrices, which we call

the rescaled approach. An example of the bad behavior of the direct method in comparison
to our rescaled computation can be seen in Figure 19. As already mentioned in a remark
43Independent from noise or any artifacts, contained in the scattering data, both BN

n and BN
l have

to be self-adjoint by their construction. Their eigenvalue decomposition is therefore connected to
their singular-value decomposition by separating the signs of the eigenvalues. The products between
eigenvectors and the absolute value of their eigenvalues thus form the principal components.

44For example if the considered particle is a sphere, Porods law [28, equation 4.27] tells us that its
intensity decays like 1

q4 in the limit q → ∞, correspondingly Bn(q, q) and Bl(q, q) may decay as fast
as 1

q8 .
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Figure 19: (a)-(c) show extracted Bl coefficients for l = 2, 4, 6. (d)-(f) display ṼlṼ
T
l where Ṽl

is computed using the 2l+1 highest eigenvalues. (g)-(i) represent ṼlṼ
T
l in which Ṽl is computed

via the proposed rescaling method. (j)-(l) and (m)-(o) display the relative error |ṼlṼ
T
l −Bl|
|Bl| for

both versions of Ṽl, respectively. It can be seen that the direct approach causes ṼlṼ
T
l to differ

significantly from Bl for all q1, q2 > 0.2nm−1. The proposed rescaled approach results in error
values that are more evenly spread across the argument range and crucially yield a significantly
better agreement between the phases (signs) of Bl and its decomposition ṼlṼ

T
l . The graphs are

computed using the experimental dataset discussed in 5.2.
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to observation 2.17 the matrices ṽn and Ṽl do not have to be created from eigenvalues of
the invariants. In general the problem may be rephrased as finding the matrices ṽn and
Ṽl that satisfy equation (136) in an “optimal” way, where the chosen optimality condition
has to take the natural decay behavior of the invariants into account. We achieve this by
rescaling the invariant matrices Bn and Bl in an “optimal” way before selecting its highest
eigenvalues-eigenvector pairs. In detail the computation routine for the three-dimensional
case is as follows.

1. Compute the eigenvalues and eigenvectors of Bl.

2. Let λ be the highest eigenvalue with the associated eigenvector Vλ and define (sσ)j =
(
√
λ |(Vλ)i| ⋆ 1√

2πσ
e−i2/(2σ2))j. That is sσ is given by applying a Gaussian filter with

standard deviation σ to the component-wise absolute value of
√
λ(Vλ)i.

3. Scale Bl by sσs
T
σ, i.e. consider the component-wise division B′

l =
Bl

sσsTσ
.

4. Create a matrix Ṽl
σ by choosing the Sl highest eigenvalue-eigenvector pairs of B′

l

that are multiplied with sσ component-wise. That is (Ṽl
σ)i,j =

√
λ′j|(V ′

j )i|(sσ)i,
where λ′j is the j-th highest nonzero eigenvalue of B′

l with associated eigenvector
V ′

j .

5. Consider the one dimensional loss function given by the Frobenius norm

L(σ) = ||sign(Bl)− sign(Ṽl
σṼl

σT )||F

=

√∑

i,j

(sign(Bl)− sign(Ṽl
σṼl

σσT ))2i,j . (137)

Determine the optimal standard deviation σopt, i.e. the value of σ that minimizes
the above loss function and set Ṽl = Ṽl

σopt .

In the two-dimensional case one can proceed in complete analogy by simply exchanging Bl

with Bn and its corresponding rank condition. In step 3 we use that the highest principal
component of Bl has to capture its decay property. Rescaling by its absolute value should
therefore put all remaining features in Bl on the same absolute scale and hence remove
the imbalance between high and low momentum transfer values. The Gaussian filter is
necessary to avoid zeros in the absolute value of the highest principal component that
occur due to sign changes in Bl. Finally the loss-function (137) allows one to chose
the parameter of the Gaussian filter such that the phase boundaries (signs in the three-
dimensional case) are optimally preserved by the resulting decomposition ṼlṼl

T . This
is desirable since it is known that the phase boundaries of Cn or by extension the phase
boundaries of Bl(q1, q2) contain important structural information [20, 22].
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Masking: Another noise related issue in the computation of the projection matrices is,
that masking high-q regions in the extracted invariants affects the computed projection
matrices ṽn and Ṽl in a non-trivial way. Figure 20 shows that including noisy high-q
regions in the computation of the projection matrices leads to worse results in the entire
q-range. This means, that one has to be careful in the selection of the momentum transfer
range that is used for the computation of the projection matrices and it is beneficial to
choose this area independently for each considered harmonic order n or l. In the following
we describe a procedure that is able to partially compensate the information loss in the
projection matrices Bl with Bn , that is caused by the application of masks during their
computation. Again we shall present the result only in the tree-dimensional case, its
two-dimensional version can be obtained in complete analogy.

Consider the ideal noise free case in which Bl = ṼlṼl
T . Splitting the momentum

transfer points into a low-q and a high-q region introduces a splitting of the invariant Bl

via45

Bl =




B1
l Al

AT
l B2

l




q2

q1 , (138)

as well as a splitting of Ṽl in its q-dependent dimension via Ṽl = [Ṽl
1, Ṽl

2], where Ṽl
1

corresponds to the low-q region of Ṽl. Using the decomposition property one finds

Bl = ṼlṼl
T =




Ṽl
1

Ṽl
2



[

Ṽl
1
T

Ṽl
2
T

]

=




Ṽl
1Ṽl

1
T

Ṽl
1Ṽl

2
T

Ṽl
2Ṽl

1
T

Ṽl
2Ṽl

2
T




(139)

Moreover the matrix Ṽl
1 can always be assumed to have full rank, since they where created

from scaled versions of distinct eigenvectors. As long as the number of momentum transfer
points in the low-q area is larger than 2l + 1 one can therefore assume that the matrix
Ṽl

1 has linearly independent columns. This implies that it has a left-inverse, i.e there
is a matrix Ṽl

1
−1

such that Ṽl
1
−1
Ṽl

1 = id is the identity matrix. Combining this with
equations (138) and (139) one can see that the decomposition matrix Ṽl

2 in the high-q
area may be reconstructed from the values of Bl together with the decomposition matrix

45Note that in matrix notation the q-values increase starting from the upper left corner downwards in the
q1-direction and to the right in the q2-direction while in image representations of Bl, see e.g. figure
20, the directions of the axes are swapped and they start in the lower left corner.
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Ṽl
1 in the low-q area, that is

Ṽl
1−1

Al = Ṽl
1−1

Ṽl
1Ṽl

2T = Ṽl
2T (140)

In the presence of noise this relation can be used to optimally extend a decomposition
calculated within a low-q area to higher momentum transfer values. The images labeled
by masked extended in figure 20 show an example of this method applied to experimental
data.
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Figure 20: (a) displays the extracted invariants in degree l = 2. Images (b) and (c) display the
decomposition ṼlṼ

T
l computed using the rescaled method on the entire dataset and the limited

data range with q ≤ 0.7nm−1 indicated by the black square, respectively. (d) corresponds to the
extension of the decomposition given in (c) by the proposed extension algorithm. Finally, (e)-(g)
display the relative deviation of the decompositions (b)-(d) from the extracted invariants given

in (a), i.e. |ṼlṼ
T
l −Bl|
|Bl| . It can be seen that the unmasked computation results in larger deviations

from the input invariants within the low-q area as compared to the masked computation. Addi-
tionally it can be seen that the extension process allows to obtain at least comparable, in some
areas slightly better, agreement in the high-q area in comparison to the unmasked approach.
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3.4. Iterative phasing using MTIP

Knowledge about the decomposition matrices Ṽl or ṽn allows us to implement the invari-
ant projection operator Pinv (98), which lies at the heart of the MTIP phasing routine
described in section 2.4. The next step in our workflow therefore consists of using MTIP
to obtain several candidate electron densities for the single-particle structure ρ. In this
section we focus on the implementation of the individual subroutines within the phas-
ing loop. The main differences between our implementation and the original approach
proposed in [19], lies in the computation of the Fourier transforms and an iterative sta-
bilization routine that reduces the impact of unavoidable numerical inaccuracies in their
computation. These modifications will be the topic of sections 3.4.1-3.4.3 and have been
published in [23]. Other aspects of the presented phasing routine, such as the used real-
space constraints, the employed optimization schemes (ER/HIO) or the phasing error
metrics are mostly based on known approaches in conventional X-ray imaging and will be
discussed in sections 3.4.4 and 3.4.5.

3.4.1. Fourier transforms

The computation of the Fourier transforms within MTIP constitutes a major numerical
challenge that is directly connected to the formulation of the invariant projection Pinv in
terms of harmonic coefficients. Computations of these harmonic coefficients require access
to the current single-particle intensity guess in polar / spherical coordinates. In order to
avoid the inaccuracies and performance limitations that would arise from repeated inter-
polations between Cartesian and polar / spherical coordinates it is desirable to formulate
the entire phasing loop, including the Fourier Transforms, in polar / spherical coordinates.
The downside of this is, that there is no analog of the Cartesian discrete Fourier trans-
form (DFT)[47], which acts as a unitary transformation, in polar / spherical coordinates.
The approach applied here is similar to the one provided by [19], in the sense that both
rely on numerical approximations of the Hankel transforms, which connects the harmonic
expansion of a function to the harmonic expansion of its Fourier transform. Consider
ρn(r) and ρlm(r) to be the harmonic expansion coefficients of an electron density in polar
and spherical coordinates, and let ρ̂n(r) and ρ̂lm(r) be the expansion coefficients of the
respective scattered amplitudes (Fourier transformed densities). The Hankel transform
then connects ρn(r) and ρ̂n(r) in the 2D case via

ρ̂n(q) = (−i)n
∫ ∞

0

ρn(r)Jn(qr)r dr (141a)

ρn(r) = (i)n
∫ ∞

0

ρ̂n(q)Jn(qr)q dq , (141b)

where Jn are Bessel functions of the first kind. For spherical harmonics the corresponding
connection is given by the three-dimensional Hankel transform

ρ̂lm(q) =

√
2

π
(−i)l

∫ ∞

0

ρlm(r)jl(qr)r
2 dr (142a)

ρlm(r) =

√
2

π
(i)l
∫ ∞

0

ρ̂lm(q)jl(qr)q
2 dq , (142b)
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where jl are spherical Bessel functions. These integrals are in general difficult to approx-
imate due to the highly oscillatory behavior of the Bessel integral kernels. In the original
version of MTIP [19], it was proposed to approximate the continuous Hankel transforms
given in (141) and (142) by expanding the harmonic coefficients ρm(r) or ρlm(r) (and their
reciprocal space counterparts) in some orthogonal basis, thereby shifting the Hankel inte-
gral to the chosen expansion functions [see Appendix B]. The idea was, that the Hankel
transforms of these known expansion functions can be numerically approximated to high
precision and stored as weights. Approximation of the Hankel transform of any function
could then be reduced to the approximation of its orthogonal expansion coefficients. In
[19] this was accomplished using the cosine/sine series expansions [see Appendix B.2].
As part of this thesis we developed another approximation based on Zernike polyno-
mial expansions, which allowed us to obtain closed-form expressions for the remaining
Hankel integrals, and hence eliminate the need of their numerical approximation [see Ap-
pendix B.3]. Further investigation however showed, that both approaches converge to
direct approximations of the integrals in equations (141) and (142) using simple Riemann
sums. Moreover we could show, that any approximation based on orthogonal expansions
is less accurate than the corresponding direct approximations of the continuous Hankel
transforms, using the numerical method that would be used to estimate the orthogonal
expansion coefficients [see Appendix B.1 and B.4]. We therefore employ the midpoint rule
as default approximation scheme for the Hankel integrals in our reconstruction workflow
[see Appendix B.4]. In the 2D case, the Hankel transform (141) can thus be approximated
on a discrete polar grid as

ρ̂n(qk) ≈
(−i)n
Q2

max

N−1∑

p=0

ρn(rp)wn(p, k) (143a)

ρn(rp) ≈
in

R2
max

N−1∑

k=0

ρ̂n(qk)wn(k, p) , (143b)

with the quadrature weights wn(p, k) being defined by

wn(p, k) =
π2(1 + 2p)

2
Jn

[ π
4N

(1 + 2p)(1 + 2k)
]
. (143c)

In the 3D case, the spherical Hankel transform (142) is approximated by

ρ̂lm(qk) ≈
(−i)l
Q3

max

N−1∑

p=0

ρlm(rp)wl(p, k), (144a)

ρlm(rp) ≈
il

R3
max

N−1∑

k=0

ρ̂lm(qk)wl(k, p), (144b)

using the quadrature weights

wl(p, k) =
π2
√
π

2
√
2
(1 + 2p)2jl

[ π
4N

(1 + 2p)(1 + 2k)
]
. (144c)
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Notice, that the weights in the inverse transforms (143b) and (144b) are determined by
transposing the parameters p and k in the weight functions specified for the forward
transforms in equations (143c) and (144c), respectively.

For the computation of the polar harmonic expansion coefficients them selves we employ
a fast Fourier transform (FFT) over the angular coordinates for each fixed momentum
transfer value qi, that is

ρn(qi) =
1

Nϕ

FFT
[
ρ(qi, ϕj)

]
and ρ(qi, ϕj) = NϕFFT−1

[
ρn(qi)

]
. (145)

In the 3D case we use the Gauss-Legendre quadrature based methods provided by the
software package shtns [109] to compute the spherical harmonic coefficients.

3.4.2. Discrete polar/spherical grids

Our choice of using the midpoint rule to approximate the Hankel transform implies that
the radial sampling used throughout the phasing loop has to be uniform and can be
specified as follows

rp = (p+ 1
2
)Rmax/S qk = (k + 1

2
)Qmax/S p, k = 0, . . . , S − 1 , (146)

where Rmax and Qmax represent the maximal extend of the real and reciprocal space,
respectively, while S denotes the number of considered radial sampling points. In practice
Qmax is determined by the maximum momentum transfer value for which diffraction
patterns IM have been recorded or the quality of the extracted degree-2 invariants. For the
approximation of polar/spherical Fourier transforms in general we found it beneficial to
link Rmax to Qmax and the number of sampling points S via an analogue of the reciprocity
relation employed in FFTs [47, equation 2.5], i.e.:

2Rmax2
Qmax

2π
= 2S ⇒ RmaxQmax = πS , (147)

where the division by 2π is due to the convention of representing the momentum transfer
values as angular wavenumbers in unit of radians per length scale, e.g. in units of 2π

nm .
Within the phase retrieval routine we however only need to consider a small fraction of
the real-space sampling points rp given in equation (146). The oversampling constraint
of iterative phase retrieval (see section 1.3) demands that the maximal radius Rρ, that
is contained in the support of the target electron density, has to be several times smaller
than Rmax for a given maximal data extend Qmax in reciprocal space. This means that,
without loss of numerical precision, we can restrict all computations within the phasing
loop to those radial sampling points rp that are smaller than Rρ. For example in terms of
the Hankel transforms this means that the sums in equations (143a) and (144a) only have
to be computed for a small subset of all indices p. In our phasing routine it is therefore
possible to specify the maximal particle radius Rρ.

The angular grids are completely specified by the routines that compute the harmonic
decompositions and the maximal considered harmonic degree L for which degree-2 invari-
ants have been computed. In the two-dimensional case the use of FFTs translates into a
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uniform angular grid with Nϕ points given by

ϕj = 2π
j

Nϕ

with 0 ≤ j < Nϕ . (148)

In the 3D case the angular grid is given by

ϕj = 2π
j

2L+ 1
j = 0, . . . , 2L θk =

π

2
xk k = 0, . . . , L , (149)

where xk are the Gauss-Legendre quadrature notes, i.e. the roots of the Legendre poly-
nomial with degree L+ 1.

(a) (b)

Figure 21: (a) Discrete polar grid, (b) discrete spherical grid, both for L = 16 and N = 8.

3.4.3. Fourier transform stabilization

One consequence of the approximation schemes for the analytic Fourier transform in
polar or spherical coordinates is, that applying the forward and backwards transform
in direct sequence is not numerically equivalent to the identity transformation. There
are two main sources of error, firstly any features in the input density that correspond
to harmonic orders higher than the considered cutoff L are lost and secondly the errors
induced by the approximation of the Hankel integral as well as the integrals encountered
in the computation of the harmonic coefficients. We empirically found that stabilizing
the Fourier transforms in the iterative phasing loop by the following procedure helps to
reduce those errors and improves the convergence of reconstructions. Using the notation
in Fig. 14 this correction can be expressed by modifying the definition of ρ′ = F−1ρ̂ ′ as

ρ′ = F−1ρ̂ ′ +
[
ρ−F−1ρ̂

]
. (150)

In the limit of a completely converged MTIP reconstruction, i.e. when ρ̂ = ρ̂ ′, meaning
that the reciprocal space projections do not change the intensity anymore, this definition
ensures that the modified density ρ′ coincides with the input density ρ of the current
iteration. Without this procedure ρ′ and ρ would differ due to the initially described
error sources.
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Figure 22: Flow chart of the proposed Fourier transform stabilization procedure.

3.4.4. Generic iterative phase retrieval components

Apart from the Fourier transforms and the reciprocal-space constraint our implementation
of the phasing loop follows the common iterative phasing scheme discussed in section 1.3.
It incorporates the possibility to iterate between the ER and HIO optimization schemes as
well as shrinkwrap steps in which the real space support is updated according to equation
(35). Both the feedback parameter β of the HIO routine as well as the Gaussian standard
deviation σ of shrinkwrap steps can be chosen to depend on the iteration number during
the phasing process. In addition to the support projection PS it is possible to use the
value projection PV, as defined in equation (33), to enforce that electron-densities are
real valued and positive. In our implementation the real-space density projection PX (see
figure 14) is therefore given by

PX
[
ρ′
]
= PV

[
PS
[
ρ′
]]
. (151)

Finally each reconstruction is started from a random spherical electron density guess ρ0
whose support can be optimally chosen to fit the expected size of the reconstruction
target. The support of ρ0 also corresponds to the support used in PS until it is changed
during applications of the shrinkwrap method.

3.4.5. Reconstruction error metric

The evolution of the iterative phasing process can be tracked using several metrics, which
may serve as convergence and error estimates. In analogy to error metrics commonly
used in conventional X-ray imaging [39, 43] we define the relative normalized errors in
reciprocal and real space as [see Fig. 14]

Ereciprocal =
||I(q)− I ′(q)||L2

||I(q)||L2

, (152a)

Ereal =
||ρ′(r)− PX [ρ′](r)||L2

||ρ′(r)||L2

, (152b)

where PX is the density projection defined in equation (151). Since the single-particle
scattered intensity I is initially unknown in FXS and reconstructed during the phasing
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process, the metrics Ereciprocal and Ereal can only serve as convergence indicators and do
not directly estimate the deviation of the current solution from experimental observables
given by the decomposition matrices Ṽl or ṽn. For this reason we also define metrics for
determining the relative difference in the L2 norm on the level of the invariants as

En =

∫ ∫
q q′
∣∣Bn(q, q

′)−BI
n(q, q

′)
∣∣2 dq dq′∫ ∫

q q′ |Bn(q, q′)|2 dq dq′
, (153a)

El =

∫ ∫
q2(q′)2

∣∣Bl(q, q
′)−BI

l (q, q
′)
∣∣2 dq dq′∫ ∫

q2(q′)2 |Bl(q, q)|2 dq dq′
, (153b)

where Bn(q, q
′) =

(
ṽnṽn

†)
q,q′ and Bl(q, q

′) =
(
ṼlṼl

†
)
q,q′

denote the input invariants

employed as constraints, while BI
n(q, q

′) and BI
l (q, q

′) are the invariants directly calculated
from the harmonic coefficients In(q) and I lm(q) corresponding to the current phasing loop
iteration [see figure 14].

3.5. Alignment and Averaging

The last step in our reconstruction workflow consists of aligning and averaging the electron
density candidates, that have been obtained in the previous step. In conventional iterative
phasing this requires the individual reconstructions to be aligned with respect to point
inversion and translations, since these properties remain unconstrained during phasing.
The same freedoms exists within fluctuation X-ray scattering and need to be addressed
during averaging. Additionally FXS, by its definition, only allows access to rotation
invariant information about the single-particle structure. Consequently, individual MTIP
reconstructions, initiated from random density guesses, also vary in their rotation states.
This implies that additionally a rotational alignment is required during averaging.

At the same time it is clear that the global rotation states of individual reconstructions
do not contain any scientifically interesting information. In particular this means that,
without loss of generality, we may try to reconstruct Rαρ or Rωρ instead of ρ, for an
arbitrary choice of the rotation α or ω. This free global rotation does not allow us to
completely fix the rotation states of possible reconstructions. Instead, it allows us to
place an additional constraint on the unknown unitary matrices given in equation (89).
To characterize the possible restrictions, we may use the action of rotations on harmonic
coefficients given in equations (56)-(57) and apply it to (89), which results in

Rα (In) = Ine
inα = ṽnune

inα (154a)

R(α,β,γ)

(
I l
)
= I lDl(α, β, γ) = ṼlUlD

l(α, β, γ) . (154b)

In equation (154b) we interpret Dl(α, β, γ) for each l as a (2l + 1) × (2l + 1) matrix
whose coefficients are the Wigner D-matrix elements Dl

n,m(α, β, γ). The free rotations
specified by α and (α, β, γ) allow us to change the unknowns by multiplication with a
phase factor einα and a matrix multiplication with Dl(α, β, γ) for the two-dimensional
and three-dimensional cases, respectively.
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In two-dimensional FXS the unknowns un, them selves, are phase factors and for a
single fixed harmonic order n0 one can always find a rotation α0 such that the product
un0e

in0α0 is equal to any desired complex number of norm 1, e.g. such that un0e
in0α0 = 1.

Stated differently this means, that the global rotation freedom allows us to choose a
single harmonic order n0 and add the restriction In0 = ṽn0 during the iterative phasing
process. As we shall see later in this section, this results in a finite number of possible
orientation states for all reconstruction46, which enables a posteriori algebraic orientation
determination on the level of individual 2D reconstructions. Therefore eliminating the
need for comparative rotational alignment.

In the three-dimensional case, the restriction posed by equation (154b) is not strong
enough to fix any of the unknown matrices U′

l during the reconstruction process and does
not allow for orientation determination of single reconstructions. Instead we perform
comparative rotational alignment with respect to the reconstruction ρref(r, θ, ϕ) with the
lowest phasing error metric. For this comparative alignment we use the Fast Fourier
Transform on the special orthogonal group SO(3) (equation (53)), in conjunction with
the methods described in [90], to rotationally align all reconstructions with respect to
the selected reference. The Fast Fourier Transform on SO(3) enable efficient calculations
of the rotational cross-correlation C(ω) between the reference ρref(r, θ, ϕ) and any other
reconstructed density ρ(r, θ, ϕ), which is given by

C(ω) =

∫ rmax

rmin

dr

∫ π

0

sin θ dθ

∫ 2π

0

dϕ ρref(r, θ, ϕ)Rω(ρ(r, θ, ϕ)), (155)

where, as described in section 1.7, ω is a rotation in SO(3) and Rω(ρ(r, θ, ϕ)) is a rotated
version of the reconstructed density ρ(r, θ, ϕ). The cross-correlation C(ω) is maximal
at the rotation ω = ωopt for which the rotated density ωopt(ρ) optimally matches the
corresponding reference ρref . To facilitate structure alignment it is helpful to limit the
radial range (rmin, rmax) to regions of the reconstructed densities which are not spherically
symmetric.

In order to account for point inversion of a reconstruction with respect to the reference
we apply this alignment procedure to each 3D reconstruction ρ, as well as its point-inverse
ρinv, resulting in two aligned candidates, ρ and ρinv per reconstruction. In the 2D case
we obtain two aligned candidates ρ and ρinv per reconstruction by simply point inverting
the result of the orientation determination step. The general alignment and averaging
procedure can then, for both cases, be described as a four step process

1. (position) Shift all reconstructions, such that their respective center of density lies
at the origin of the coordinate system.

2. (rotation) Perform rotational alignment, algebraically in 2D and comparatively in
3D.

3. (point inversion) Correct for point inversion.
46Intuitively one may see this by realizing that due to the periodicity of ein0α0 , there are always exactly

n0 possible rotation angles α0 that satisfy un0
ein0α0 = 1, these angles correspond the remaining free

rotation states any reconstruction can attain.
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4. Average the aligned densities and compute resolution metrics.

In the point inversion step we determine the relative distance of each of the aligned
candidates ρrot ∈ {ρ, ρinv} to the reference density ρref using the L2 norm derived from
equation 90b,

L(ρrot, ρref) =
||ρrot − ρref ||L2

||ρref ||L2

, (156)

and select the candidate ρrot with the lowest distance for subsequent averaging. In the
2D this requires the selection of a reference, which is again done using the phasing error
metric. Note, that the selection of a reference at this point is less critical since the only
remaining freedom lies in the selection of ρ or ρinv, which is less sensitive to structural
differences between reconstructions than their rotational alignment.

In the last step the presented algorithm allows to select the reconstructions to be used
in the final average based on their error metrics (152) and (153), as well as their distance
(156) to the reference structure computed in step 3. Finally a resolution estimate of
the average can be computed using a generalized version of the phase retrieval transfer
function (PRTF) [20],

PRTF(q) =
|⟨F [ρi(q)]⟩i|
⟨|ρ̂ ′

i (q)|⟩i
, (157)

where ⟨·⟩i denotes averaging over the selected collection of aligned reconstructions, and
F [ρi(q)] is the Fourier transform of the i-th aligned electron density [see figure 14]. If
we assume that |ρ̂ ′

i (q)| are identical in all individual reconstructions, as is the case in
conventional SPI (where |ρ̂ ′

i (q)| =
√
I(q), and I(q) is the experimentally determined

intensity), the expression (157) reduces to the conventional PRTF formula [see e.g. [48]].
The remainder of this section focuses on the algebraic orientation determination algo-

rithm that can be used in 2D FXS. Here we are in the fortunate situation that the freedom
of choosing a global rotation poses a significant constraint. We have already seen, that
via equation (154a) this freedom can be used to add the following constraint during the
reconstruction stage.

• Choose a single harmonic order n0 and demand In0 = ṽn during reconstructions.

Equivalently this means that we can use the rotational freedom together with the degree-2
invariants to completely determine the single-particle intensity harmonic coefficient In0(q)
at order n0. This causes the space of possible rotation states of any reconstruction to be-
come finite, since only those rotations remain allowed that leave the now completely
known coefficient In0(q) unchanged. Consequently, the number of possible values for the
remaining unknown phase factors un also becomes finite. After completing a particular
reconstruction the determined values of un can be used to formulate a finite iterative pro-
cess that successively reduces the remaining rotational freedom until each reconstruction
reaches a common global rotation state. This method has the advantage that no choice of
a reference structure is needed for rotational alignment and thus avoids potential biases
introduced in the selection of such a reference. We shall now describe the iterative process
in detail.
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After the phase retrieval step the intensities associated with any reconstruction can only
differ in their values for the unknown phases factors un, which encode their corresponding
rotation states. Consequently, the different sets of possible unknowns un are connected
by the action of rotations given in equation (154a). The constancy of In0 and hence un0

then demands

un0e
in0αj = un0 ⇒ αj = j

2π

n0

, j = 0, . . . , n0 − 1. (158)

Thus, there are n0 distinct rotation angles αj that leave un0 invariant upon the rotation
action. Since all of these rotations are integer multiples of φ1, they lead to n0 possible
global rotation states attainable by each individual reconstruction. The remaining task
is to rotate all individual reconstructions such that they have matching phase factors un
and hence have the same global rotation state.

Given any other harmonic order n1 ̸= n0, we can apply one of the remaining rotations
φj that transforms un1 to some unique value, while leaving un0 unchanged. For example,
we may request arg(un1) to take the minimum possible value after wrapping it into the
interval (0, 2π), that is

argmin
α∈{αj}

(
mod[arg(un1) + n1α, 2π]

)
, (159)

and apply any of the rotations αj that solve the minimization problem (159). In equation
(159) “mod(·, 2π)” stands for the modulo operation with respect to 2π that is used for
phase wrapping.

After aligning the phase for the harmonic order n1, only those rotations states αj remain
possible, which leave both un0 and un1 invariant under rotation. The invariance condition
for order n1 takes a form similar to equation (158), that is

un1e
in1αk = un1 ⇒ αk = k

2π

n1

, k = 0, . . . , n1 − 1. (160)

Clearly, only those rotations αj leave both un0 and un1 invariant, which are present in both
sets of rotations, {αj} and {αk}, defined in equations (158) and (160), correspondingly.
The set A of such rotations can be determined as a result of intersection of the two sets of
rotations, e.g. A = {αj} ∩ {αk}. The number of rotations g1 in the set A is equal to the
greatest common divisor of n1 and n0, i.e. g1 = gcd(n1, n0). These g1 rotation states can
be considered in the following steps to align the remaining harmonic orders. Notice, that
if (in the example above) n1 would be a multiple of n0, then g1 = n0, and there are no
rotation states in the set {αj} that may alter un1 . Hence, all orders n that are multiples
of n0 may be excluded from the alignment procedure.

This allows us to define an algebraic alignment procedure, in which we successively
choose harmonic orders n, and use the remaining rotational states to project arg(un) to
its lowest possible value. The complete alignment algorithm can be formulated in steps
as follows (see an example of its application in Fig. 23 for n0 = 12, n1 = 8, and n2 = 6):

1. (Before reconstruction process) Define a sorted set of harmonic orders O = {nt},
with t ≤ tmax, where tmax is the total number of harmonic coefficients considered in
the reconstructions. Set un0 = 1 during the iterative phasing.
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2. (After completing the reconstruction) Do the following for each reconstructed elec-
tron density ρ(r). In the 0-th alignment iteration (i = 0), compose a set A with
possible global rotation states {αj}, where αj are defined in equation (158), and set
g0 = n0.

3. Remove all multiples of gi from the set O. If O is empty (or gi = 2) the alignment
is finished, otherwise start the next iteration (i→ i+ 1) in the next step.

4. Choose ni to be the first remaining element of O. Choose one of the rotations αj

from the set A that solves the minimization problem (159) for ni, and apply this
rotation to all harmonic orders nt present in the current set O, so that the updated
phases are determined as arg(unt) = mod[arg(unt) + ntαj, 2π]. Apply the same
rotation to the considered reconstruction ρ(r).

5. Compose a set B with rotation states {αk} determined for the harmonic order ni

according to equation (160).

6. Update the set of remaining free rotations A by intersecting it with the set B, that
is A = A∩B = {αj}∩{αk}. The updated set A contains gi = gcd(ni, gi−1) rotation
angles. Go to step 3.

Requiring the removal of all multiples of gi (step 3) removes all orders whose phase factors
can not be changed by the remaining rotations in A. Stated differently, this condition
ensures that gi < gi−1, which means that the number of free rotations decreases after each
alignment iteration. This causes the algorithm to stop after a finite (and typically small)
number of iterations.

For robust performance of the algorithm it is important to sort the orders nt in the set O
according to the magnitude of the harmonic coefficients |Int | so that the most significant
orders correspond to low indices t. To achieve this we ordered the intensity harmonic
coefficients in descending order of their L2-norms determined as

||In|| =
√∑

k

|In(qk)|2qk =
√∑

k

|ṽn(qk)|2qk, (161)

where ṽn(qk) are the elements of the matrices ṽn introduced in equation (88). The ma-
trices ṽn for small momentum transfer values qk tend to be noisy, therefore it might be
appropriate to exclude the low-q area from the summation in equation (161).

After completing the alignment process, individual aligned reconstructions are unique
up to point inversion. This final ambiguity is resolved comparatively under usage of
equation (156) in the same way as for the three-dimensional case.
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Iteration i = 0
n0 = 12, g0 = 12
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Iteration i = 1
n1 = 8, g1 = 4

O = {8, 6, 2, 4, 10}
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Iteration i = 2
n2 = 6, g2 = 2
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End
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Figure 23: Illustration of the alignment algorithm, where the specified values of parameters
correspond to the beginning of each alignment iteration. The values of phases arg(un) (corre-
sponding to the beginning of each alignment iteration) are specified for the respective orders
n provided in the original set O at i = 0. They are shown in the plots as solid black vertical
lines, while the dashed lines signify all other possible values permitted by the set of rotations
A in a particular iteration. The orange rectangles highlight the harmonic order whose phase is
constrained in a particular iteration. The left most figure displays iteration i = 0 directly after
the reconstruction, in which we enforced u12 = 1 for n0 = 12. In iteration i = 1 we identified,
for harmonic order n1 = 8, the rotation π

3 in the set A as the one producing the minimal phase
of u8, that is arg(u8) = mod[53π + 81

3π, 2π] =
π
3 . This rotation is then applied to all orders

present in the list O for the current iteration. The set A is then reduced according to step 6 of
the algorithm, so that the updated set A contains only g1 = 4 rotation angles at the beginning
of iteration i = 2. We then fix the phase of n2 = 6, and since g2 = 2 the alignment process
is completed after rotating the phases of the remaining harmonic orders in O by π

2 . The final
phases arg(un) for the aligned reconstruction are displayed in the right most figure.
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4.
xFrame

A framework for scientific algorithms
targeting X-ray scattering

As part of this thesis the open source software suite xFrame with its accompanying fxs
project have been developed [23]. xFrame itself serves as a backbone for the develop-
ment of scientific algorithms and takes care of common technical details such as mul-
tiprocessing, GPU access, data storage, settings management, command line interfaces
and more. Specific algorithms can be implemented as projects within xFrame. An ex-
ample of this is the fxs project that implements the reconstruction workflow presented
in section 3 and is distributed alongside xFrame. The source code of xFrame is avail-
able at github.com/European-XFEL/xFrame and its documentation is hosted on xframe-
fxs.readthedocs.io. Further more the software suite is distributed via the python package
index PyPi and can be installed in a unix shell via the command:

$ pip install ’xframe[fxs]’

4.1. Usage of the FXS project

A typical reconstruction pipeline using the command-line interface of xFrame can be seen
in figure 24. All four workflow steps are accessible via separate commands. Running
xframe fxs correlate allows to compute the degree-1 and degree-2 moments M1,2

N from a
set of input diffraction patterns, as described in section 3.1. The extraction and regular-
ization of the rotational invariants Bn(q1, q2) or Bl(q1, q2) (section 3.3) is available via the
command xframe fxs extract. Reconstructions can be started using xframe fxs reconstruct
and the final alignment and averaging step is available via xframe fxs average. Apart from
the command-line interface it is also possible to use the routines provided by xframe as
well as those part of the fxs project directly as Python modules. For further details on
the usage of the fxs project we want to refer the interested reader to the corresponding
documentation at xframe-fxs.readthedocs.io/en/latest/fxs/getting_started/. Among de-
tails on the settings files for the different workflow commands, the documentation also
includes a simple self-contained workflow tutorial that can be run directly after installing
xframe without the need for additional input data.

4.2. Dependencies

A list of the dependencies of xFrame and their use is provided in table 2. The general
strategy is to employ existing software that references to C or Fortran code for as many
computational expensive operations as possible. This includes, for example, fast Fourier
transforms and the spherical harmonic decompositions. In all other cases we rely on
numpy vectorization and GPU acceleration.
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of M1

N & M2
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Invariants
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Iterative
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$ xframe fxs correlate

$ xframe fxs extract

$ xframe fxs reconstruct

$ xframe fxs average

Figure 24: Schematic representation of the reconstruction workflow (left) associated command
line tools (right). Each command line tool takes the filename of a human readable settings file
as input parameter.

Package Usage Package Usage
numpy [115] All parts of xFrame openCV [116] 2D plots
scipy [117] Invariants extraction vtk [118] 3D plots
pyOpenCL GPU access h5py [119] Data storage

shtns [109] Spherical harmonic
transforms ruamel.yaml Software settings

pysofft (SOFT) [90] 3D alignment of
reconstructions click Command line interface

matplotlib [120] 2D plots psutil Hardware info

Table 2: List of dependencies of xFrame.

4.3. Multiprocessing scheme

xFrame is designed to enable the use of multiple GPUs alongside CPU multi-processing.
In its current state xFrame implements multiprocessing using the python multiprocessing
module, while access to graphics cards is realized via OpenCL in order to be independent
on graphics card manufacturers and to allow the software to be executable on as many
platforms as possible.

A good example of combining both CPU and GPU processing is given by the reconstruc-
tion routine that can be started via xframe fxs reconstruct. Here several phasing loops
are executed in parallel, if multiple CPU cores are available. At the same time GPU
acceleration can be used to speed up the computation of the Fourier transforms within
each individual phasing loop. A graphical representation of this multiprocessing scheme
is given in figure 25. Notably access to the GPUs is controlled by separate CPU processes
called GPU workers, this allows to decrease the overall GPU memory requirements and
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enables performant phase retrieval on larger grid sizes and harmonic order limits.47 A
possible downside of the combined use of CPU and GPU parallelization is that calls to
a single graphics card have to occur sequentially, which slightly breaks the independence
between the different CPU processes. In our example this can causes the phasing workers
to compete for GPU time. Since, however, the individual GPU workloads are quite small
compared to the rest of the phasing loop, we found this effect to be negligible. A detailed
runtime analysis of the phasing routine will be shown in section 5.1.
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GPU
G

CPU
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CPU
Cp + 1
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1 CPU C

Shared Memory

Phasing
workers

GPU
workers ..

.

. . . . . .

(OpenCL)

access

accessac
ce
ss

computation request signal

computation finished signal

Figure 25: During iterative phasing step the available CPU cores are divided into phasing and
GPU workers. Each phasing worker is running an individual reconstruction, while a smaller
number of GPU workers are accepting requests from the phasing workers to perform parts of
the MTIP loop (Hankel transforms) on the available GPUs. The phasing and GPU workers
communicate via simple Boolean signals, while the data transfer is handled indirectly via shared
memory.

4.4. Input/Output data formats

Within xframe the HDF5 format is used for general purpose data storage, e.g. to save
calculated metrics and reconstruction results. Settings of projects, like the presented fxs
workflow, are handled via human readable YAML files. Finally, VTK files and PNG
images target visualization of reconstruction results. Specifically, the open-source VTK
file format allows to examine the reconstructed densities on their native spherical or polar
coordinate grid without any further post-processing. All reconstructions displayed in
section 5 where generated using the VTK viewer ParaView.

47The concrete problem that is solved by the GPU workers is, that GPU memory, i.e. openCL contexts,
can not be shared across several python processes (CPU workers). If a GPU computation requires
some constant input data, e.g. the Hankel weights wn and wl from equations (143c) and (144c), this
data needs to be stored in GPU memory separately for each CPU process that directly request the
GPU computation.
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5. xFrame applications

This chapter is dedicated to explore the capabilities and limitations of the presented
reconstruction workflow. Initially we will consider simulated noise free datasets to test
invariant based reconstructions under optimal conditions. Within this setting we will
also test the dependence of reconstructions on important FXS specific variables, such as
the harmonic degree cutoff L and the scaling introduced by considering multi-particle
scattering (i.e. N > 1). In the second part of this chapter we will investigate two
experimental single-particle diffraction datasets [111, 112] for the bacteriophage PR772,
that have been measured at an XFEL. The first of these datasets has been studied in
several publications, using SPI [9, 121] and MTIP based reconstructions [20]. We will be
able to replicate the results obtained in [20] and expand on them by identifying deviations
of the virus structure from its ideal icosahedral symmetry. The second dataset has not
been explored in imaging so far. We shall see that, while the overall data quality is worse,
this second dataset also clearly shows deviations from the icosahedral symmetry. The
reconstruction results on simulated datasets have been reported in [23], while a publication
of the presented reconstructions for the PR772 virus is currently in preparation [122].

5.1. Reconstructions from simulated data

We considered three different model structures, see figure 26, in the test of our workflow.
Two of these models are protein structures given by the PDB entries 3j2t [37] and 6b3r
[91], while the remaining structure is an artificial particle consisting of six spheres.

Model A:
Pentagonal

Cluster of Spheres

Model B:
Apoptosome

(3j2t)

Model C:
Piezo1
(6b3r)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 26: Three considered model struc-
tures (model A - model C): (a)-(d) a pen-
tagonal cluster consisting of spheres of uni-
form density with a diameter of 14 nm,
where the red spheres are of doubled den-
sity compared to the blue spheres; (e)-(h)
the human apoptosome complex [PDB en-
try 3j2t [37]]; (i)-(l) the mechanosensitive
ion channel Piezo1 [PDB entry 6b3r [91]].
The two upper rows show different views
of the 3D structures. Two-dimensional
slices through their centers are given in
the third row, while the bottom row dis-
plays their 2D projections on to the image
plane. The projections were computed us-
ing the electron density maps generated in
UCSF Chimera [123] for the corresponding
3D models. The white scale bars shown in
the two bottom rows correspond to 5 nm.

86



For each of these models two diffraction datasets were simulated, using rotation states
in accordance with the 2D and 3D definitions of FXS (see figure 12). Each dataset
consists of 105 noise-free single-particle diffraction patterns that were generated under
the assumption of ideal Thomson scattering (equation (10)), examples of which can be
found in figure 27.

Model A Model B Model C

Figure 27: (Log scale, arb. units) Representative diffraction patterns for the different models.
Diffraction patterns for model A were computed up to a maximum momentum transfer Qmax =
3.2 nm−1, whereas for models B and C the diffraction patterns were limited to Qmax = 4.2 nm−1.

Each set of diffraction patterns was then processed according to the workflow described in
chapter 3. Examples of the extracted FXS moments and the corresponding single particle
invariants Bn(q1, q2) and Bl(q1, q2) can be seen in figure 28. Following the extraction and
regularization of the degree-2 invariants we performed iterative phase retrieval using the
command xframe fxs reconstruct. This command allows one to perform phasing loops
composed of custom sequences of ER, HIO and shrinkwrap (SW) steps, based on our
MTIP modification (see section 3.4). The settings were chosen such that the complete
iterative phasing process was divided into a main and a refinement stage. The purpose of
the latter is to refine the electron density with the lowest error metric obtained during the
main stage. For 3D reconstructions the main stage was assembled out of blocks consisting
of 60×HIO steps, followed by a shrinkwrap application and 40×ER steps. The number
of blocks in the main stage varied from 5 in the case of model A to 30 for model B and
model C. All models shared the same refinement stage, which consisted of a shrinkwrap
application followed by 200×ER steps. For reconstructions using the 2D FXS datasets
the main stage consisted of 10 blocks of 500×HIO steps followed by a shrinkwrap appli-
cation and 200×ER iterations, while the refinement part consisted of a shrinkwrap step
followed by 200×ER iterations. The HIO parameter β [equation (34)] was determined in
the i-th iteration as β(i) = aebi + c, with parameters a, b and c chosen such that β(i)
decreased exponentially during the reconstruction process from 0.5 down to 0.14 for the
3D reconstructions, and from 0.1 down to 0.01 for 2D reconstructions. The SW threshold
value γ [equation (35)] was set to 0.11, and the standard deviation σ was linearly de-
creasing from 2 nm to 1.5 nm during the reconstruction for all models. The density value
projection [equation (33)] was parameterized as, V min

Re = 0, V max
Re = ∞, V min

Im = −2 and
V max

Im = 2. We empirically found that allowing small non-zero values of V min
Im and V max

Im
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results in improved convergence rates of reconstructions. The Fourier transform stabiliza-
tion has been applied as described in Section 3.4.3. All 3D reconstructions were obtained
considering a spherical harmonic cutoff degree of L = 127, while the 2D reconstructions
employed circular harmonic orders up to L = 255. The invariant projection Pinv [equation
(98)] used degree-2 invariants upto the same maximal degree, while setting all odd order
invariants to 0. The considered number of radial steps was N = 256 for all models, and
the angular sampling was chosen such that the maximal harmonic order could be resolved
(see section 3.4.2). To follow the reconstruction progress we used the error metric Ereal

defined in equation (152b). Individual reconstructions were classified as converged or not
converged based on the histograms of the final values of the error metric Ereal (see Fig. 29
and Table 3). Notice the different convergence rates for different structures in Table 3.

Model Reconstructions Reconstructions
performed converged (% of total)

3D Model A 113 110 (97)
3D Model B 168 111 (66)
3D Model C 340 116 (34)
2D Model A 120 120 (100)
2D Model B 120 113 (94)
2D Model C 120 103 (86)

Table 3: Reconstruction statistics using xFrame

Error metric Ereal

Fr
ac

ti
on

of
re

co
ns

tr
uc

ti
on

s
[%

]

3D
M

odel
A

Spheres
3D

M
odel

B
A

poptosom
e

3D
M

odel
C

P
iezo1

2D
M

odel
A

Spheres
2D

M
odel

B
A

poptosom
e

2D
M

odel
C

P
iezo1

Figure 29: Normalized histograms
of the final error metric values Ereal
[equation (152b)] shown for all indi-
vidual reconstructions listed in Ta-
ble 3. A clustering of reconstructions
into two groups can be observed for
most of the models. These groups
are separated by at least half an or-
der of magnitude in their final error
value and allow us to identify con-
verged reconstructions by introduc-
ing a threshold. The thresholds for
each model are represented by the
dashed green lines, placed at 10−5

for the 2D Model B, and at 10−3 for
all other models. Light-blue and or-
ange parts of the histogram signify
converged and not converged recon-
structions, respectively. For the 2D
Model A all computed reconstruc-
tions have approximately similar val-
ues of Ereal and were all identified as
converged. The 3D model A has a
total of 3 reconstructions with error
values around 10−2 that did not con-
verge.
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Figure 28: (Log scale, arb.units) Values of the rotational invariants Bn(q1, q2) and Bl(q1, q2)
as well as the FXS moments M2 of orders n, l = 2, 4, 6 and 8, determined for model A in the
2D case (left) and in the 3D case (middle, right). In the 2D case, the real part of the complex
valued invariants Bn(q1, q2) is shown, while the 3D moments and invariants are themselves real
valued [see observation 2.15]. The connection between the moments, displayed in the middle
column, and the invariants in the right column is given by equation (108). Notice, that the 2D
invariants Bn(q1, q2) only contain features in the form of vertical and horizontal stripes. This
is no coincidence, but rather a direct consequence of Bn being a rank 1 matrix in the form of
equation (88). The 3D invariants Bl(q1, q2) display more complex features since the respective
matrices Bl are of higher rank for l > 0, i.e. rank(Bl) = min(S, 2l + 1) [see Section 2.3].
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In the final workflow step, the command xframe fxs average was used to align and average
a set of 100 converged reconstructions for each considered model. The resulting averaged
reconstruction can be seen in figure 30. All 2D reconstructions were aligned using the
algebraic method described at the end of section 3.5.

Model A:
Spheres

Model B:
Apoptosome

Model C:
Piezo1

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Figure 30: Averaged 2D and 3D reconstructions for the models shown in figure 26, using
the same figure layout. The two upper rows contain different views of the reconstructed 3D
structures, while the third row contains slices through their density distributions. Averaged
2D reconstructions are shown in the bottom row and correspond to the projections displayed
in the bottom row of figure 26. All isosurfaces are taken at 15% of the maximal value of the
reconstructed electron density and the two bottom rows display density values higher than this
threshold. The 2D slices in (c), (g) and (k) are taken at approximately the same regions of the
electron density as given for the model structures in (c), (g) and (k) of figure 26, respectively. The
visible white scale bars correspond to 5 nm. (c) and (d) contain ring like density fluctuations,
which are manifestations of the Gibbs phenomenon. All visible averages are displayed on their
native spherical or polar grid, used during phasing.
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Figure 31: PRTF curves, computed according to equation (157), for the averaged 3D (left) and
2D (right) reconstructions shown in figure 30. The red lines represent the cutoff value 1/e, used
to estimate the reconstruction resolution.

The corresponding PRTF resolution metrics [equation (157)] are shown in figure 31. It
can be seen that none of the resolution metrics come close to the standard cutoff value
of 1/e [20], therefore indicating that the obtained resolution is Fourier limited for all
obtained reconstructions, i.e. limited by the extend of the simulated diffraction patterns
in reciprocal space. With this we could show that, under ideal conditions, invariant based
phase retrieval allows to access the maximal amount of structural information contained
in the used diffraction patterns. At least for the investigated models this implies that
FXS is equivalent to SPI in terms of the obtainable structural information.

The remainder of this chapter will be divided into three parts investigating different
aspects of the reconstruction pipeline. Initially, we will discuss multi-particle reconstruc-
tions. This will be followed by an investigation of the impact that different harmonic
order cutoffs L have on the obtained averaged reconstructions, as well as a review about
the computational performance of the implemented phasing routine itself.

5.1.1. Multi-particle reconstruction

Above, we have considered the ideal case, whose practical application would demand
X-ray scattering measurements of individual particles (N = 1). In practice, this might
be challenging to archive for weakly scattering bio-particles. We have seen in section
2.5.3 that FXS is not limited to these conditions and opens the possibility to perform
single-particle reconstructions based on multi-particle X-ray scattering measurements,
whose total scattering signal increases approximately linear with the number of particles
N . The practical viability of such reconstructions has been shown in [21]. Within this
section we will verify that our reconstruction workflow is able to perform single-particle
reconstructions from multi-particle scattering patterns. Our discussion will start under
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idealized conditions, in the form of noise-free diffraction patterns obtained from exactly
10 particles per sample (N = 10), that scatter according to the dilute limit assumption
(63). After this, we will turn our attention to the fact that the number of particles affects
the extractable invariants differently depending on their harmonic degree, see equations
(124)-(125). In figure 16 we have seen the change in the effective single-particle intensity
if this scaling is estimated incorrectly. As part of this section we will explore this effect
on the level of averaged reconstructions.

Model A Model B Model C

Figure 32: (Log scale, arb. units) Examples of the simulated 10-particle diffraction patterns
for the three considered model structures. According to the dilute-limit assumption, given in
definition 2.1, each of the shown patterns is the incoherent sum over 10 single-particle diffraction
patterns, see (63).

We have simulated a total of 105 multi-particle diffraction patterns per model structure
shown in figure 26, i.e. the same number of patterns as considered for the single-particle
reconstructions. Examples of these simulated multi-particle diffraction patterns can be
seen in figure 32. These diffraction patterns were then processed using the same workflow
steps and parameters as described above for the single-particle reconstructions, with the
exception of an additional scaling that is applied during the iterative phasing process. The
decomposition matrices ṽn and Ṽl, that are used in the invariant projection Pinv during
phasing, where multiplied by 1/

√
N = 1/

√
10 for n = l = 0, to correct for the relative

scaling introduced by the multi-particle diffraction patterns, see equations (124) and (125).
The resulting averaged reconstructions can be found in figure 33 and are almost identical
to their single-particle counterparts from figure 30. That the obtained reconstructions are
of comparable quality, to those obtained in the single-particle case, is further indicated
by their associated PRTF resolution metrics, presented in figure 34. All PRTF courves
are close to their single-particle analogs, given in figure 31, and show that the resolution
of the reconstructed densities are Fourier limited. In conclusion, we could show that
our reconstruction workflow allows to compute single-particle reconstructions form multi-
particle scattering data without loss of resolution compared to the single-particle case, if
one has knowledge about the number of particles per sample.
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Model A:
Spheres
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Apoptosome

Model C:
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Figure 33: Averaged reconstructions using the 10-particle scattering datasets for all considered
models. Similar to figures 26 and 30, the two upper rows display an isosurface of the 3D density
profile, while the third consists of slices through these density profile and the last row corresponds
to the averaged 2D reconstructions. The visible white scale bars again represent 5 nm.
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Figure 34: PRTF curves obtained for the averaged reconstructions produced from 10-particle
diffraction data shown in figure 33. Similar to the single-particle case, the above PRTF curves
indicate that the resolution of the obtained reconstructions is Fourier limited.

To test the sensitivity of reconstructions on errors in the assumed number of particles we
performed a series of reconstructions based on the single-particle dataset of the pentagonal
cluster of spheres (model A), while scaling the decomposition matrices Ṽl and ṽn at
n = l = 0 by different amounts. All other settings of the reconstruction workflow remained
the same as for the single-particle case. The resulting averaged reconstructions can be
seen in figure 35 and it becomes clear that the reconstructed densities are quite sensitive
to changes in the relative scaling of invariants. An error in the estimated number of
particles of ±20% (N = 0.8, 1.2) still preserves the shape of the final reconstructions

0.1 0.5 0.8 1 1.2 2 10

Assumed number of particles N (correct value N = 1 )

Figure 35: Averaged reconstructions from single-particle scattering data produced while as-
suming different numbers of particles N during phase retrieval. Each averaged reconstruction is
the result of averaging over 50 independent reconstructions. All averages are visualized by cuts
through 9 isosurfaces at 10%(deep blue) to 90%(deep red) of the maximal density. The black
scale bars indicate a length of 10 nm on the plain that cuts the isosurfaces. Poorly reconstructed
density variations are clearly visible in the averages at N = 0.8 and 1.2.
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but produces considerably different density distributions. One can also identify a general
trend in the sense that an underestimation of the number of particles leads to density
concentration in an area smaller than the considered particle, whereas an overestimation
has the opposite effect. Overall, this shows that the correct estimation of the averages ⟨N⟩
and ⟨N2⟩, in the number of particles per diffraction pattern, is of fundamental importance
for reconstructions based on multi-particle scattering datasets. In [21, Supplementary ] a
method was proposed that includes the relative scaling between the different invariants
as free parameter in the phasing routine. For the given simulated dataset we could not
successfully apply this approach. In our attempts, the number of particles did not converge
to a preferred value across several reconstructions and could even cause runaway effects
preventing convergence of the phasing routine. This might be connected to the fact that
in our simulations we used a fixed number of particles, while the experimental dataset,
used in [21], likely featured a fluctuating number of particles per diffraction pattern.
Here we want to point at our theoretical analysis in section 2.5.3, which allowed us to
gain new insights into the case of a fluctuating number of particles. As consequence of
observation 2.19 we have seen, that the FXS invariants contain information about the
number of particles in form of the square of its coefficient of variation, i.e. Var(N)/⟨N⟩2.
Moreover, we could show that in cases where the probability distribution of the number
of particles can be estimated to be a Poisson distribution48 one can directly compute
the missing scaling parameters, ⟨N⟩ and ⟨N2⟩ , using equation (129). It still has to be
seen whether this approach can be used in practice to determine ⟨N⟩ and ⟨N2⟩ with high
enough accuracy, but it has the potential to eliminate these free parameters in FXS based
reconstructions from multi-particle diffraction datasets.

5.1.2. Dependence on the harmonic cutoff

It is evident from the series expansions in equations (44) and (47) that the harmonic
cutoff L, placed on the degree-2 invariants Bn and Bl, acts as an effective resolution limit
for the obtainable single-particle intensity profile I. In order to test how this translates
into changes on the averaged reconstructions we used the single-particle dataset for the
human apoptosome complex (Model B) and performed reconstructions for different values
of the cutoff degree L. Again, all other reconstruction and averaging parameter remained
unchanged, as compared to the single-particle reconstructions shown in figure 30. The
obtained structures and accompanying PRTF curves, displayed in figures 36 and 37,
clearly indicate that the harmonic cutoff L also acts as an effective resolution bound
on the averaged reconstructions. This is especially visible in the enlarged reconstruction
areas visible in parts (g) to (l) of figure 36. It is interesting to note that for values below
L = 23 we were not able to achieve averaged reconstructions that resemble the shape of
the apoptosome complex.

48A Poisson distribution in N is a good approximation if one can assume that the average number
of particles is constant for each unit of volume and the positions of all particles are statistically
independent.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 36: (a)-(f) Averaged 3D reconstructions of Model B (human apoptosome) determined
from single-particle scattering data for lmax = 23, 31, 39, 47, 63 and 127, correspondingly. (g)-(l)
enlarged view of one of the seven “arms” of the apoptosome complex for each of the reconstructions
shown in (a)-(f). All isosurfaces are taken at 15% of the maximal density of the respective
reconstructions.
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Figure 37: PRTF curves corresponding to the reconstructions in figure 36, showing a gradual
decrease of resolution when restricting L to lower orders.
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Figure 38: Performance of xframe fxs reconstruct for 3D reconstructions of Model A as a
function of the radial grid size S. (a) Phasing runtime and multiprocessing speedup. The
runtime for a single reconstruction t1 is compared to the total runtime t57 for 57 reconstructions
running in parallel. The multiprocessing speedup is determined as 57 · t1/t57. The results were
averaged over 10 independent runs for single and parallel reconstructions, with the depicted error
bars indicating the standard deviations in t1 and t57. (b) Average runtime distribution among
different types of computations involved in the phasing loop are illustrated for one of the 57
reconstruction processes running in parallel. Most of the phasing time is spent in the categories
Harmonic transform (spherical harmonic transforms), SVD [In the invariant projection Pinv],
and Projections (reciprocal intensity projeciton and real-space projections, including HIO, ER
and SW), and less in Array allocation (numpy methods array or copy), Error metric [calculating
Ereal, see equation (152b) ], Hankel transform (GPU) [Hankel transforms (144) implemented on
GPUs] and Other (computation time that is not associated with any other category above).

5.1.3. Performance of the phase retrieval routine

As final part of the discussion based on simulated diffraction data we will take a look at
the computational performance of the phasing loop itself.49 The following performance
statistics where calculated on a single node running two AMD EPYC 7543 processors with
a total of 64 physical CPU cores that access 512GB of RAM and two Nvidia RTX A6000
graphics cards with 48GB of memory each. Figure 38 displays a comparison between
computation times for reconstructions of the six spheres structure (Model A) using 15
iterations of (60× HIO, 1 × SW, 40× ER) followed by a refinement stage of 200× ER steps.
The harmonic cutoff was set to L = 70 for all considered reconstructions, which results in
an angular grid of Nθ = 71 polar and Nϕ = 141 azimutal points (see section 3.4.2). The
number or radial grid points was varied from S = 64 to S = 256 with a step size of 16. As
it can be seen in figure 38 (a), the run-time of the presented algorithm depends linearly on
the number of radial grid points, which is in agreement with the fact that all individual
algorithm parts, except for the Hankel transforms, depend at most linear on the radial
grid size. At the same time, this is a good indication that no computational bottlenecks in
memory or compute units were reached for the specified parameter ranges. We observe an

49Which is of course independent on the type of diffraction data.
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approximately constant multiprocessing speedup of around 28 times, which corresponds
to roughly 50% of the theoretically attainable speedup, that is equal to the number of
reconstructions executed in parallel (57 in the given example). These speedups show that
the multiprocessing scheme depicted in figure 25 works as intended and the unavoidable
sequential access to individual GPUs is not breaking the CPU parallelization significantly.
GPUs are currently exclusively used to compute the Hankel transforms (143)-(144), since
their calculation would otherwise dominate the computation time. Moreover, the number
of required computation steps for the Hankel transform depends quadratically on the
number of radial grid points S. The overall linear increase in the computation time is a
good indication that, within the tested radial grid sizes, the GPUs are able to compute
each Hankel transform simultaneously at all considered radial grid points. The relative
time fraction a phasing loop spends on GPU operations, i.e. Hankel transforms, can be
seen in Fig. 38(b) and is for all radial grid sizes smaller than 8%. This low value presents
a future upgrade path for the presented algorithm in which also the harmonic transform
calculations, which currently are the most time consuming operations, could be performed
on GPUs.

5.2. Reconstructions of PR772 from experimental XFEL data

The PR772 virus belongs to the Tectiviridae family and infects bacteria such as Salmonella
typhimurium, which is a common cause of food poisoning. PR772 has an icosahedral
capsid that is roughly 70 nm in diameter and encloses a lipid membrane, that contains
the viral DNA [124]. As a member of the Tectiviridae family it injects its DNA into a
host bacteria by restructuring its lipid membrane to form tubular structure that protrudes
from one of the vertices of its icosahedral capsid and transports the viral DNA [125, 126].

In this section we will consider the two experiments amo86615 [111] and amo06516
[112]. Both of these experiments were conducted at the Atomic Molecular Optics (AMO)
beamline [127] of the Linac Coherent Light Source (LCLS) at the Stanford Linear Accel-
erator Center (SLAC). The goal of these experiments was to develop the SPI technique
in terms of the necessary experimental setup, as well as the associated data analysis. The
collected datasets are therefore also perfectly suited to test FXS based reconstructions in
the single-particle regime (N = 1). Table 4 summarizes key experimental parameters and
information about the obtained datasets for amo86615 and amo06516. In both experi-
ments PR772 was aerosolized using a gas dynamic virtual nozzle [128, 129] and injected
into the interaction region via an aerodynamic lens stack [4].

amo86615
Photon energy: 1.6 keV
Detector edge: 0.54 nm−1

Edge resolution: 11.6 nm
Single-particle hits: 14,772

amo06516
Photon energy: 1.7 keV
Detector edge: 1.12 nm−1

Edge resolution: 5.6 nm
Single-particle hits: 9,033

Table 4: Experimental parameters for amo86615 and amo06516 taken from [111, 112]. The
value Detector edge specifies the momentum-transfer value qmax, corresponding to a circle touch-
ing the edges of the recorded diffraction patterns. The Edge resolution is the corresponding full
period resolution given by 2π/qmax.
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As a first step in the treatment of these datasets a particle size estimation was per-
formed for each of the recorded single-particle hits. We followed a modified version of the
estimation procedure described in [20]. The particle sizes where determined by fitting a
spherical form factor,

Ispher(q) = A

(
sin(qR)− qR cos(qR)

q3

)2

, (162)

to each azimuthally averaged diffraction pattern

IM(q) =
1

2π

∫ 2π

0

dϕ IM(q, ϕ) , (163)

in the vicinity of its first minima. The fit parameters in equation (162) are the scaling
parameter A and the radius of the corresponding sphere R. As described in [20] it is
possible to use the obtained spherical radius R to estimate the outer diameter of an ideal
icosahedral particle via

Dicos = 25/6
√

5 +
√
5

(
π

5(3 +
√
5)

) 1
3

R ≈ 2.36R . (164)

This relation is obtained assuming that R describes a sphere whose volume is equivalent
to that of a regular icosahedron. An example of such a fit can be seen in figure 39.
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Figure 39: Example of fitting a spherical form factor (orange) to an azimuthally averaged
intensity profile (blue) from the amo86615 dataset, in the region of its first minima (dashed
red lines). The estimated icosahedral diameter is 71.5 nm. All size estimates for the amo86615
experiment were computed considering the momentum transfer region between 0.07 nm−1 and
0.2 nm−1, whereas for amo06516 the interval from 0.09 nm−1 to 0.2 nm−1 was considered.

In addition to the effective icosahedral diameter Dicos we compute the RMS error ERMS

for each fit, which is given by

E2
RMS =

1

q2 − q1

∫ q2

q1

dq
(
IM(q)− Ispher(q)

)2
. (165)
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Together with the total intensity IMtot of a diffraction pattern IM(q, ϕ), the values of Dicos

and ERMS will be used as main parameters to further reduce and split the available
diffraction data.

In the following we will focus individually on the two considered experiments and de-
scribe the diffraction pattern selection, the reconstruction workflow application as well as
the obtained results.

5.2.1. Reconstructions for the AMO86615 experiment

For the amo86615 experiment a final set of 5044 diffraction patterns were selected by
restricting the total intensity IMtot to values grater than 80, in analog-to-digital units (ADU)
per pixel, and the fit error ERMS to values lower than 0.7 . The corresponding histograms
are shown in figure 40. All thresholds were selected to minimize noise in the computed
degree-2 moments. Using the particle size histogram, given in figure 41, we divided the
selected diffraction patterns into six size classes ranging from 67.5 nm to 72.5 nm in 1 nm
steps, such that each part contains at least 300 patterns. In addition, we also simulated
six sets of 105 diffraction patterns for ideal solid icosahedral particles, corresponding
to the different size-parts, within the experimental momentum transfer range [see table
4]. Their purpose is to test potential deviations of the measured PR772 viruses from
their ideal icosahedral symmetry. For each of the size-parts of the experimental and
simulated datasets we computed the difference moments M2

diff(q1, q2, n, n) from equation
(134) according to our description in section 3.1. This was followed by the second step
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Figure 40: (a) Histogram of the total intensity IMtot of all single-particle hits. The dashed red line
indicates the threshold value of IMtot = 80 [ADU/pixel]. The blue area of the histogram represents
the diffraction patterns satisfying the threshold, while the shaded orange part corresponds to the
excluded hits. (b) Histogram of the fit error ERMS, where the threshold of ERMS = 0.7 is again
represented by the dashed red line. (c) Combined 2D histogram. The x-axis represents the error
values ERMS, the y-axis lists the total intensity IMtot and the color bar displays the number of
diffraction patterns for each combination of intensity and error bins. The square of dashed red
lines encloses the diffraction patterns that satisfy the constraints for ERMS and IMtot. It can be
seen that there is a clear correlation between high total intensities and low size estimation errors.
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Figure 41: Particle size distribution histogram of the selected 5044 diffraction patterns. The
six selected parts of the histogram are labeled by P1 to P6. The corresponding numbers of
patterns are given in the legend. Diffraction patterns that are located in the shaded areas are
not contained in any of the six size-parts and will be neglected.

in our pipeline, the extraction and regularization of the invariants Bl(q1, q2), using the
command xframe fxs extract. The resulting moments and invariants for size-part P3 are
shown in figure 42.

It can be seen that the experimental moments M2
diff at harmonic degree n = 12 are

dominated by noise which implies that the accessible invariants Bl are limited to l ≤ 12.
There is a good agreement between the extracted invariants and their regularization given
by ṼlṼ

†
l , as indicated by the error metrics. The sign boundaries do not show significant

deviations and the error metric only spikes at zeros in Bl or at noise polluted areas for
higher harmonic degrees. White areas in ṼlṼ

†
l correspond to masked momentum-transfer

values and will not be used as constraints in the invariant projection Pinv during phase
retrieval. Moreover, the differences between the experimentally observed invariants Bl

and their simulated counterparts Bsim
l are quite pronounced. This is especially visible

in degrees l = 2, 4, 8, in which the experimental invariants attain absolute values that
are roughly two orders of magnitude higher than their simulated counter parts. These
comparatively high absolute values for l = 2, i.e. the lowest non-spherically symmet-
ric contribution, hint at a possible elongation or squeezing of the particle shape in one
coordinate direction over the other.

With access to the decomposition matrices Ṽl for all size-parts we were able to generate
averaged reconstructions using the commands xframe fxs reconstruct and xframe fxs av-
erage. The same settings were used for the experimental and simulated datasets, as well
as across all size-parts within them. For the initial density guess a spherically symmetric
bump function was used

ρ0(r) =

{
e

1
2
r2max/(r

2
max−|r|2) |r| ≤ rmax

0 otw.
, (166)

that was multiplied with white noise and had a radius of rmax = 35 nm. The reconstruc-
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Figure 42: The five columns (from left to right) display the degree-2 moments M2
diff(q1, q2, n, n)

computed from experimental difference images, the corresponding extracted invariant matrices
Bl, its regularized decomposition ṼlṼ

†
l , the relative error between Bl and ṼlṼ

†
l and the invari-

ants Bsim
l computed from the simulated diffraction data. Each row corresponds to a fixed even

harmonic degree from n = l = 0 to n = l = 12. The invariants and moments are visualized on
a symmetric logarithmic scale where blue areas indicate positive values and red areas negative
values. In order to allow for a comparison between Bl,ṼlṼ

†
l , and Bsim

l , their values in all degrees
have been normalized by the total median of B0,V0V

†
0 , and Bsim

0 , respectively.

102



tion grid contained 256 radial grid points, 128 polar angles ϕ and 64 azimutal angles
θ, while restricting the used harmonic coefficients of the electron density ρ(r) to spher-
ical harmonic degrees l ≤ 12. The phasing routine was again split into a main stage
and a refinement stage. The former executed 10 blocks of 60×HIO, followed by 1×SW
and 40×ER, while the refinement stage contained a single SW step followed by 100×ER.
During the entire phasing routine the HIO parameter was kept constant at β = 1. The
shrink-wrap threshold was set to γ = 0.07, while its standard deviation σ followed a linear
decay from initially σ = 20nm to σ = 10nm . As an error metric the real space error Ereal

from equation (152b) was used. For each size-part a set of 112 reconstructions were com-
puted. The reconstructions, both from experimental and simulated datasets, did not split
into separate classes based on their error metric values, as has been observed in figure 29

30 nm
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Figure 43: (a)-(f) Averaged reconstructions corresponding to the size parts P1 to P6 of the
experimental dataset. (g) rotated and scaled version of (c) with indicated black and orange cut
surfaces, whose density cuts are displayed in (h) and (i), respectively. (j) Averaged reconstruction
from simulated diffraction patterns of an ideal solid icosahedron corresponding to size-part P3.
Densities along the cut surfaces of the ideal icosahedron are visible in (k) and (l). The 30 nm
scale bar is valid for the density cuts (h), (i), (k) and (l). All visible isosurfaces are taken at 30%
of the maximal density value within each averaged reconstruction, respectively. The isosurfaces
in (a)-(f) are displayed using the same field of view indicated by the black squares. One may
notice, that the size of the reconstructed particle grows from (a) to (f). The black arrows in (a)
indicate a shift of the upper an lower vertices with respect to an ideal icosahedron.
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of the previous section. During alignment and averaging we therefore considered 100
reconstructions with the lowest error metric, for each size-part. The resulting averaged
reconstructions are displayed in figure 43. As indicated by the degree-2 invariants, the
reconstructions based on experimental data show deviations in the virus shape from its
ideal icosahedral symmetry. A feature of this deviation is the relative shift of the upper
and lower vertices in figure 43 (a), as indicated by the black arrows. This deviation is
more pronounced for the lower size-parts, i.e. it decreases from (a) to (f) in figure 43. To
investigate this further we considered the orange and black planes in (g) and (j), which
are symmetry equivalent in an ideal icosahedron. This is nicely visible in the equivalence
of cuts (k) and (l). While (i) is similar to these ideal cuts, (h) shows deviations from
the cuts of the ideal icosahedral reconstruction. It has two density deficient boundary
regions, that are marked by the diagonal white arrows. At the same time the upper and
lower vertices in (h) are shifted horizontally in opposite directions, with respect to each
other, as indicated by the horizontal arrows. This deviation is also visualized by the black
triangles. Note that the vertical black line bisects the bottom hypotenuse in almost equal
halves for cuts (i) (k) and (l), while in (h) the right part of the hypotenuse is shorter.
The inner density rings, present in all cuts and marked by the white arrows in (l), are
artifacts due to the Gibbs phenomenon and prevented an analysis of the interior density
distributions. They are ultimately the result of the relatively low momentum transfer
limit of the measured diffraction patterns, which corresponds to a full period resolution
of 11.6 nm while the ring like artifacts have a width of roughly half of this resolution
limit. The PRTF resolution metrics associated to the averaged reconstructions based on
the experimental dataset are shown in figure 44. The obtained resolution for parts 1 to
3 is approximately given by 13 nm, with part 3 just barely touching the PRTF resolution
limit of 1/e, represented by the red horizontal line. In case of parts 4 to 6 the resolution is
worse by one minima location and approximately limited to 18 nm. In total this compares
favorably to [20], where a PRTF resolution of 17.7 nm was reported for the same dataset.

Full period resolution [nm]

Momentum transfer q [nm−1]
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F

Figure 44: PRTF resolution metrics for the averaged reconstructions corresponding to size-
parts 1 to 6 form the experimental dataset, displayed in (a)-(f) of figure 43.
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(a)

(b)

(c)

(d)

(e)

(f)

P1

P2

P3

P4

P5

P6

(g)

(h)

Figure 45: (a)-(f) Isosurfaces of ρdiff that enclose areas of differences higher than 0.2 (red) and
lower than -0.2(blue). The images are created using the same view port as in (a)-(f) of figure 43
and the corresponding 30% isosurfaces are represented as opaque gray structures in this figure.
(g) and (h) depict top and bottom views of the 30% isosurface of P3 given in (c) of figure 43.
The value of ρdiff on this surface is represented by colors. Blue areas denote missing density
compared to an ideal icosahedron, i.e. negative ρdiff . The dotted line and arrow indicate the
relative shift direction of the top and bottom vertices.

To further characterize the observed deviations between the experimental reconstruc-
tions and those obtained from ideal icosahedral particles we computed their difference
maps. For each size-part the averaged experimental reconstructions, as well as the av-
eraged reconstruction form the simulated dataset, were normalized by their respective
maximal density value and subsequently aligned using the alignment process described in
section 3.5. After this, the averaged reconstruction based on the simulated dataset was
subtracted from its experimental counterpart to form the final difference density ρdiff , i.e.
ρdiff(r) = ρexp(r)−ρsim(r). Graphical representations of ρdiff(r) can be found in figure 45.
The approximate point symmetry in the difference maps, visible in (a) and (c) of figure
45, may hint towards the presence of the twin-image problem [130], which is a well known
stagnation mode for iterative phase retrieval algorithms, in which the final reconstruction
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is a mixture between the correct density and its point inverse. However, the structure
and position of the blue parts in figure 45 (a)-(c) clearly show that the density deficient
areas and the shift of the top and bottom vertices are the mayor differences between the
experimentally observed virus capsid and its ideal icosahedral counterpart. While slight
traces of the same deviation are also visible in (d) and (e) of figure 45, they can no longer
be identified in (f), which corresponds to the largest size-part.

The observed differences may point towards a remodeling of the membrane and capsid
of the virus, as PR772 is known to be sensitive to aerosolization [131, 132], or the onset of
its DNA ejection process. Interestingly, similar features to the density deficient boundary
regions and the shift of the top and bottom peak, as visible in figure 43 (h) (white
arrows), were also observed in [9, Figure 7 (i)], which used SPI techniques (see section
1.5) to analyze the same diffraction dataset.

In summary, we could improve the previously obtained PRTF resolution limit from
17.7 nm [20] to 13 nm and provide clear evidence, that the measured PR772 virus capsids
differ significantly from an ideal icosahedron. At the same time, we could verify that
the presented workflow is able to produce successful reconstructions from a limited set of
experimental diffraction patterns. This, in particular, includes our proposed extraction
scheme for the degree-2 invariants, based on equation (113), as well as their regularization
introduced in section 3.3.

5.2.2. Reconstructions for the AMO06516 experiment

The diffraction patterns of the amo06515 experiment were recorded to about double the
maximal momentum transfer value of the previously consider amo86615 dataset, thereby
offering the possibility of reduced Gibbs artifacts and higher reconstruction resolutions.
Its downsides are, the overall worse data quality, visible from the diffraction pattern shown
in figure 18 (b), and the lower number of measured single-particle hits.

The selection and division of recorded diffraction patterns into different size-parts was
performed according to the methods, that have been described in the previous section

(a) Intensity histrogram

Intensity IMtot [ADU/pixel]

(b) Error histrogram

Fit Error ERMS

(c) Combined histrogram
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Figure 46: Same as figure 40 but for the amo06516 dataset. (a) Histogram of the total intensity
IMtot (b) Histogram of the size estimation fit error ERMS. (c) Combined 2D histogram. The square
of dashed red lines enclose the 2822 diffraction patterns satifying ERMS < 10 and IMtot > 5.
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Particle size histrogram
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Figure 47: Particle size histogram of the selected 2822 diffraction patterns. We will consider
the four size-parts labeled by P1 to P4. Their corresponding number of contained patterns is
given in the white box on the top right of the histogram.

and are based on thresholding the total intensity IMtot, the icosahedral diameter Dicos and
the associated fit error ERMS. As visible in figure 46, only those diffraction patterns were
considered that have a total intensity higher than 5 [ADU/pixel] and a fit error lower
than 10.

Comparing figure 46 with figure 40 for the amo86615 experiment, shows that the corre-
lation between high total intensities and low fit errors is weaker in the amo06516 dataset
and that it contains less diffraction patterns with low fit errors. Together this resulted
in the selection of 2822 diffraction patterns. The corresponding particle size histogram is
shown in figure 47 and was used to split the remaining patterns into 4 different size-parts.

Each part corresponds to a 2 nm range centered around an icosahedral diameter given
by Dicos = 68nm, 70 nm, 72 nm or 74 nm.

Following our workflow we performed the extraction and regularization step and ob-
tained the degree-2 invariants for each of the four size-parts. The results for size-part
P2 can be found in figure 48. Overall, the computed invariants have higher noise contri-
butions than for the amo86615 dataset, even at comparable momentum transfer values.
This can also be observed by comparing the error values shown in figure 48 with the
corresponding errors for the amo86615 experiment, given in figure 42. After n = 10 the
FXS moments for amo06516 become noise dominated and the computation of degree-2
invariants Bl is therefore limited to harmonic degrees lower or equal to 10, i.e. to those
with l ≤ 10. Note, that our proposed regularization scheme is still able to preserves the
sign boundaries of Bl and slightly reduces the noise level in harmonic degrees l = 2, 6, 10 .
In figure 42 we have seen that the absolute values of the invariants Bsim

l , corresponding to
the simulated ideal icosahedral particles, where highly suppressed in the harmonic degrees
l = 2, 4 and 8 compared to those for l = 6, 10 and 12. This behavior was not present for
the invariants from the amo86615 dataset and figure 48 shows that it is also absent from
Bl for the amo06156 dataset. In general, the moments M2

diff(q1, q2, n, n) of both datasets
are quite similar to each other, as can be seen in figure 49. On the level of the invariants
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ṼlṼ
†
l the similarity is still clearly visible but less pronounced. This is quite striking, given

that the shown moments and invariants correspond to entirely different experiments and
where generated from different spreads of particle sizes, as well as differing numbers of
diffraction patterns. This is a clear indication for the validity of the obtained invariants.
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Figure 48: Degree-2 moments and invariants for size-part P2. The four columns (from left
to right) display the degree-2 moments M2

diff(q1, q2, n, n), the extracted invariant matrices Bl,
its regularized decomposition ṼlṼ

†
l and the relative error between Bl and ṼlṼ

†
l . Each row

corresponds to a fixed even harmonic degree from n = l = 0 to n = l = 10. Similar to figure
42, the invariants and moments are visualized on a symmetric logarithmic scale where blue areas
indicate positive values and red areas negative values.
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Figure 49: Comparison between the computed moments M2
diff(q1, q2, n, n) and the invariants

ṼlṼ
†
l of size-part P3 for the amo86615 experiment given in figure 42 and size part P2 for the

amo06516 experiment from figure 48. For reference the last row shows the invariants Bsim
l , that

have bee computed from simulated solid icosahedral particles.

In the following phasing step we employed the same settings as described in the previous
section, with the exception that the invariant projection Pinv was limited to harmonic
degrees l ≤ 10 instead of l ≤ 12. A total of 112 reconstructions where computed per
size-part. The reconstructions did again not split into separate classes based on their
final error metric values. For each size-part the 100 reconstructions with the lowest
error metric values were used to generate the final averaged reconstruction, see figure
50. The associated PRTF resolution metrics, given in figure 51, indicate resolutions of
approximately 18 nm for size-parts 1,2 and 4, while the resolution for part 3 is 14 nm.

A common feature of the reconstructions presented in figure 50 is a low density region
near the upper vertex, see the black arrow in 50 (c). This region is similar to a more
localized version of the blue density deficient volume, which is visible near the top vertex
in figure 45 (a)-(c) for the amo86615 experiment. It is interesting to note that the point
symmetric behavior of this density deficient area is absent from the reconstructions for the
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(a) (b) (c) (d)

(e) (f) (g) (h)

P1 P2 P3 P4

P1 P2 P3 P4

Figure 50: Isosurfaces of the size-parts P1 to P4 at 30% of their maximal density value (a)-(d)
and at 20% of their maximal density (e)-(h), respectively. The field of view is the same for all
plots and indicated by the black squares, which allows to compare feature sizes between the
presented averages. All isosurfaces contain a dip near the upper vertex that is not present at
other vertices. In (c) the position of this dip is indicated by the black arrow.
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Figure 51: PRTF resolution metrics for the averaged reconstructions presented in figure 50.

amo06516 experiment. Together with the similarity of the extracted invariants, visible
in figure 49, this is another hint towards the presence of the twin image problem [130]
in the reconstruction step for the amo86615 dataset. Another interesting feature of the
reconstructions in figure 50 is the appearence of an extended density reagion at the upper
vertex in the 20% surfaces (g) and (h). The diameter of this cylindricaly shaped extension
is approximately 15 nm. A possible explanation for its appearance, is that a portion of the
viruses in the amo06516 experiment have been imaged during their DNA ejection process,
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in which they restructure their membrane to from a tubular extension that protrudes
out of one of the vertices of the virus capsid [125, 126]. Since the final single-particle
intensity represents an average over all observed virus structures one would expect the
extended density region to be weighted by the relative number of viruses imaged during
their ejection process which could explain its relatively low density value in the averaged
reconstructions. In similarity to our discussion of the amo86615 reconstructions we also
considered density cuts along symmetry equivalent planes, which are shown in figure 52.
Comparing the presented cuts to those of the amo86615 experiment one immediately
notices the reduced ring like artifacts inside of the virus capsid. It is clearly visible
that the PR772 virus has a higher density capsid surrounding a lower density region
inside of it. Moreover, the three symmetry equivalent cutting planes for all four size-
parts are consistently different from each other. By “consistently different” we mean, that
the three columns representing different size-parts in figure 52 show more similarities to
each other, as indicated by the white dots and lines, than the rows which correspond to
the different symmetry equivalent planes. This means that the observed virus structure
deviates in a consistent way across all four size-parts from its ideal icosahedral symmetry.
The elongated density region for size-parts P3 and P4 is visible in the black cuts (g) and
(h) of figure 52 in the upper right vertex. It is interesting to see that the black cuts in (e)
and (f) show an area of decreased density in the same region in which the elongation is
visible for (g) and (h), further indicating that the corresponding vertex of the virus capsid
is different from its other vertices.

In summary, the amo06516 dataset allowed us to confirm the form of the degree-2
invariants that have been obtained form the amo86615 experiment, see figure 49. It
proofed the capability of the presented workflow to handle significant amounts of noise
as well as missing portions of diffraction patterns [visible in figure 18(b)]. The proposed
regularization scheme for the degree-2 invariants was again able to preserve the sign
boundaries and could even reduce the noise level for some harmonic degrees, as can be
seen in figure 48. Despite of the, in part, lower resolution estimates the reconstructions
of the amo06516 experiment benefit from the higher momentum transfer limit, as can be
seen in the reduced ring shaped Gibbs-artifacts in the density cuts of figure 52 compared
to those in figure 43 (h) and (i). This allowed us to identify consistent deviations from
the icosahedral symmetry across all considered size-parts as well as the special role of one
of the vertices of the PR772 virus.
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Figure 52: (a)-(d) Rotated versions of the 30% isosurfaces displayed in (a)-(d) of figure 50.
The orientation of each reconstruction is such that the vertex pointing out of the image plane
towards the viewer corresponds to the top most vertex in figure 50. (a)-(d) also display three
symmetry equivalent cutting planes that intersect in a line going through the center of the dip
in the isosurfaces, marked with an arrow in 50 (c). (e)-(p) density cuts along the symmetry
planes visible in (a)-(d) that display density values higher than 20% of the maximal value for
each size-part, respectively. (e)-(h) correspond to the black planes, (i)-(l) to the orange planes
and (m)-(p) to the green planes. Each cut contains a line segment pointing from its boundary
towards its center, which indicates the location of the intersection line between it and the other
two planar cuts in each row. The colored arrows in (a), (e), (i) and (m) indicate the orientation
of the density planes in the isosurface (a), starting from their visible intersection point. The
orientations of the density planes of size-parts P2,P3 and P4 are the same as for size-part P1.
The 30 nm scale bar in the bottom right is valid for all density cuts (e)-(p). The white dots
and lines in (e)-(p) indicate high density features at the boundaries of the density cuts. These
features are shared across different size parts for the same cutting plane, i.e. across (e)-(h),(i)-(l)
and (m)-(p). The black planes (e) and (f) of size-parts 1 and 2 show a low density region in
the vicinity of the upper right vertex. In (g) and (h) corresponding to size-parts 3 and 4 this
lower density area is not visible instead this vertex now features an extended density region, also
visible in (g) and (h) of figure 50.
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6. FXS in the case of non-uniform orientational
distributions

The application of FXS techniques is currently limited to systems of particles that follow a
uniform rotational probability distribution. While it is still possible to simulate diffraction
patterns for samples that follow non-uniform distributions and subsequently compute the
FXS moments, all results about their connection to the single particle structure from
sections 2.2 and 2.5.1 lose their validity. In practice the presence of nonuniform rotational
distributions is not uncommon and most prominently includes pump-probe experiments,
that are frequently conducted at XFELs [22, 25, 26, 133–135]. In such experiments one
seeks to study dynamic processes in a sample, that have been triggered by irradiation
with a laser field (pump-pulse). The measured quantities are scattering patterns that
have been generated by interaction with an X-ray pulse (probe-pulse) whose time delay
can be varied, with respect to the pump-pulse.

The presence of nonuniform rotational distributions in such experiments is caused by
the orientation dependence of the interaction between the sample and the pump laser field
[24, 136–138]. For example, consider the laser field to be linear polarized and resonant
with an electronic transition of the molecules contained in a given sample. Under these
conditions one finds, that the transition probability is dependent on the alignment be-
tween the laser polarization and the transition dipole-moment [24, 137]. The alignment of
molecules in a laser field is in general not limited to the above setting and can also occur if
the polarization of the laser field is elliptic or circular [138] and even under non-resonant
conditions [24, 136]. At the same time it is know that the SAXS/WAXS intensity is sen-
sitive to the orientational distribution of particles [22, 139–141] and Legendre polynomial
based techniques have been proposed [142, 143] and employed to obtain structural infor-
mation about individual exited particles [25, 26]. Since SAXS is contained in fluctuation
X-ray scattering one may suspect that there should be an extension to the FXS formalism
that captures non-uniform orientational distributions. In general there are two possible
use cases of such an extension.

1. Given a prior knowledge about the orientational probability distributions, extract
information about the single-particle structure.

2. Given a prior knowledge about the single-particle structure, extract information on
their orientational probability distribution.

For the latter case note that, since we use scattered intensities to study real-space orienta-
tional probability distributions, the maximal amount of retrievable information is limited
by the Friedel symmetry I(q) = I(−q), which does not allow to distinguish between a
sample and its point-inverse.

In this section we will provide explicit formulas for the degree-1 and degree-2 moments
of FXS for arbitrary orientational probability distributions. The key insight will be,
that the dependence of the FXS moments on the probability distribution can be entirely
formulated in terms of their discrete Fourier transforms on SO(2) for the 2D case and
SO(3) in the 3D case. We will not only be able to give analytic results for specific
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probability distributions, which can be found in section 6.4, but also a way to numerically
handle arbitrary distributions.

Regarding the previously mentioned use cases we will be able to give the following
partial answers in this chapter.

1. For 2D FXS the degree-2 invariants Bn(q1, q2) can be extracted irrespective of the
orientational probability distribution of the considered samples and one can apply
the reconstruction workflow presented in section 3 to obtain the single-particle struc-
ture. In the converse case of a known structure, the measurement of a SAXS profile
is enough to determine the orientational probability distribution over the rotation
group SO(2) upto point inversion symmetry.

2. In case of 3D FXS it will still be possible to determine the rotational probability
distribution (now over SO(3)), upto point inversion, based on measurements of
degree-1 moments (SAXS profiles), if the single-particle structure is known. In
general it is, however, not possible to extract the degree-2 invariants Bl(q1, q2). In
special cases this might still be possible and the derived equations may serve as a
starting point for the development of future reconstruction workflows.

A manuscript discussing these results is currently in preparation [144].

Perfect alignment (informal): An extreme example of the effect of a non-uniform
rotational distribution on the moments Md, is given by the case of complete orientational
alignment, i.e. the case in which the probability distribution is a delta distribution. For
simplicity let us assume a single particle per sample. In this case each sample ρM consists
of a particle that has to be in the unique rotation state around which the delta distribution
is centered. The measured diffraction patterns IM therefore simply correspond to the
Ewald’s sphere slice associated with this particular orientation state. This implies that
all intensities in the definition of Md are constant with respect to the ensemble average
and on finds

Md =
d∏

i=1

IM . (167)

Clearly higher moments with d > 1 do not contain any additional information and are
also not given by sums over invariants under general particle rotations. In this example
it is also clear that the degree-2 invariants Bl(q1, q2), of 3D FXS, can not be extracted
from the moments Md. The latter only contain information about a two-dimensional
slice of the three-dimensional intensity profile while the invariants Bl(q1, q2) hold genuine
three-dimensional information, as has been discussed in section 2.3.

6.1. Rotational probability distributions and their characteristic
functions

To set the stage let us first define what we mean by a rotational probability distribution.
In the 2D case we are interested in probability distributions over the special orthogonal
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group SO(2) whose elements can be characterized by a single real number 0 ≤ α < 2π
describing the rotation angle. As consequence one may think of SO(2) as the unit circle
and a probability distribution on this space is a positive real valued function p(α) such
that50

1

2π

∫

SO(2)

dα p(α) =
1

2π

∫ 2π

0

dα p(α) = 1 (168)

and the probability of finding a rotation in the range [a, b] , i.e. a particle with the
corresponding orientation, is given by

1

2π

∫ b

a

dα p(α) .

Similarly, a probability distribution on SO(3) is defined by a positive function p(ω) =
p(α, β, γ), where (α, β, γ) are Euler angles corresponding to the rotation ω ∈ SO(3), such
that51

1

8π2

∫

SO(3)

dω p(ω) =
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ p(α, β, γ) = 1 (169)

and the probability of finding a particle whose orientation state lies in a subset Q of SO(3)
is defined by

1

8π2

∫

Q

dω p(ω) .

The average or expectation value of arbitrary functions f(α) and f(α, β, γ) under the
above probability distributions then take the form

〈
f(α)

〉
SO(2)

=
1

2π

∫ 2π

0

dα p(α)f(α) , (170a)

〈
f(α, β, γ)

〉
SO(3)

=
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ p(α, β, γ)f(α, β, γ) . (170b)

In statistics there is a one to one correspondence between probability distributions of
a real-valued random variable X and their characteristic functions, which are defined by
the average 〈

e−iqX
〉
R
=

∫ ∞

−∞
dx pX(x)e

−iqX ,

i.e. by the Fourier transform of the associated probability density pX . It is known that the
concept of a characteristic function can be generalized to a large class of other probability
spaces [145] including those defined over SO(2) and SO(3). The corresponding notions of
Fourier “transforms” have already been introduced in section 1.7, via the Fourier series
given in equations (44) and (53) for SO(2) and SO(3), respectively. In the context of

50The factor of 1/(2π) is purely conventional and used to comply with the standard definition of the
Fourier series, see equations (44) and (171).

51Similar to the 2D case the factor 1/(8π2) is due to our convention for the Fourier series on SO(3), see
equations (53) and (172). In fact, 8π2 is the volume of SO(3), i.e.

∫
SO(3)

dω = 8π2.
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characteristic functions we shall slightly alter our notation of the Fourier series coefficients
to make their analogy to Fourier transforms of the probability density apparent. In the
2D case we shall write p̂n for the characteristic function associated to p(α), that is

p̂n =
1

2π

∫ 2π

0

dα p(α)e−inα =
〈
e−inα

〉
SO(2)

with n ∈ Z . (171)

It’s analog over SO(3) will be denoted by p̂lm,n and is given by

p̂lm,n =
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ p(α, β, γ)Dl
mn(α, β, γ)

∗

=
〈
Dl

mn(α, β, γ)
∗
〉
SO(3)

, (172)

where l ∈ N is a natural number and m,n are integers such that −l ≤ m,n ≤ l. Both of
the above Fourier series coefficients can be efficiently computed. In the 2D case p̂n is, up to
a constant prefactor, given by the fast Fourier transform of a uniformly sampled version of
the probability density p(α). For the computation of the coefficients p̂lm,n a fast algorithm
has been developed in [90].52 We have already used the latter indirectly to compute the
rotation correlation, equation (155), in the alignment step of our reconstruction-workflow.

6.2. FXS moments for arbitrary orientational distributions

With the new rotational averages defined by equation (170) we are now able to derive
explicit forms for the FXS moments Md

N under arbitrary orientational probability dis-
tributions. The first thing to note is that, without loss of generality, we can restrict our
derivations to the single-particle moments Md. Their extension to the multiple-particle
case is again given by observation 2.19. This is because the derivation of this result only
depended on the statistical independence between rotations acting on different particles,
but not on the uniformity of the corresponding probability distributions. In fact, we
never explicitly computed any rotational averages in section 2.5.3. In the following we
will restrict our discussion to degree-1 and degree-2 moments. Higher degree moments
can however be obtained in complete analogy.

6.2.1. Two-dimensional case

degree-1: By their definition in equation (60) the moments M1(q1, ϕ1) have the form

M1(q1, ϕ1) =
〈
IM(q1, ϕ1)

〉
M

= ⟨RαI(q1, π/2, ϕ1)⟩SO(2) . (173)

where in the second equality we used that the scattered intensity of a single particle I
is independent on its position in the interaction volume to reduce the average over M
to the average over SO(2) and that by definition 2.2 the measured diffraction patterns

52A python version is provided by the package pysofft, available at https://pypi.org/project/
pysofft/.
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are obtained in the small-angle limit. Expanding the intensity profile I(q1, π/2, ϕ1), as
function of the angle ϕ1, in a harmonic series and applying the rotation action over SO(2)
given in (57) yields

M1(q1, ϕ1) =

〈∑

n

RαIn(q1)e
inϕ1

〉

SO(2)

=

〈∑

n

In(q1)e
inϕ1−inα

〉

SO(2)

=
∑

n

In(q1)e
inϕ1

〈
e−inα

〉
SO(2)

Note that the remaining rotational average is precisely the characteristic function associ-
ated with the rotational probability distribution from equation (171) and we find

M1(q1, ϕ1) =
∑

n

In(q1)e
inϕ1 p̂m M1(q1, n1) = In(q1)p̂n1

The given relation for M1(q1, n1), the second definition of the FXS moments (61), are
simply the Fourier coefficients of M1(q1, ϕ1) in ϕ1. Note that in contrast to the uniform
case, presented in equations (99) and (78), the degree-1 moments can give access to
intensity harmonic coefficients of arbitrary degree n, if the corresponding value of the
characteristic function p̂n does not vanish. Stated differently, the anisotropic contributions
to SAXS patterns, as observed for partially aligned systems of particles, are caused by
the presence of higher harmonic coefficients of the single-particle intensity profile, which
are weighted by the characteristic function of their orientational probability distribution.
This statement will remain true for 3D FXS and explains the origin of anisotropic SAXS
patterns, as e.g. observed in [25, 141].

degree-2: The derivation for higher degree moments is conceptually very similar. The
important additional insight is, that products of rotation actions can be reduced to a
single rotation action, i.e.

e−im1αe−im2α = e−i(m1+m2)α . (174)

This seems quite trivial in the two-dimensional case but is actually tightly connected to
the fact that functions of type einα form an orthonormal basis on the Hilbert space of all
square integrable functions over SO(2), which is what allows the formulation of a Fourier
series. By extension one can directly conclude that a similar relation must also exist for
basis functions of the Fourier series on SO(3), which will enable the computation of higher
degree moments in the 3D case.

For the degree-2 moments in 2D FXS we proceed as follows. Starting from their defini-
tion we express all occurring intensities via their harmonic series and apply the rotation
action to obtain

M2(q1, q2, ϕ1, ϕ2) =

〈(∑

m1

RαIm1(q1)e
im1ϕ1

)(∑

m2

RαIm2(q2)e
im2ϕ2

)∗〉

SO(2)

=
∑

m1,m2

Im1(q1)Im2(q2)
∗ei(m1ϕ1−m2ϕ2)

〈
e−i(m1−m2)α

〉
SO(2)

.
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The remaining rotational average has again the form of a characteristic function and we
can conclude

M2(q1, q2, ϕ1, ϕ2) =
∑

m1,m2

Im1(q1)Im2(q2)
∗ei(m1ϕ1−m2ϕ2)p̂m1−m2

M2(q1, q2, n1, n2) = In1(q1)In2(q2)
∗p̂n1−n2

6.2.2. Three-dimensional case

By swapping the Fourier series expansion with the expansion into spherical harmonics
and replacing the rotation action of SO(2) by the action of SO(3), given in equation (56),
we can compute concrete expressions for the FXS moments in the 3D case.

degree-1: We may now follow the same conceptual steps as for the 2D case in order to
obtain an expression for the degree-1 moments. The 3D analog of equation (173) is

M1(q1, ϕ1) =
〈
IM(q1, ϕ1)

〉
M

= ⟨RωI(q1, θλ(q1), ϕ1)⟩SO(3) ,

where as usual θλ(q1) describes the restriction on to the Ewald’s sphere. We may now
expand the intensity I in a spherical harmonic series and apply the rotation action to
obtain

M1(q1, ϕ1) =

〈∑

l,m

RωI
l
m(q1)Y

l
m(θλ(q1), ϕ1)

〉

SO(3)

=

〈∑

l,m,k

I lk(q1)D
l
m,k(ω)

∗Y l
m(θλ(q1), ϕ1)

〉

SO(3)

=
∑

l,m,k

I lk(q1)Y
l
m(θλ(q1), ϕ1)

〈
Dl

m,k(ω)
∗〉

SO(3)
.

Like in 2D case one finds that the remaining rotational average has the form of a charac-
teristic function, using its definition in equation (172) we find

M1(q1, ϕ1) =
∑

l,m,k

I lk(q1)Y
l
m(θλ(q1), ϕ1)p̂

l
m,k ,

M1(q1, n1) =
∑

l,k

I lk(q1)P̃
n1
l (θλ(q1))p̂

l
n1,k

,

where P̃ n1
l are the scaled associated Legendre polynomials appearing in the definition of

the spherical harmonics, see equation (46). It is interesting to note that M1(q1, ϕ1) has
itself the form of a spherical harmonic series, i.e.

M1(q1, ϕ1) =
∑

l,m

(∑

k

I lk(q1)p̂
l
m,k

)
Y l
m(θλ(q1), ϕ1) .

Comparing this result to the series expansion of the single-particle intensity I(q, θ, ϕ) =∑
lm I

l
m(q)Y

l
m(θ, ϕ) allows us to understand rotational averages purely on the level of
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spherical harmonic coefficients. The rotational average under the probability distribution
p(α, β, γ) acts on the level of harmonic coefficients via the following substitution rule

I lm(q1) −→
l∑

k=−l

I lk(q1)p̂
l
m,k ,

which can be thought of as the averaged version of the original rotation action given in
equation (56). Another interesting observation is, that in the 3D case non-uniform orienta-
tional distribution may alter SAXS patterns non-trivially without introducing anisotropy.
This occurs, if the characteristic function has the form p̂lm,k = δm,0p̂

l
0,k. In section 6.4.3 we

will see that this is for example the case for dipole transitions caused by a linear polarized
pump pulse whose polarization axis is parallel to the propagation direction of the X-ray
probe. This particular effect is well known and can also be observed in electron diffraction
[146].

degree-2: As already mentioned in the 2D case, we shall need an analogue of equation
(174) for the product of Wigner-D matrices Dl

m,n(ω), that from the orthogonal basis for
the Fourier series on SO(3). Using the product formula given in equation (266) as well
their symmetry relation with respect to complex conjugation from equation (268) we find

Dl1
m1,k1

(ω)∗Dl2
m2,k2

(ω) = (−1)m2−k2

|l1+l2|∑

l=|l1−l2|
C l1,l2,l

m1,−m2
C l1,l2,l

k1,−k2
Dl

(m1−m2),(k1−k2)
(ω)∗ , (175)

where C l1,l2,l
n1,n2

is our shorthand notation for the Clebsch-Gordan coefficients ⟨l1n1l2n2|l(n1+
n2)⟩, as introduced in equation (83b).

Now we may start our derivation as usual by expanding all intensities in their harmonic
series and isolate the rotational average using the rotation action, that is

M2(q1, q2, ϕ1, ϕ2) =

〈(∑

l1,m1

RωI
l1
m1

(q1)Y
l1
m1

(θλ(q1), ϕ1)

)

×
(∑

l2,m2

RωI
l2
m2

(q2)
∗Y l2

m2
(θλ(q2), ϕ2)

∗
)〉

SO(3)

=
∑

l1,m1,k1
l2,m2,k2

I l1k1(q1)I
l2
k2
(q2)

∗ Y l1
m1

(θλ(q1), ϕ1)Y
l2
m2

(θλ(q2), ϕ2)
∗

×
〈
Dl1

m1,k1
(ω)∗Dl2

m2,k2
(ω)
〉
SO(3)

The product formula from equation (175) now allows us to express the remaining average
via the characteristic function of the rotational probability density, i.e.

〈
Dl1

m1,k1
(ω)∗Dl2

m2,k2
(ω)
〉
SO(3)

= (−1)m2−k2

|l1+l2|∑

l=|l1−l2|
C l1,l2,l

m1,−m2
C l1,l2,l

k1,−k2
p̂l(m1−m2),(k1−k2)

.
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In analogy to equations (104) and (107) we may now introduce generalized versions of
F l, F̃ l

n and Bl via

Kl1,l2 =
√
2l1 + 1

√
2l2 + 1 (176)

F l1,l2
m1,m2

(q1, q2, ϕ1, ϕ2) = K−1
l1,l2

Y l1
m1

(θλ(q1), ϕ1)Y
l2
m2

(θλ(q2), ϕ2)
∗ (177)

F̃ l1,l2
n1,n2

(q1, q2) = K−1
l1,l2

P̃ n1
l1
(θλ(q1))P̃

n2
l2
(θλ(q2)) (178)

Bl1,l2
m1,m2

(q1, q2) = Kl1,l2

∑

k1,k2

I l1k1(q1)I
l2
k2
(q2)

∗(−1)m2−k2

×
∑

l

C l1,l2,l
m1,−m2

C l1,l2,l
k1,−k2

p̂l(m1−m2),(k1−k2)
. (179)

Note, that these definitions are chosen such that for suitable parameters they coincide
with their uniform expressions, i.e.

F̃ l
n(q1, q2) = F̃ l,l

n,n(q1, q2) ,

Fl(q1, q2, ϕ1 − ϕ2) =
∑

m

F l,l
m,m(q1, q2, ϕ1, ϕ2) .

A derivation of the equivalence of Bl1,l2
m1,m2

(q1, q2) and Bl(q1, q2) for a uniform probability
distribution can be found in section 6.4. In summary, the above definitions allow us to
represent the degree-2 moments for arbitrary rotational probability distribution as follows

M2(q1, q2, ϕ1, ϕ2) =
∑

l1,l2,m1,m2

F l1,l2
m1,m2

(q1, q2, ϕ1, ϕ2)B
l1,l2
m1,m2

(q1, q2) ,

M2(q1, q2, n1, n2) =
∑

l1,l2

F̃ l1,l2
n1,n2

(q1, q2)B
l1,l2
n1,n2

(q1, q2) .

Let us summarize our findings from this section as an observation

Observation 6.1 (FXS moments for arbitrary rotational distributions)
Consider the 2D and 3D cases of FXS as described in definitions 2.1 and 2.2, respectively.
Instead of the uniform distribution assumption, let the individual particles in each sample
ρM follow an arbitrary probability distributions p(α) (over SO(2)) in the 2D case or
p(α, β, γ) (over SO(3)) for the 3D case. Consider p̂n and p̂lm,n to be the corresponding
characteristic functions. The single particle moments of FXS for degree-1 and degree-2
are then given in the 2D case by

M1(q1, ϕ1) =
∑

m

Im(q1)e
inϕ1 p̂m , (180a)

M1(q1, n1) = In1(q1)p̂n1 , (180b)

M2(q1, q2, ϕ1, ϕ2) =
∑

m1,m2

Im1(q1)Im2(q2)
∗ei(m1ϕ1−m2ϕ2)p̂m1−m2 , (180c)

M2(q1, q2, n1, n2) = In1(q1)In2(q2)
∗p̂n1−n2 (180d)
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and for 3D FXS via

M1(q1, ϕ1) =
∑

l,m,k

I lk(q1)Y
l
m(θλ(q1), ϕ1)p̂

l
m,k , (181a)

M1(q1, n1) =
∑

l,k

I lk(q1)P̃
n1
l (θλ(q1))p̂

l
n1,k

, (181b)

M2(q1, q2, ϕ1, ϕ2) =
∑

l1,l2,m1,m2

F l1,l2
m1,m2

(q1, q2, ϕ1, ϕ2)B
l1,l2
m1,m2

(q1, q2) , (181c)

M2(q1, q2, n1, n2) =
∑

l1,l2

F̃ l1,l2
n1,n2

(q1, q2)B
l1,l2
n1,n2

(q1, q2) , (181d)

where the symbols F l1,l2
m1,m2

, F̃ l1,l2
n1,n2

and Bl1,l2
n1,n2

are defined in equations (176)-(179).

Remark 6.2 (Averaged angular cross-correlations) As a direct consequence of ob-
servation 6.1 and equation (109), we can obtain explicit expressions for the harmonic
coefficients of the averaged angular cross-correlation Cn(q1, q2) for arbitrary rotational
probability distributions by choosing n1 = n2 = n in equations (180d) or (181d).

6.3. Consequences for FXS

With observation 6.1 at hand we are now able to characterize the two possible use cases
mentioned at the beginning of this chapter in more detail. Let us again start our discussion
for 2D FXS, where we can make the following statements.

1. Independent on the rotational probability distribution p(α) one may access the
single-particle invariants Bn(q1, q2) via

M2(q1, q2, n, n) = In(q1)In(q2)
∗ p̂n−n = Bn(q1, q2) p̂0 = Bn(q1, q2) (182)

Consequently one may use the reconstruction workflow descried in section 3, regard-
less of the probability distribution p(α).53

2. If harmonic coefficients of the intensity I(q1, π/2, ϕ) are known one may extract the
values of the characteristic function from the degree-1 moments given in equation
(180b), i.e.

p̂n =
M1(q1, n)

In(q1)
(183)

The above equation can only be used for a given index n if In(q1) is not identically
0 for all parameter values q1. Since by Friedels symmetry In = 0 for all odd n we
can at most recover p̂n for even indices. Computing the Fourier series with the even
coefficients p̂n yields the symmetrized probability density (p(α) + p(α + π))/2.

53Note that all probability distributions satisfy p̂0 = 1 by definition, see equation (168), since p̂0 corre-
sponds to the probability of finding a particle in any arbitrary rotation state.
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For the 3D case the situation is less favorable. In general it is not possible to extract
the degree-2 invariants, even if the probability distribution p(α, β, γ) is known. At the
beginning of this chapter we have seen this for the example of complete alignment. In
equation (181d) this insight manifests itself via the dependence of the unknowns Bl1,l2

n1,n2

on the harmonic orders n1 and n2 which causes the linear system to be highly under
determined. The situation becomes slightly simpler for n1 = n2 = n. In this case
M2(q1, q2, n, n) can be factored such that the unknowns do not depend on n, via

M2(q1, q2, n, n) = Cn(q1, q2) =
∑

l1,l2

l1+l2∑

l=|l1−l2|
F̃ l1,l2,l
n (q1, q2)Bl1,l2,l(q1, q2)

with

F̃ l1,l2,l
n (q1, q2) = (−1)nC l1,l2,l

−n,n P̃
n
l1
(q1)P̃

n
l2
(q2)

Bl1,l2,l(q1, q2) =
∑

k1,k2

I l1k1(q1)I
l2
k2
(q2)

∗(−1)−k1C l1,l2,L
−k1,k2

p̂L0,(k2−k1)
.

However, for a given harmonic cutoff L, such that l1, l2 ≤ L , there are still far more
unknowns Bl1,l2,l than equations Cn. Whether the degree-2 invariants may be accessed for
specific distributions other than the uniform one remains an open question. In section 6.4
we will give analytic expressions for several 3D probability distribution which may serve
as a starting point for further investigations. Independent from this question one may use
the derived equations in model based approaches, similar to [22], as efficient tool for the
simulation of averaged angular correlations under arbitrary rotational distributions.

The statement that the rotational probability distribution p(α, β, γ) can be computed
from the degree-1 observables, i.e. the averaged SAXS intensity, if the particle structure is
known, remains true in the 3D setting. For any harmonic cutoff L and each fixed n (with
|n| ≤ L) equation (181b) is a system of S linear equations in at most (L + 1)2 unknown
parameters p̂ln,k, where S is the number of radial grid points. The matrix representation
of this linear system for fixed n1 is given by

(An1)i,(l,k) = I lk(qi)P̃
n1
l (θλ(qi)) (184)

and we may restate equation (181b) in its matrix form via

M1 = An1p̂n1 =




In1
−n1

(q1)P̃
n1
n1
(θλ(q1)) ILL (q1)P̃

L
n1
(θλ(q1))

In1
−n1

(qS)P̃
n1
n1
(θλ(qS)) ILL (qS)P̃

L
n1
(θλ(qS))







p̂n1
n1,−n1

p̂Ln1,L




Note that the number of pairs (l, k) is given by
∑L

l=|n1|(2l + 1) = (L+ 1)2 − n2
1, which is

exactly the number of independent parameters values of p̂ln1,k
for fixed n1 and l ≤ L. This

implies, that as long as the number of radial grid points is large enough, i.e. S ≥ (L+1)2,
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and I lk(qi) is such that the matrix An1 has full rank, one may solve these linear systems
using least squares methods. Note that the Friedel symmetry again implies that I lm(q) are
zero for odd l and we may retrieve the characteristic function p̂lm,k only for even l. Using
these coefficients in the Fourier series on SO(3), equation (52), and its fast implementation
given in [90], allows one to compute the symmetrized rotational probability density.

6.4. Analytic expressions of characteristic functions for selected
distributions

For any given probability distribution on SO(2) or SO(3) it is always possible to compute
the corresponding characteristic function numerically. In this chapter we will see that for
selected distributions it is also possible to obtain analytic expressions for their charac-
teristic functions. Initially we will revisit the case of a uniform probability distribution
to observe how the generalized expressions for the FXS moments from section 6.2 reduce
to the moments given in section 2.5.1. Similarly we shall revisit the case of complete
alignment, which has been informally discussed at the beginning of chapter 6. After the
treatment of these known cases we will define effectively spherical distributions, in which
the probability of a particles rotation state only depends on the direction of a single vector
inside the particle, e.g. the direction of its transition dipole moment. The last two cases
for which we will be able to provide analytic expression for the characteristic functions
are Gaussian distributions as well as analogues of distributions over the real line such as
Cauchy and Laplace distributions.

6.4.1. Uniform distribution

The uniform probability distributions in the 2D and 3D cases are given by

p(α) = 1 , (185a)
p(α, β, γ) = 1 . (185b)

In the 2D case this results in the following form of the characteristic function

p̂n =
1

2π

∫ 2π

0

dα p(α)e−inθ = δn,0 , (186)

where δn,0 is the Kronecker delta symbol. For the 3D case we similarly find

p̂ln,k =
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ p(α, β, γ)Dl
n,k(α, β, γ)

∗

=
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ Dl
n,k(α, β, γ)

∗ .

Using the orthogonality relation of Wigner-D matrices, given by equation (264), in the
special case of Dl

n′,k′ = D0
0,0 = 1, allows us to compute the remaining integrals and

conclude
p̂ln,k = δl,0δn,0δk,0 . (187)
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We may now use these characteristic functions to compute the corresponding FXS mo-
ments via observation 6.1. In the interest of brevity we shall only list the moments in
their second form defined in equation (61). For the 2D case this implies

M1(q1, n1) = δn1,0I0(q1) = δn1,0I
SAXS(q1)

M2(q1, q2, n1, n2) = δn1,n2In1(q1)In2(q2)
∗ ,

which correspond tho the degree-1 and degree-2 invariants presented in equations (78a)
and (80a). For the degree-1 moments in 3D FXS we similarly find

M1(q1, n1) =
∑

l,k

I lk(q1)P̃
n1
l (θλ(q1))δl,0δn1,0δk,0 = δn1,0I

0
0 (q1)P̃

0
0 (θλ(q1))

= δn1,0 I
SAXS(q1) ,

which was already given in (103). Last but not least, the generalized coefficients Bl1,l2
n1,n2

of the degree-2 moments, given in equation (179), can be simplified via

Bl1,l2
m1,m2

(q1, q2) = Kl1,l2

∑

k1,k2

I l1k1(q1)I
l2
k2
(q2)

∗(−1)m2−k2

×
∑

l

C l1,l2,l
m1,−m2

C l1,l2,l
k1,−k2

δl,0δm1,m2δk1,k2

= δm1,m2Kl1,l2

∑

k1

I l1k1(q1)I
l2
k1
(q2)

∗(−1)m1−k1C l1,l2,0
m1,−m1

C l1,l2,0
k1,−k1

.

Note that the Clebsch-Gordan coefficients of the form C l1,l2,0
m1,−m1

can be expressed directly
[86, equations 3.16c and 3.23], via

C l1,l2,0
m,−m = δl1,l2

(−1)l1−m

√
2l1 + 1

.

Substituting this relation into our expression for Bl1,l2
m1,m2

(q1, q2) results in

Bl1,l2
m1,m2

(q1, q2) = δl1,l2δm1,m2

∑

k1

I l1k1(q1)I
l2
k1
(q2)

∗ = δl1,l2δm1,m2Bl1(q1, q2) ,

which are the familiar degree-2 invariants from equation (80b).54 Correspondingly we find
that the degree-2 moments M2(q1, q2, n1, n2) will take the same form as in equation (107).

6.4.2. Delta distribution (perfect alignment)

Coming from the completely delocalized uniform distribution we will now revisit the
case of complete alignment, that has been discussed at the beginning of chapter 6. The
corresponding rotational distributions are delta distributions, i.e.

ρ(θ) = δ(θ) , (188)
ρ(α, β, γ) = δ(α, β, γ) . (189)

54The missing factor 1
2l1+1 is contained in the definition of F̃ l1,l2

m1,m2
(q1, q2) via Kl1,l2 , see equations (176)-

(179).
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By the defining integral property of a delta distribution we directly find the corresponding
characteristic functions to be

p̂n = e−in0 = 1 (190)
p̂ln,k = Dl

n,k(0, 0, 0) = δn,k . (191)

We expect to find, that the FXS moments simply correspond to products of the intensity
slice I(q, θλ(q), ϕ) given by the unique rotation state around which the delta distributions
is centered, as observed in equation (167). In the 2D case this is directly evident form
the generalized moments given in equations (180a) and (180c). The same is true for the
degree-1 moment in the 3D formulation of FXS via equation (181a). It only remains
to verify that the degree-2 moments in 3D FXS are given as product of intensity slices.
Using the characteristic function from equation (191) in the definition of the generalized
degree-2 invariants Bl1,l2

m1,m2
(179), results in

Bl1,l2
m1,m2

(q1, q2) = Kl1,l2

∑

k1,k2

I l1k1(q1)I
l2
k2
(q2)

∗(−1)m2−k2

× δ(m1−m2),(k1−k2)

∑

l

C l1,l2,l
m1,−m2

C l1,l2,l
k1,−k2

.

The remaining sum over a product of Clebsch-Gordan coefficients can be evaluated using
the orthogonality relation given in equation (270) and yields

Bl1,l2
m1,m2

(q1, q2) = Kl1,l2

∑

k1,k2

I l1k1(q1)I
l2
k2
(q2)

∗(−1)m2−k2δ(m1−m2),(k1−k2)δm1,k1

= Kl1,l2

∑

k1,k2

I l1k1(q1)I
l2
k2
(q2)

∗(−1)m2−k2δm2,k2δm1,k1

= Kl1,l2I
l1
m1

(q1)I
l2
m2

(q2)
∗ .

This form of the degree-2 invariants forces the corresponding FXS moments M2, see equa-
tion (181c), to factor into the expected product of Ewald’s sphere slices of the scattered
intensity, i.e.

M2(q1, q2, ϕ1, ϕ2) =
∑

l1,l2,m1,m2

F l1,l2
m1,m1

(q1, q2, ϕ1, ϕ2)Kl1,l2I
l1
m1

(q1)I
l2
m1

(q2)
∗

=

(∑

l1,m1

Y l1
m1

(θλ(q1), ϕ1)I
l1
m1

(q1)

)(∑

l2,m2

Y l2
m1

(θλ(q2), ϕ2)
∗I l2m1

(q2)
∗
)

= I(q1, θλ(q1), ϕ1)I(q2, θλ(q2), ϕ2) ,

which completes our derivation.

6.4.3. Effectively spherical distributions

An important case of probability distributions can be obtained by demanding that the
probability of finding a molecule or any other three-dimensional object in a certain orien-
tation only depends on a single direction (or vector) inside the molecule. This immediately
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implies that we can describe its orientational probability density ρ(α, β, γ) as a function
of α and β only. To see this let us denote the probability defining direction vector by
m and assume, without loss of generality, that in the default orientation m points along
the z direction (ez) of the coordinate system.55 Any other rotational state of the given
object is then specified by three Euler angles (α, β, γ) and the corresponding consecutive
rotation R(α,β,γ) around the fixed coordinate axes Z, Y and Z axis. The direction of m
in state (α, β, γ) is therefore given by

m(α, β, γ) = R(α,β,γ)ez = R(α,β,0)ez = m(α, β) , (192)

which only depends on α and β. A The name effectively spherical reflects the fact that
the rotational states of a single vector are in one-to-one correspondence to points on a
sphere and we can interpret the Euler angles β and α as the azimutal angle θ and polar
angle ϕ of said sphere, in accordance with the usual convention of spherical coordinates.
All effectively spherical probability densities ρ(α, β) have characteristic functions of the
form

p̂lm,n =
1

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ p(α, β)Dl
mn(α, β, γ)

∗ = δn,0p̂
l
m,0 (193)

By formula (181b) the degree-1 moments of such a probability distribution are given by

M1(q1, n1) =
∑

l,k

I lk(q1)P̃
n1
l (θλ(q1))δk,0p̂

l
n1,0

=
∑

l

I l0(q1)P̃
n1
l (θλ(q1))p̂

l
n1,0

(194)

In the following we discuss a typical case, in which effectively spherical orientation distri-
butions are observed.

Excitation by linear polarized light When considering electronic excitations by linear
polarized light, the transition probability of a given molecule depends on the angle ∢(m, ϵ)
between the corresponding normalized transition dipole moment m and the polarization
direction ϵ of the light[147, equation 15.4-6]. In order to keep the resulting equations
simple we will assume that the polarization axis is parallel to the z-axis, i.e. ϵ = ez. In
a corresponding pump-probe experiment this assumption demands that the polarization
of the pump laser is parallel to the propagation direction of the X-ray probe pulse.56 A
visualization of this geometry can be found in figure 53. Under these assumptions we find
the probability defining angle ∢(m(α, β), ez) to be given by

∢(m(α, β), ez) = arccos (⟨m, ez⟩) , (195)

where ⟨m, ez⟩ denotes the scalar product between m and ez. Applying our general result
for effectively spherical probability distributions from equation (192) results in
55We choose the z direction because we follow the zyz convention for Euler angles as mentioned in section

1.7
56This is because our description of the Ewald’s sphere slice via the momentum-transfer dependence

of the azimutal angle θλ(q), as introduced in equation (12), is only valid if the X-ray probe pulse
propagates along the z-axis.
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Figure 53: Pump-probe scattering geometry under the conditions that the X-ray probe pulse
(blue) is orthogonal to pump pulse (orange) and the polarization ϵpump is parallel to the prop-
agation direction kprobe of the probe pulse. The spheres in the inset represent particles in the
interaction region, whose transition dipole moments m are given by the black arrows.

∢(m(α, β), ez) = arccos
(
⟨R(α,β,0)ez, ez⟩

)
= arccos

(
⟨R(α,0,0)R(0,β,0)ez,R(α,0,0)ez⟩

)

= arccos
(
⟨R(0,β,0)ez, ez⟩

)
= β , (196)

where in the second step we used that ez = R(α,0,0)ez since a rotation around the z-axis
does not change vectors pointing along the rotation axis. A visual representation of this
derivation can be found in Figure 54.
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Figure 54: Visual representation of ∢(m(α, β), ez) = β. The transition dipole moment direc-
tion m = R(α,β,0)ez can be obtained by first applying a rotation R(0,β,0) around the y-axis to ez,
shown in (a), followed by a rotation R(α,0,0) around the z-axis, as depicted in (b). From this it
becomes clear that second rotation by α does not influence the angle between m and the z-axis
and that said angle is equal to β.
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It has been shown that, considering single photon absorption, the orientational distri-
butions of exited molecules follows a cos(β)2 distribution [142, 146]. Moreover in the case
of multi-photon absorption a cos(β)2η distribution was proposed [148]. The main feature
of said distributions is that they are bimodal i.e. they have two maxima shifted by π
with respect to each other. Another common bimodal distribution in statistics, is the
Watson distribution [149], which is proportional to eκ cos(β)2 for κ > 0. Under multipli-
cation with their corresponding normalization constants the above mentioned probability
distributions are given by

p(η;α, β, γ) = Kcos cos(β)
2η with Kcos = 2η + 1 , (197)

p(κ;α, β, γ) = KWe
κ cos(β)2 with KW =

2√
π

i
√
κ

erf(i
√
κ)
, (198)

where erf(x) denotes the error function. We will show that the corresponding characteristic
functions are

p̂ln,k(η) =




Kcos

2l+1(2η)!(η+ l
2
+1)!

(η− l
2
)!(2η+l+2)!

l even, l ≤ 2η, k = n = 0

0 otw.
(199)

p̂ln,k(κ) =




KW

∑∞
m=0

κm

m!

2l+1(2m)!(m+ l
2
+1)!

(m− l
2
)!(2m+l+2)!

l even, k = n = 0

0 otw.
(200)

Let us first show that the normalization constants Kcos and KW are chosen correctly. For
the cosine distribution we observe

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ
Kcos

8π2
cos(β)2η =

Kcos

2

∫ 1

−1

dx x2η =
Kcos

2η + 1
= 1 , (201)

where as for the Watson distribution one finds
∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ
KW

8π2
eκ cos(β)2 =

KW

2

∫ 1

−1

dx eκx
2

(202)

=
KW

2

1

i
√
κ

∫ i
√
κ

−i
√
κ

dy e−y2 = KW
1

i
√
κ

∫ i
√
κ

0

dy e−y2 (203)

= KW

√
π

2

erf(i
√
κ)

i
√
κ

= 1 . (204)

Going back to the cosine case we may now compute its characteristic function as follows

p̂ln,k(η) =
Kcos

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ cos(β)2ηeinαdlnk(β)e
ikγ

︸ ︷︷ ︸
=Dl

nk(α,β,γ)
∗

=
Kcos

2
δk,0δn,0

∫ π

0

dβ sin(β) cos(β)2ηPl(cos(β))
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where in the last step we used the well known fact, that for n = k = 0 the small Wigner-d
matrices are Legendre polynomials, see equation (269). The resulting integral can be
further simplified by substituting x = cos(β) which yields

p̂ln,k(η) =
Kcos

2
δn,0δk,0

∫ 1

−1

dx x2ηPl(x) . (205)

Since the Pl(x) is even for even l and odd otherwise we know that the integral in equation
(205) is zero if l is odd, therefore we continue examining p̂2ln,k only. Because the complete
integrand is now even we may reduce the integral domain and obtain

p̂2ln,k(η) = Kcosδn,0δk,0

∫ 1

0

dx x2ηP2l(x) . (206)

The remaining integral is given in [150, equation 14.17.5]
∫ 1

0

dx x2ηP2l(x) =
Γ
(
η + 1

2

)
Γ (η + 1)

2Γ (η − l + 1)Γ
(
η + l + 3

2

)

and simplifies under usage of the Gamma function relations [150, 5.4.1 and 5.5.5 ] , i.e.
Γ(n+ 1) = n! and Γ(2z)

√
π = 22z−1Γ(z)Γ(z + 1

2
), to

∫ 1

0

dx x2ηP2l(x) =
1

2

√
π

22η
(2η)!

(η − l)!

Γ (η + l + 2)

Γ
(
η + l + 3

2

)
Γ (η + l + 2)

= 22l+1 (2η)!

(η − l)!

(η + l + 1)!

(2η + 2l + 2)!
(207)

which together with eq. (206) results in formula (199) for the characteristic function
of the cosine distribution. Equation (200) for the characteristic function of a Watson
distribution can be obtained as follows

p̂ln,k(κ) =
KW

8π2

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ eκ cos(β)2einαdlnk(β)e
ikγ

︸ ︷︷ ︸
=Dl

nk(α,β,γ)
∗

=
KW

2
δn,0δk,0

∫ π

0

dβ sin(β)eκ cos(β)2Pl(cos(β)) =
KW

2
δn,0δk,0

∫ 1

−1

dx eκx
2

Pl(x) .

Now, since eκx2 is an even function the above integral is only nonzero if l is even as well.
This allows us to write

p̂2ln,k(κ) = KW δn,0δk,0

∫ 1

0

dx eκx
2

P2l(x) = KW δn,0δk,0

∞∑

m=0

κm

m!

∫ 1

0

dx x2mP2l(x) .

The resulting integrals have already been computed in equation (207) and we finally
obtain the characteristic function given in equation (200).
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6.4.4. Gaussian distribution

On SO(2) as well as on SO(3) it is possible to define gaussian probability distributions
such that they retain the essential properties of gaussian distributions on the real line
including the central limit theorem57. Their characteristic functions can be derived as a
special case from the definition of gaussian distributions on compact Lie groups given in
[145, equation 4.2.7], i.e.58

p̂n = e−σ2n2

and p̂ln,k = e−σ2l(l+1)δn,k . (208)

In the two dimensional case this definition coincides with what is known as wrapped
Gaussian distribution [151, equation 3.5.65].

6.4.5. Analogs of distributions over R

It may be of interest to find SO(2) and SO(3) analogs of common probability distributions
given on the real line. A general answer can be given for distributions on SO(2) using
wrapped probability distributions [151, section 3.5.7]. Since SO(2) is isomorphic to the
circle group one may associate to each probability density p(x) on the real line R a
distribution on SO(2) by “wrapping” it around a circle, i.e.:

pSO(2)(α) =
∞∑

k=−∞
p(α + 2πk) (209)

These wrapped distributions have the property that their characteristic function is iden-
tical to the characteristic function of p(x) [151, equation 3.5.59], that is

p̂SO(2)n
=

∫ ∞

−∞
dx p(x)e−inx = p̂R(n) . (210)

For SO(3) we can not give a general answer, but for many special cases such as Cauchy
and Lorentz distributions analogs can be obtained by a process called subordination of
probability distributions. In this process a known probability distribution, in our case
a Gaussian distribution, is subordinated to obtain a new probability distribution. This
process is known for probability distributions on R (see [152, chapter 5] and [153, chapter
6]) as well as for probability distributions on arbitrary Lie groups (see [145, section 5.7])
and therefore allows us to find analogues of probability distributions that are connected
to the Gaussian distribution given in equation (208).

57In SO(2) and SO(3) the central limit theorem states that if ω1, . . . , ωn are random rotations that
are independently identically distributed and satisfy a set of general conditions [145, theorem 5.6.1],
then the random variable given by the group product of all rotations ω1 · . . . · ωn follows a Gaussian
distribution in the limit of n → ∞.

58In the given reference equation one has to consider t=1. The representation of the identity rotation Iπ
for SO(2) is given by e−in0 = 1 and similarly for SO(3) via Dl

n,k(0, 0, 0) = δn,k. Finally, the Casimir
element κπ of the Lie algebra so(2) is n2 while that of so(3) is l(l + 1).
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Let p(x) be a probability distribution on R, assume its characteristic function can be
represented as follows

p̂R(t) = e−h(t2) , such that (−1)i
di

dsi
h(s) ≤ 0 for all i in N (211)

In this case h is called a Bernstein function and the characteristic function p̂ln,k of the
probability distribution on SO(3) corresponding to p(x) is given by:

p̂ln,k = e−h
(
l(l+1)

)
δn,k . (212)

Let us now consider the example of Cauchy and Laplace distributions. For the Cauchy
distribution centered at the origin we have :

p̂R(t) = e−γ|t| , p̂n = e−γ|n| , p̂ln,k = e−γ
√

l(l+1))δn,k , (213)

with the Bernstein function being h(s) = γ
√
s. Whereas, in case of the Laplace distribu-

tion centered at the origin one obtains.

p̂R(t) =
1

1 + b2t2
, p̂n =

1

1 + b2n2
, p̂ln,k =

1

1− b2l(l + 1)
δn,k , (214)

where the Bernstein function is h(s) = ln(1 + b2s). Analogs of the above distributions
centered at arbitrary rotations can be obtained using the shift theorem for Fourier trans-
forms. In case of SO(3) the shift theorem follows from the product rule [154, section
4.7.1]

Dl
m,n(ωω0) =

∑

k

Dl
m,k(ω)D

l
k,n(ω0) , (215)

where ωω0 denotes the combined rotation in which first a rotation by ω0 and then one
by ω is applied. With this, we find the characteristic function of a shifted rotational
probability distribution p′(ω) = p(ωω−1

0 ) to be given via

1

8π2

∫

SO(3)

dω p(ωω−1
0 )Dl

m,n(ω)
∗ =

∫

SO(3)

dω p(ω)Dl
m,n(ωω0)

∗

=

∫

SO(3)

dω p(ω)
∑

k

Dl
m,k(ω)

∗Dl
k,n(ω0)

∗

=
∑

k

p̂lm,kD
l
k,n(ω0)

∗ .

Finally, we want to mention that the convolution theorem provides a powerful tool to
derive characteristic functions of convolutions of probability distributions. In the case of
SO(3) the convolution theorem is a consequence of equation (215). Given two probability
distributions p(ω) and q(ω) the characteristic function of their convolution (p ⋆ q)(ω) is
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defined by

p̂ ⋆ q
l
m,n =

∫

SO(3)

dω (p ⋆ q)(ω)Dl
k,n(ω)

∗

=

∫

SO(3)

dω

(∫

SO(3)

dω0 p(ωω
−1
0 )q(ω0)

)
Dl

m,n(ω)
∗

=

∫

SO(3)

dω0

(∫

SO(3)

dω p(ωω−1
0 )Dl

m,n(ω)
∗
)
q(ω0)

=

∫

SO(3)

dω0

(∑

k

p̂lm,kD
l
k,n(ω0)

∗
)
q(ω0)

=
∑

k

p̂lm,kq̂
l
k,n (216)

Consider the Voigt distribution which is the convolution of a Gaussian with a Cauchy
distribution. Using the convolution theorem we know that its characteristic function is
the product of characteristic functions for the individual distributions that is,

p̂R(t) = e−γ|t|−σ2t2 , p̂n = e−γ|n|−σ2n2

, p̂ln,k = e−γ
√

l(l+1)−σ2l(l+1)δn,k . (217)

on the real line , SO(2) and SO(3) respectively.
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7. Summary

Theory of FXS

We proposed a generalized formulation of fluctuation X-ray scattering via definition 2.1,
that also introduced a new version of the FXS moments in equations 61.

Starting from this definition we could identify connections to mathematical invariant
theory, which allowed us to formulate general statements, see observations 2.3 and 2.12-
2.14, on the type of information that FXS can retrieve about the single-particle intensity
I(q). This information comes in the form of rotational invariants, see equation (73) and
section 2.2. Using the proposed version of the FXS moments we found a new method
to extract the degree-2 invariants by solving the linear system given in equation (113)
via back-substitution. Additionally, we were able to formulate the general connection
between single-particle and multi-particle moments of arbitrary degree, while allowing
the number of particles to be a random variable via observation 2.19. This insight was
quite important for several theoretical results.

On one hand it allowed us to see that FXS contains information about the coefficient of
variation in the number of particles, see equation (128). This could potentially remove the
last remaining free parameters, in form of the statistical moments ⟨Nk⟩ in the number of
particles, and allow direct computations of the single-particle moments from their scaled
multi-particle counterparts, see equation (129).

On the other hand observation 2.19 also provided the single-particle to multi-particle
connection in our extension of the FXS formalism to arbitrary rotational probability dis-
tributions, discussed in chapter 6. At the core of this extension lies the insight that the
averaged rotation actions ⟨e−inα⟩SO(2) and ⟨Dl

m,n(α, β, γ)
∗⟩SO(3) have the form of charac-

teristic functions and are connected to Fourier transforms of the rotational probability
distributions on the rotation groups SO(2) and SO(3) for 2D and 3D FXS,respectively.
This allowed us to obtain several interesting theoretical results. We found that the SAXS
pattern ISAXS(q), thought of as the averaged 2D diffraction pattern ⟨IM(q, ϕ)⟩, contains
the maximal amount of information about the rotational probability distribution. Specifi-
cally, with knowledge about the particle structure, one can retrieve the orientational prob-
ability distribution in both 2D and 3D FXS up to the limit posed by Friedel’s symmetry
(see equations (183) and (184)), i.e. up to the limitation posed by the point inversion
symmetry in the scattering intensity I(q). We also realized that for 2D FXS the degree-2
invariants can be computed without knowledge about the orientational probability dis-
tribution, see equation (182), therefore allowing structure determination under arbitrary
orientational distributions. For 3D FXS the same does not hold, but we could still pro-
vide direct formulas that connect the degree-2 moments with the harmonic coefficients
of the single-particle intensity I lm(q) and the characteristic function of the orientational
probability distribution, see observation 6.1. Finally, we have seen in section 6.4 that
apart from numeric computations of the characteristic functions of arbitrary orientational
probability distributions it is also possible to derive analytical results for selected distri-
butions. Most notably, such distributions are relevant for pump-probe experiments on
molecular solutions or aerosols at XFELs, see equation (199).
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Single-particle reconstruction workflow

As part of this thesis we have developed and implemented an open source software suite
xFrame for single-particle structure determination from fluctuation X-ray scattering data.
It covers all necessary data processing steps, starting with the computation of the averaged
angular cross-correlation function from diffraction patterns. It allows to extract and
regularize the degree-2 invariants, perform phase retrieval and is able to align and average
the obtained reconstructions.

The implemented workflow contains several novel approaches and insights. The regu-
larization step, in which the extracted degree-2 invariants Bl and Bn are transformed into
their decomposition representation ṼlṼ

†
l and ṽnṽ

†
n, was extended to take their natural

q-dependent decay into account and allows to minimize the phase difference between the
invariants and their decompositions. We introduced a scheme by which one is able to
partially mitigate the information loss that occurs due to masking in the regularization
step, see equation (139).

The phasing routine itself crucially depends on Fourier transforms in spherical and
polar coordinates, which need to be approximated. We investigated different approaches
to their approximation via Hankel transforms and found that some of them converge to
Riemann sum approximations, see appendix B, which prompted the use of the simple
midpoint rule in the presented phasing routine. It was realized that artifacts due to the
integral approximations can be reduced by adding a Fourier transform stabilization step
to the phasing loop as described in equation (150). Since FXS uses rotation invariant
information as phasing constraint, all obtained reconstructions differ in their rotation
state and need to be aligned prior to the computation of an averaged reconstruction. For
2D FXS we identified an algebraic orientation determination algorithm that allows to
rotationally align individual reconstructions without the need to select a reference.

All of the above mentioned steps and algorithms are now available as part of the xFrame
python package which can be found at https://github.com/European-XFEL/xFrame
and have been tested on simulated [23] and experimental datasets [122].

We demonstrated that the presented workflow is able to achieve Fourier limited recon-
structions as well as its ability to perform single-particle structure recovery from multi-
particle scattering patterns, if the number of particles is known [see section 5.1]. The
presented reconstructions of the PR772 virus from diffraction data taken at the LCLS ex-
periments amo86615 and amo06516 allowed us to confirm the robustness of the presented
workflow to noise and missing diffraction data, as well as its ability to provide successful
reconstructions from a limited amount of diffraction patterns. The similarity between the
observed FXS moments and invariants from both experiments, visible in figure 49, indi-
cates good reproducibility of the experimental results, which becomes especially obvious
when comparing it, e.g. with results for a simulated solid icosahedral particle of compa-
rable size. Our workflow could improve the previously obtained resolution estimates for
MTIP reconstructions based on the amo86615 experiment [20] and allowed us to identify
deviations of the virus capsid from its ideal icosahedral symmetry. We could confirm the
existence of deviations from the ideal capsid symmetry also for the amo06516 dataset,
where we found special features at a particular vertex of the virus capsid. Depending
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on the considered size-part it either contained a density deficient area or showed a spike
like extension, see figure 52 (e)-(h). Our experimental observations are in agreement with
previous experimental XFEL studies on PR772, regarding deviations from the icosahedral
symmetry [18, 20] and concerning the spike like extension [121]. They are also consistent
with the low stability of the PR772 virion at varying temperatures, humidities, nebuliza-
tion conditions [131, 132] and capsid remodeling mechanisms found in viruses belonging
to the same family [125, 126].

Conclusions

In conclusion we have presented several new theoretical developments in fluctuation X-ray
scattering . Most notably, the extension of FXS to cover arbitrary orientational probability
distributions, which has potential applications in pump-probe experiments on molecular
solutions and aerosols with an XFEL. We also implemented a complete single-particle
reconstruction workflow based on FXS data, in form of the software suite xFrame. This
workflow was successfully applied to experimental datasets and we hope that it will be
useful for fellow scientists in the field of X-ray imaging.
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A. Fluctuation X-ray scattering invariants and
moments

A.1. Geometric interpretation of degree-2 invariants

In section 1.7 we have seen that the rotation action on harmonic coefficients given in
equations (57) and (56) is a direct consequence of the rotation action on the corresponding
expansion functions einϕ and Y l

m(θ, ϕ).

Rαe
inϕ = ein(ϕ−α) and R(α,β,γ)Y

l
m(θ, ϕ) =

l∑

n=−l

Y l
n(θ, ϕ)D

l
nm(α, β, γ)

∗ .

The degree-2 invariants

Bn(q, q
′) = In(q)In(q

′)∗ and Bl(q, q
′) =

∑

n

I ln(q)I
l
n(q

′)∗ ,

therefore have dual partner functions specified in terms of the expansion functions that
have to share the property of being invariant under rotations.

Bn(ϕ, ϕ
′) = einϕe−inϕ = ein(ϕ−ϕ′) and Bl(ϕ, θ, ϕ

′, θ′) =
∑

n

Y l
n(θ, ϕ)Y

l
n(θ

′, ϕ′)∗ . (218)

Rotating the intensity I simply means to apply the same rotation to both expansion
functions in the these dual invariants (218). In the 2D case this results in

RαBn(ϕ, ϕ
′) = Bn(R−αϕ,R−αϕ

′) = ein(ϕ−α−ϕ′+α) = Bn(ϕ, ϕ
′) (219)

and it is clear that Bn(ϕ, ϕ
′) is an invariant under the rotation action. Geometrically the

parameter space of Bn is given by the Cartesian product of two circles, each of which
representing one of the angles ϕ and ϕ′. The Cartesian product of two circles can be
visualized as a torus, see figure 55

×

L1

ϕ

≃

L2

ϕ′

≃
L1

(ϕ, ϕ′)

L2

L1

L2(ϕ, ϕ′)

Figure 55: Different visualizations of the Cartesian product of two circles L1 and L2. Selecting
a point in the product space L1×L2, say (ϕ, ϕ′) is the same as selecting a point on the surface of
the torus (center) or a point in a square with periodic boundary conditions (right). The periodic
boundary conditions in the square are such that dashed boundaries, corresponding to L2, are
identified with each other and similarly for the solid boundaries representing L1.

In these graphical visualizations the rotation Rα always acts by “rotating” the coordinate
circles, which translates to
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• (two circles) Rotating the circles L1 and L2 clockwise.

• (torus) Twisting the torus by rotating the L1 and L2 clockwise at the same time.

• (periodic square) Shifting the points in the square diagonally by shifting ( the same
as rotation due to periodic boundaries) the x and y coordinate axes corresponding
to L1 and L2

A graphical representation of this can be found in figure 56. Functions invariant under

×

L1

≃

L2

≃
L1

L2

L1

L2

Figure 56: Rotation action on different representations of a Torus. Rotating the two circles
L1 and L2 clockwise in the direction of the arrows causes all points on the torus to follow lines
parallel to the red line. In its representation as square with periodic boundaries the corresponding
shift of the coordinate axes cause all point inside the square to travel along lines parallel to the
red diagonal.

rotations therefore have to remain constant along paths parallel to the red lines in figure
56. That this is exactly the case for all Bn can be seen in figure 57.

Bn=0(ϕ, ϕ
′) Bn=1(ϕ, ϕ

′) Bn=2(ϕ, ϕ
′) Bn=3(ϕ, ϕ

′) Bn=4(ϕ, ϕ
′)

0

2π

P
hase

Figure 57: Values of the dual degree-2 invariants Bn(ϕ, ϕ
′) = ein(ϕ−ϕ′) for n = 0, 1, 2, 3, 4. Color

represents the phase of the dual invariant. It can be seen that the values remain constant along
the directions of the rotation action, i.e. that Bn(ϕ, ϕ

′) are invariant under rotations.
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The rotation action in the 3D case is given by

RωBl(ϕ, θ, ϕ
′, θ′) = Bl(Rω−1(ϕ, θ),Rω−1(ϕ′, θ′))

=
l∑

n=−l

∑

m

Y l
m(θ, ϕ)D

l
mn(ω)

∗
∑

m′

Y l
m(θ, ϕ)

∗Dl
mn(ω) ,

where ω denotes an element of SO(3). General visualizations of the dual invariant, as in
the two-dimensional case, are difficult since the parameter space of Bl is the Cartesian
product of two spheres and hence a curved four dimensional surface. If we however restrict
our discussion to its rotational invariance only, then geometric interpretations are possible.
Note, that in the two-dimensional case the sets of parameters connected by rotations, i.e.
parallels to the red lines in figure 56, are loops and hence one dimensional subsets of the
complete torus. And we have already seen that the rotational invariance of Bn simply
demands that it is constant on those one dimensional subsets. A particular simple choice
of such a subspace of the torus is its main diagonal (in the square representation) given by
points (ϕ, ϕ′) such that ϕ = ϕ′. The corresponding “diagonal” in the three dimensional-
case is characterized by (θ, ϕ) = (θ′, ϕ′) on which the dual invariant is given by

Bl(ϕ, θ, ϕ, θ) =
l∑

n=−l

Y l
n(θ, ϕ)Y

l
n(θ, ϕ)

∗ = |Y 0
0 |2 + 2

l∑

n=1

|Y l
n(θ, ϕ)|2 , (220)

where in the second equality we used that Y l
n(θ, ϕ)

∗ = (−1)nY l
n(θ, ϕ). This subset is

simply a sphere and the rotational invariance again demands that Bl(ϕ, θ, ϕ, θ) has to be
constant under the rotation action for all points (θ, ϕ) on this sphere. Figure 58 visualizes
this via parametric plots where the distance from the center of the coordinate system
into the direction of (θ, ϕ) is given by the value of Bl(ϕ, θ, ϕ, θ). The parametric plot of
a constant function is then simply a sphere and the rotational invariance translates into
the statement that the sum of the parametric plots of the different |Y l

m|2, from equation
(220), have to form a sphere.
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|Y l
0 |2 2|Y l

1 |2 2|Y l
2 |2 2|Y l

3 |2 2|Y l
4 |2 Bl(θ, ϕ, θ, ϕ)

l = 0 =

l = 1 =+

l = 2 =+ +

l = 3 =+ + +

l = 4 =+ + + +

Figure 58: Parametric plots of the summands of the dual invariant Bl(ϕ, θ, ϕ, θ) as given in
equation (220) for l = 0, 1, 2, 3 and 4. The color scale serves as an additional indication of the
distance from the center, that is given by the value of Bl(ϕ, θ, ϕ, θ). Reddish points are close to
the center while blue areas are further away. It can be seen that the different summands always
add up to a sphere which shows the rotational invariance of Bl(ϕ, θ, ϕ, θ).
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A.2. Proof of explicit form of degree-3 invariants

In this part of the appendix we will show that equations (83a) and (83b) are true. For
convenience let us repeat the corresponding equations.

I3
SO(2)(q1, q2, q3) =

〈
RαIn1(q1)In2(q2)

∗In3(q3)
〉
SO(2)

= δn2,(n1+n3) In1+n3(q2)
∗In1(q1)In3(q3)

I3
SO(3)(q1, q2, q3) =

〈
RωI

l1
m1

(q1)I
l2
m2

(q2)
∗I l3m3

(q3)
〉
SO(3)

= δm2,(m1+m3)

C l1,l3,l2
m1,m3

2l2 + 1

∑

n1,n3

I l2n1+n3
(q2)

∗I l1n1
(q1)I

l3
n3
(q3)C

l1,l3,l2
n1,n3

The two dimensional case is again a direct consequence of the rotation action given in
equation (57) which can be used as follows

〈
RαIn1(q1)In2(q2)

∗In3(q3)
〉
SO(2)

= In1(q1)In2(q2)
∗In3(q3)

〈
ei(n1−n2+n3)α

〉
SO(2)

= In1(q1)In2(q2)
∗In3(q3)

1

2π

∫ 2π

0

dα ei(n1−n2+n3)α

= δn2,(n1+n3) In1+n3(q2)
∗In1(q1)In3(q3)

In the three-dimensional case we will for clarity suppress the summation ranges which
yields

〈
RωI

l1
m1

(q1)I
l2
m2

(q2)
∗I l3m3

(q3)
〉
SO(3)

=
∑

n1,n2,n3

I l1n1
(q1)I

l2
n2
(q2)

∗I l3n3
(q3)

〈
Dl1

m1n1
(ω)∗Dl2

m2n2
(ω)Dl3

m3n3
(ω)∗

〉
SO(3)

.

The remaining average in the Wigner-D matrices is directly proportional59, to the well
known triple integral relation given in equation (267) and we find

〈
RωI

l1
m1

(q1)I
l2
m2

(q2)
∗I l3m3

(q3)
〉
SO(3)

= δm2,(m1+m3)

C l1,l3,l2
m1,m3

2l2 + 1

∑

n1,n3

I l2n1+n3
(q2)

∗I l1n1
(q1)I

l3
n3
(q3)C

l1,l3,l2
n1,n3

.

59With proportionality constant 1
8π2 .
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A.3. Proof of explicit form of the degree-3 moments

Let us now derive the explicit form of the degree-3 moments for the single-particle case
(N = 1) given in equations 110 and 111, that is

M3(q1, q2, q3, ϕ1, ϕ2, ϕ3) =
L∑

l1,l2,l3

F l1,l2,l3(q1, q2, q3, ϕ1, ϕ2, ϕ3)Bl1,l2,l3(q1, q2, q3)

F l1,l2,l3(q1, q2, q3, ϕ1, ϕ2, ϕ3) =
∑

m1,m3

2Y l2
m1+m3

(θλ(q2), ϕ2)
∗

2l2 + 1

× Y l1
m1

(θλ(q1), ϕ1)Y
l3
m3

(θλ(q3), ϕ3)C
l1,l3,l2
m1,m3

and

M3(q1, q2, q3, n1, n2, n3) = δn2,n1+n3

L∑

l1≥|n1|,l3≥|n3|
l2≥|n1+n3|

F̃ l1,l2,l3
n1,n3

(q1, q2, q3)Bl1,l2,l3(q1, q2, q3)

F̃ l1,l2,l3
n1,n3

(q1, q2, q3) =
2C l1,l3,l2

n1,n3

2l2 + 1
P̃

|n1|
l1

(θλ(q1))P̃
|n1+n3|
l2

(θλ(q2))P̃
|n3|
l3

(θλ(q3))

where the invariants Bl1,l2,l3(q1, q2, q3) are specified in equation (85) as

Bl1,l2,l3(q1, q2, q3) =
∑

n1,n3

I l2n1+n3
(q2)

∗I l1n1
(q1)I

l3
n3
(q3)C

l1,l3,l2
n1,n3

We shall start with the derivation of M3(q1, q2, q3, ϕ1, ϕ2, ϕ3). Expanding the scattering
patterns IM in the definition of M3 as spherical harmonic series in the single-particle
harmonic coefficients I lm yields

M3(q1, q2, q3, ϕ1, ϕ2, ϕ3) =
〈
IM(q1, ϕ1)I

M(q2, ϕ2)
∗IM(q3, ϕ3)

〉
SO(3)

=
∑

l1,l2,l3
m1,m2,m3

〈
RωI

l1
m1

(q1)I
l2
m2

(q2)
∗I l3m3

(q3)
〉
SO(3)

Y l1
m1

(θλ(q1), ϕ1)Y
l2
m2

(θλ(q2), ϕ2)
∗Y l3

m3
(θλ(q3), ϕ3)

=
∑

l1,l2,l3

∑

n1,n3

I l2n1+n3
(q2)

∗I l1n1
(q1)I

l3
n3
(q3)C

l1,l3,l2
n1,n3

× 2

2l2 + 1

∑

m1,m3

Y l1
m1

(θλ(q1), ϕ1)Y
l2
m1+m3

(θλ(q2), ϕ2)
∗Y l3

m3
(θλ(q3), ϕ3)C

l1,l3,l2
m1,m3

, where in the last step we used the explicit form of the single-particle invariant〈
RωI

l1
m1

(q1)I
l2
m2

(q2)
∗I l3m3

(q2)
∗〉

SO(3)
given in equation (83b). Using our definitions of Bl1,l2,l3
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and F l1,l2,l3 we directly obtain equation (110). Similarly one my find for M3(q1, q2, q3, n1, n2, n3)

M3(q1, q2, q3, n1, n2, n3) =
〈
IMn1

(q1, ϕ1)I
M
n2
(q2, ϕ2)

∗IMn3
(q3, ϕ3)

〉
SO(3)

=
∑

l1,l2,l3
m1,m2,m3

〈
I l1m1

(q1)I
l2
m2

(q2)
∗I l3m3

(q2)
∗〉

SO(3)

×
(
Y l1
m1

(θλ(q1), ϕ1)
)
n1

(
Y l2
m2

(θλ(q2), ϕ2)
∗)

n2

(
Y l3
m3

(θλ(q3), ϕ3)
)
n3

=
∑

l1,l2,l3

〈
I l1n1

(q1)I
l2
n2
(q2)

∗I l3n3
(q3)

〉
SO(3)

P̃ n1
l1
(θλ(q1))P̃

n2
l2
(θλ(q2))P̃

n3
l3
(θλ(q3))

= δn2,n1+n3

∑

l1,l2,l3

∑

m1,m3

I l2m1+m3
(q2)

∗I l1m1
(q1)I

l3
m3

(q3)C
l1,l3,l2
m1,m3

× 2C l1,l3,l2
n1,n3

2l2 + 1
P̃ n1
l1
(θλ(q1))P̃

n1+n3
l2

(θλ(q2))P̃
n3
l3
(θλ(q3))

The third equality is due to equation (102), that links the Fourier coefficients of spherical
harmonics Y l

m to the functions P̃ n
l , which are proportional to associated Legendre poly-

nomials. By substituting the definitions of Bl1,l2,l3 and F̃ l1,l2,l3
n1,n3

into the last result one
obtains equation (111).

A.4. Derivation of Observation 2.19

In observation 2.19 we stated that the multi-particle observables Md
N reduce to sums over

their single particle versions Md and take the form

Md
N =

d∑

k=1

〈
N !

(N − k)!

〉 ∑

(o,σ)∈Sd
k

k∏

p=1

Mop
||σ ,

where (o, σ) ∈ Sd
k , with o = (o1 ≤ . . . ≤ ok), is given by our discussion of set partitions

in section 2.5.3. Before continuing let us recall some of the shorthand notation that was
used in the multi-particle discussion append it a little.
Notation Description

σ(p, a)
Description of the p-th part of the set partition (o, σ) ∈ Sd

k via its asso-
ciated permutation, see equation (116)

Md
N Moments Md

N(q1, . . . , qd, ϕ1, . . . , ϕd) or Md
N(q1, . . . , qd, n1, . . . , nd)

Mo
|i1,...,io

Single-particle moment of same type as Md
N evaluated at the coordinate

pairs i1, . . . , io of Md
N .

Mop
||σ

Single-partice moment Mop
|σ(p,1),...,σ(p,op) whose coordinate indices corre-

spond to the p-th part of the partition (o, σ) applied to {1, . . . , d} .

IMj,i
IMj (qi, ϕi) scattering contribution of the j-th particle evaluated at the i-th
coordinate pair of Md

N

ωj
Random variable describing the rotation state of the j-th particle in a
sample.

N Random variable describing the number of particles in a sample.

M
Statistical ensemble of samples, described by the random variables
{N,ω1, . . . , ωN ,x1, . . . ,xN}.
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The following discussion will not depend on the type of coordinate pairs (qj, ϕj) or (qj, nj),
corresponding to the moments given by equation (60) or (61), and will be valid for both
cases. This is also reflected in our shorthand notation, since Mo

|i1,...,io only tracks the
position of coordinate pairs but not their type. We will see that the derivation of equation
119 relies on the following assumptions made in definition 2.1

• The dilute-limit assumption.

• The diffraction before destruciton assumption that identifies the scattering ampli-
tude ρ̂M as the Fourier transform of a sample ρM restricted to the Ewald’s sphere.

• Part a) of the nature of randomness assumption, i.e. the statistical independence
of the random variables.

The first assumptions allows us to approximate the scattered amplitude of a sample by
the incoherent sum over the scattering contributions of its particles, i.e.

IM(q, ϕ) =
N∑

j=1

IMj (q, ϕ) and therefore Md
N =

〈
d∏

i=1

(
N∑

ji=1

IMji,i

)〉

M

Using the second assumption one may see, using the Fourier shift theorem (18), that the
intensity contribution of an individual particle is independent from its position. This
allows us to substitute the ensemble average M with an average over the number of
particles and rotations only, hence one finds

Md
N =

〈
N∑

j1,...,jd=1

d∏

i=1

IMji,i

〉

N,ω1,...,ωN

One of the issues with this equation is that the two types of random variables, N and ωj,
are tied to each other by the summation. In the next step we shall decouple them. First
note that the law of total expectation [155, chapter 10 proposition 1.1 (a)] tells us that,
given two random variables X and Y on the same ensemble M , the total expectation
value (average) of X can be expressed using the conditional expectation value of X given
that Y attains a specific value y = Y , i.e.

E[X] = E[E[X|Y ]] or in our notation ⟨X⟩M = ⟨⟨X⟩M,Y=y⟩M
In our case Y is the number of particles and we therefore have

Md
N =

〈〈
N∑

j1,...,jd=1

d∏

i=1

IMji,i

〉

N=η,ω1,...,ωη

〉

N,ω1,...,ωN

Note, that by the statistical independence of N and ωj, the inner average is simply the
average over all possible rotation states ω1, . . . , ωη for an arbitrary but fixed number of
particles η. By the same reasoning one finds that the outer average reduces to a simple

144



average over the number of particles. If we denote the former average by Md
N=η and let

P (η) be the probability of a sample consisting of η particles, we find

Md
N =

∞∑

η=0

P (η)Md
N=η (221)

With this we have reduced the problem of computing Md
N in general to the computation

of Md
N=η followed by an average over the number of particles. Since the summation

indices in Md
N=η do not depend on random variables anymore we may pull the sums out

of the average, which yields

Md
N=η =

η∑

j1,...,jd=1

〈
d∏

i=1

IMji,i

〉

ω1,...,ωη

(222)

The statistical independence between rotations acting on different particles,i.e. between
ωs and ωs′ for s ̸= s′, does allow us to reduce each summand to a product of single-
particle averages, since only those intensities have to be averaged together that belong
to the same particle. To formalize this, let k be the number of different particle indices
within the summand tuple (j1, . . . , jd) and let i1, . . . , ik be the indices of these particles.
Furthermore, let op be the number of times the the ip-th particle appears in (j1, . . . , jd). In
other words, each summand corresponds to a set partition (o, σ) = (o1 ≤ . . . ≤ ok) of the
subscripts (1, . . . , d), such that the particle indices ji whose subscripts form a part of the
set partition (o, σ) are equal to each other. Moreover, all particle indices ji corresponding
to the p-th part of this partition are equal to ip. Using the permutation representation
of the set partition (o, σ) allows us to describe the subscripts of the particle indices ji
belonging to the p− th part, via (σ(p, 1), . . . , σ(p, op)) and we find
〈

d∏

i=1

IMji,i

〉

ω1,...,ωη

=
〈
IMi1,σ(1,1) · . . . · IMi1,σ(1,o1)

〉
ωi1

· . . . ·
〈
IMik,σ(k,1) · . . . · I

M
jk,σ(k,ok)

〉
ωik

(223)

=
k∏

p=1

Mop
σ(p,1),...,σ(p,op)

=
k∏

p=1

Mop
||σ . (224)

This implies that each summand is uniquely identified by a choice of k, a set partition
(o, σ) ∈ Sd

k of a set with d elements into k parts and a choice of pairwise different particle
indices i1, . . . , ik. Correspondingly we can write the sum in (222) as triple sum over the
aforementioned parameters, i.e.

Md
N=η =

η∑

j1,...,jd=1

〈
d∏

i=1

IMji,i

〉

ω1,...,ωη

=
d∑

k=1

η∑

i1 ̸=... ̸=ik

∑

(o,σ)∈Sd
k

k∏

p=1

Mop
||σ . (225)

Since the summands on the right hand side of (223) do not depend on the particle indices
i1, . . . , ik we can directly evaluate their sum and find

Md
N=η =

d∑

k=1

η!

(η − k)!

∑

(o,σ)∈Sd
k

k∏

p=1

Mop
||σ .
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Combining this result with equation (221) finally yields the desired formula for the multi-
particle observables, presented in observaiton 2.19.
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B. Hankel transform approximations

In this appendix we consider different methods for approximating the continuous Hankel
transforms in equations (141) and (142).

B.1. Expansion via orthogonal polynomials

One of the approaches to derive a discrete version of the Hankel transforms is to expand
ρm(r) or ρlm(r) using an orthogonal basis ξi(r) of all square integrable functions on the
interval [0, Rmax], e.g. in the 2D case,

ρm,i =

∫ Rmax

0

ρm(r)ξ
∗
i (r)dr, (226a)

ρm(r) =
∞∑

i=0

ρm,iξi(r), (226b)

where ρm,i are the expansion coefficients. This allows one to shift the Hankel integration
from ρm(r) to the expansion functions ξi(r), i.e. using equation (226b) in (141a) we get

ρ̂m(q) = (−i)m
∞∑

i=0

ρm,i

∫ Rmax

0

ξi(r)Jm(qr)r dr. (227)

The integral in equation (227) can be precomputed once, independently from the consid-
ered function ρm(r), and then used for all subsequent Hankel transform computations.
The remaining integral in (226a) in the determination of the expansion coefficients ρm,i

can then be approximated by using one of the available methods, e.g. the trapezoidal rule
[19], or midpoint rule, to derive a discrete form of equations (141) and (142). Using the
midpoint rule one can approximate equation (227) in the following general form

ρ̂m(qk) ≈ Am

∑

p

ρm(rp)wm(k, p), (228)

where Am are some constants, wm(k, q) are quadrature weights defined by the integral
in equation (227), and rp and qk are discrete coordinates in real and reciprocal space.
Such an approach has been implemented in [19] using a cosine/sine series expansion. An
example of the cosine/sine approach, using the midpoint rule to approximate the expan-
sion coefficients, is presented in Appendix B.2. Alongside this thesis we also developed
an approximation of the Hankel transforms that uses Zernike polynomials as the orthog-
onal basis functions ξi(r). The advantage of the obtained expressions is that, in this
case, the integral in (227) can be evaluated analytically [see Appendix B.3] and thus does
not require numerical approximation as in the case of a cosine/sine series expansion [see
Appendix B.2].

At the same time, analysis of expression (227) defined in terms of an arbitrary orthogo-
nal basis ξi(r) reveals further general aspects of such approximation schemes. By applying
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the midpoint rule to approximate the integral in (226b) on a discrete grid as defined in
3.4.2, and substituting the result into (227) we obtain

ρ̂m(q) ≈ (−i)m
∞∑

i=0

Rmax

S

S−1∑

p=0

ρm(rp)ξ
∗
i (rp)

∫ Rmax

0

J̃m(qr)ξi(r)dr, (229)

where we denoted J̃m(qr) = Jm(qr)r. Considering that J̃m(qr) is a real function, the
integral in (229) defines, in fact, the complex conjugated coefficients J̃∗

m,i(q) of expansion
of J̃m(qr) in the basis ξi(r), that is [see equation (226a)],

J̃∗
m,i(q) =

[∫ Rmax

0

J̃m(qr)ξ
∗
i (r)dr

]∗
. (230)

Using the latter result in (229) and rearranging the terms we get

ρ̂m(q) ≈ (−i)mRmax

S

S−1∑

p=0

ρm(rp)

[ ∞∑

i=0

J̃m,i(q)ξi(rp)

]∗
. (231)

One may recognize, that the expression in square brackets is exactly the series expansion
of J̃m(qrp) in terms of ξi(rp) [see equation (226b)]. In the limit of infinite expansion
orders (i → ∞) such an approximation scheme is, therefore, independent of the chosen
orthogonal basis ξi and results in the following expression

ρ̂m(qk) ≈ (−i)mRmax

S

S−1∑

p=0

ρm(rp)Jm(qkrp)rp. (232)

Note that equation (232) corresponds exactly to simple numeric evaluation of the con-
tinuous Hankel transform using a Riemann sum in the integration bounds [0, Rmax] [see
equation (247) in Appendix B.4]. Similar derivations can be performed for the inverse
Hankel transform, and also in the 3D case. This conclusion is supported numerically for
the 3D case in Fig. S6 of the supporting information, where it is shown that the Zernike
[equation (246)] and cosine/sine [equations (234)] weights approach the weights obtained
by directly approximating the Hankel integrals using the midpoint rule [equation (144c)].
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(a)

Maximal Zernike expansion order amax
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Maximal cosine/sine series expansion order amax
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Figure 59: Relative difference, in Frobenius norm || · ||Fq , between the weights wMP = wn(p, k)
generated from the midpoint rule [equation (143c)], and the weights (a) wZ from Zernike se-
ries approximation [equation (245)], as well as (b) wSC from cosine/sine series approximation
[equations (233)], as function of the considered expansion cutoff amax. The Frobenius norm of

wn(p, k) is given by
√∑L

n

∑S
p,k |wn(p, k)|2, and was computed upto a maximal harmonic degree

of L = 63 and various radial grid sizes S specified in the figure legends. The difference between
the quadrature weights obtained by different approximations decreases for arbitrary large amax.
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B.2. Cosine/sine series expansion approximation

The quadrature weights given in [19] are determined by employing a cosine/sine series
expansion of ρm(r) or ρlm(r), and their reciprocal space counterparts. Using the sam-
pling points defined section 3.4.2 and applying the midpoint rule for approximating the
integrals, the weights for the 2D case take the following form for odd orders m

wm(p, k) = 2π2S

amax∑

a=0

sin

[
πa(1 + 2p)

2S

]

×
∫ 1

0

sin (πax)Jm

[
π(1 + 2k)

2
x

]
xdx, (233a)

and for even orders m,

wm(p, k) = 2π2S

amax∑

a=0

ca cos

[
πa(1 + 2p)

2S

]

×
∫ 1

0

cos (πax)Jm

[
π(1 + 2k)

2
x

]
xdx, (233b)

where amax defines the maximum expansion order in the cosine/sine series, ca = 1/2 for
a = 0, and ca = 1 otherwise.

In the 3D case the weights for odd orders l are

wl(p, k) = 2
√
2π2

√
πS2

amax∑

a=0

sin

[
πa(1 + 2p)

2S

]

×
∫ 1

0

sin (πax)jl

[
π(1 + 2k)

2
x

]
x2dx, (234a)

and for even orders l,

wl(p, k) = 2
√
2π2

√
πS2

amax∑

a=0

ca cos

[
πa(1 + 2p)

2S

]

×
∫ 1

0

cos (πax)jl

[
π(1 + 2k)

2
x

]
x2dx. (234b)

The quadrature weights (233) and (234) can be directly used in forward transforms (143a)
and (144a), respectively, while for the inverse transforms (143b) and (144b) the corre-
sponding weight functions should be transposed with respect to p and k.

B.3. Zernike polynomials expansion approximation

Here we derive the quadrature weights wm(p, k) and wl(p, k) by employing the radial parts
of the Zernike polynomials [156, 157] as the basis functions ξi(r) in the expansion (226).
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The radial parts Rl
D,a(r) of the D-dimensional Zernike polynomials [158] can be defined

using Jacobi polynomials P (α,β)
n (x) as

Rh
D,a(r) = (−1)

s−h
2 rh P (α,β)

n

(
1− 2r2

)
, (235)

α = h+ D
2
− 1, β = 0, n =

s− h

2

for even a− h, and Rh
D,a(r) = 0 otherwise, where a and h are non-negative integers.

The radial polynomials Rh
D,a(r) form a set of orthogonal polynomials on the interval

[0, 1], with the orthogonality condition given for an arbitrary h by
∫ 1

0

Rh
D,a(r)R

h
D,a′(r)r

D−1 dr =
δa,a′

2a+D
. (236)

This implies that any sufficiently smooth function f(r), that is defined on a finite interval
[0, Rmax], has a series expansion in the polynomials Rh

D,a(r), i.e.,

f(r) =
∞∑

a=0

fsR
h
D,a

(
r

Rmax

)
, (237a)

fa =
2s+D

RD
max

∫ Rmax

0

f(r)Rh
D,a

(
r

Rmax

)
rD−1 dr. (237b)

The advantage of Zernike expansions is that the Hankel transform of Rh
D,a can be evaluated

exactly. In the 2D case (D = 2) for h = m one finds,
∫ 1

0

Rm
2,a(r)Jm(qr)r dr = (−1)

a−m
2
Ja+1(q)

q
, (238)

whereas in the 3D case (D = 3) for h = l we have,
∫ 1

0

Rl
3,a(r)jl(qr)r

2 dr = (−1)
a−l
2
ja+1(q)

q
, (239)

for q ̸= 0. A proof of equation (238) can be found in Appendix VII of [157], and equation
(239) is derived in this work in Appendix B.5. Since we are interested in approximating
the Hankel transforms of a function defined on a finite interval [0, Rmax], for an arbitrary
positive Rmax, we use scaled versions of the integrals (238) and (239),

∫ Rmax

0

Rm
2,a

(
r

Rmax

)
Jm(qr)r dr = (−1)

a−m
2
Ja+1(qRmax)

q
Rmax, (240)

and ∫ Rmax

0

Rl
3,a

(
r

Rmax

)
jl(qr)r

2 dr = (−1)
a−l
2
ja+1(qRmax)

q
R2

max. (241)

Let us now consider the Hankel transform for the 2D case, as specified in equation
(227), and obtain its discrete version in the form of equation (228). By considering the
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expansion (237a) of f(r) = ρm(r) up to the maximum order s = smax, with each expansion
coefficient ρm,a approximated using the midpoint rule, we can write

ρ̂m(q) = (−i)m
∫ Rmax

0

∞∑

a=0

ρm,aR
m
2,a

(
r

Rmax

)
Jm(qr)r dr

≈ (−i)m
amax∑

a=0

2a+ 2

SRmax

S−1∑

p=0

ρm(rp)R
m
2,a

(
rp
Rmax

)
rp

×
∫ Rmax

0

Rm
2,a

(
r

Rmax

)
Jm(qr)rdr. (242)

Since ρm(r) is finitely supported, the integration range reduces from [0,∞) to [0, Rmax].
Note that equation (242) is already represented as a weighted sum with weights which
are independent on the function ρm(r). Using the integral relation from equation (240),
we arrive at (for q ̸= 0)

ρ̂m(q) ≈
(−i)m
S

S−1∑

p=0

ρm(rp)
rp
q

amax∑

a=0

(−1)
a−m

2 (2a+ 2)

×Rm
2,a

(
rp
Rmax

)
Ja+1(qRmax). (243)

Considering the definitions in equation (146) we finally obtain the discrete version of the
Hankel transform in the 2D case in the form of (228),

ρ̂m(qk) ≈
(−i)m
Q2

max

S−1∑

p=0

ρm(rp)wm(p, k), (244)

with the quadrature weights determined as

wm(p, k) =
π(1 + 2p)

(1 + 2k)

amax∑

a=0

(−1)
a−m

2 (2a+ 2)

×Rm
2,a

(
1 + 2p

2S

)
Ja+1

[
π(1 + 2k)

2

]
. (245)

Following a similar procedure the Zernike weights for the 3D case can be specified as

wl(p, k) =
π
√
2π

2

(1 + 2p)2

(1 + 2k)

amax∑

a=0

(−1)
a−l
2 (2a+ 3)

×Rl
3,a

(
1 + 2p

2S

)
ja+1

[
π(1 + 2k)

2

]
. (246)

The quadrature weights (245) and (246) can be directly used in the forward transforms
(143a) and (144a), respectively, while for the inverse transforms (143b) and (144b) the
corresponding weights are obtained by transposing wm(p, k) and wl(p, k) with respect to
p and k.
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B.4. Direct approximation of the Hankel integrals using the
midpoint rule

Here we consider direct approximations of the Hankel transforms given in equations (141)
and (142) with Riemann sums.

In the 2D case the integral in (141a) can be approximated using the midpoint rule as

ρ̂m(qk) ≈ (−i)mRmax

S

S−1∑

p=0

ρm(rp)Jm(qkrp)rp. (247)

Using the definitions in Appendix 3.4.2, we can present equation (247) in the form

ρ̂m(qk) ≈ Am

S−1∑

p=0

ρm(rp)wm(p, k), (248)

where Am = (−i)m

Q2
max

, and the quadrature weights wm(p, k) are given in equation (143c).
Similarly, in the 3D case the integral in (142a) can be approximated as

ρ̂l(qk) ≈ Al

S−1∑

p=0

ρl(rp)wl(p, k), (249)

where Al =
(−i)l

Q3
max

, and the qudrature weights wl(p, k) are given in equation (144c). Approx-
imations for the inverse Hankel transforms (141b) and (142b) can be obtained similar way,
producing the discrete forward and inverse Hankel transforms given in equations (143)
and (144).

B.5. Hankel transform of the radial part of the 3D Zernike
polynomial

Here we provide a proof of equation (239) for the 3D Zernike polynomials, which closely
follows the derivation of equation (238) given in [157]. We shall need the Rodrigues’
formula for Jacobi polynomials P (α,β)

n (z) and the series expansion of spherical Bessel
functions jl(r), which can be obtained from 10.2.2, 10.47.3 and 18.5(ii) in [150]:

jl(z) =

√
π

2z

∞∑

p=0

(−1)p

p!Γ
(
p+ l + 3

2

)
(z
2

)2p+l+ 1
2
, (250)

P (α,β)
n (z) =

(−1)n

2nn!
(1− z)−α(1 + z)−β

×
(
d

dz

)n

(1− z)α+n(1 + z)β+n, (251)

where Γ denotes the gamma function, and n! is the factorial of a non-negative integer
number n.

153



By substituting z = 1−2r2 in equation (251), and considering in equation (235) Jacobi
polynomials for β = 0, the radial part of the Zernike polynomials for D = 3 yields

Rl
3,s(r) =

(−1)n

n!
r−(α+ 1

2
)

(
d

d(r2)

)n

(r2)α+n(1− r2)n, (252)

with α = l+1/2 and n = (s−l)/2. By expressing the spherical Bessel function in equation
(250) in terms of the argument z = qr, and using equations (250) and (252) in the left
hand side of equation (239) we find the following expansion for the integral,

∫ 1

0

Rl
3,s(r)jl(qr)r

2 dr =

√
π

16

(−1)n

n!

∞∑

p=0

(−1)p

p!Γ (p+ α + 1)

×
(q
2

)2p+α− 1
2
f(p, α, n), (253)

with

f(p, α, n) = 2

∫ 1

0

(r2)p+
1
2

(
d

d(r2)

)n

(r2)α+n(1− r2)n dr. (254)

The integral in (254) can be reformulated by introducing the variable u = r2, which yields

f(p, α, n) =

∫ 1

0

up
(
d

du

)n

uα+n(1− u)n du. (255)

We shall now perform integration by parts in equation (255) for two cases, p ≥ n and
p < n. Notice, that a single application of integration by parts results in

f(p, α, n) =

(
up
(
d

du

)n−1

uα+n(1− u)n

)∣∣∣∣∣

1

0

− p

∫ 1

0

up−1du

(
d

du

)n−1

uα+n(1− u)n

= −p
∫ 1

0

up−1du

(
d

du

)n−1

uα+n(1− u)n, (256)

taking into account that n− 1 < n and α > 0.
For p ≥ n we can then perform integration by parts n times in (255), that results in

f(p, α, n) = (−1)n
p!

(p− n)!

∫ 1

0

up+α(1− u)n du. (257)

One may recognize the remaining integral as the beta function [see 5.12.1 in [150]], which
finally yields for p ≥ n,

f(p, α, n) = (−1)n
p!

(p− n)!

Γ(p+ α + 1)Γ(n+ 1)

Γ(p+ n+ α + 2)
. (258)
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In the case of p < n, it is possible to perform integration by parts only p times in (255),
that gives

f(p, α, n) = (−1)pp!

((
d

du

)n−p−1

uα+n(1− u)n

)∣∣∣∣∣

1

0

= 0. (259)

Using equations (258) and (259) in (253), the latter can be rewritten as follows
∫ 1

0

Rl
3,a(r)jl(qr)r

2 dr = (−1)n
1

q

√
π

2q

×
∞∑

p=n

(−1)p−n

(p− n)!Γ(p− n+ 2n+ α + 2)

(q
2

)2(p−n)+2n+α+1

= (−1)n
1

q

√
π

2q

∞∑

k=0

(−1)k

k!Γ(k + (a+ 1) + 3
2
)

(q
2

)2k+(a+1)+ 1
2
, (260)

where in the last step we considered that 2n + α = a + 1
2
, and introduced a variable

k = p − n. Note that the sum in equation (260), including the prefactor
√
π/(2q), is

precisely the series expansion of a spherical Bessel function ja+1(q) of the order a+1 [see
equation (250)]. This finally yields,

∫ 1

0

Rl
3,a(r)jl(qr)r

2 dr = (−1)n
ja+1(q)

q
= (−1)

a−l
2
ja+1(q)

q
, (261)

that completes the proof of equation (239).
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List of orthogonality and symmetry relations

Spherical harmonics

Addition theorem for two vectors on the unit sphere r1 and r2,

1

2l + 1

l∑

m=−l

Y l
m(r1)Y

l
m(r2)

∗ = P l(⟨r1, r1⟩) , (262)

where ⟨r1, r1⟩ is the scalar product between r1 and r2. If r1 and r2 are given in spherical
coordinates one obtains

1

2l + 1

l∑

m=−l

Y l
m(θ1, ϕ1)Y

l
m(θ2, ϕ2)

∗ =
P l(cos(θ1) sin(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2))

4π

= F l(θ1, θ2, ϕ1 − ϕ2) , (263)

where for convenience we introduced the function F l(θ1, θ2, ϕ1 − ϕ2).

Wigner D-matrices

Orthogonality over SO(3), complex conjugate of [86, equation 4.60],
∫

SO(3)

dωDl
m,n(ω)

∗Dl′
m′,n′(ω)

=

∫ 2π

0

dα

∫ π

0

dβ sin(β)

∫ 2π

0

dγ Dl
m,n(α, β, γ)

∗Dl′
m′,n′(α, β, γ)

= δl,l′δm,m′δn,n′
8π2

2l + 1
. (264)

Orthogonality over n and m, complex conjugate of [86, chapter 16],
l∑

n=−l

Dl
m,n(ω)

∗Dl
m′,n(ω) = δm,m′ and

l∑

m=−l

Dl
m,n(ω)

∗Dl
m,n′(ω) = δn,n′ . (265)

The product formula for Wigner D-matrices is given by [86, equation 4.25]

Dl
m,n(ω)D

l′
m′,n′(ω) =

|l+l′|∑

L=|l−l′|
C l,l′,L

m,m′C
l,l′,L
n,n′ D

L
(m+m′),(n+n′)(ω) , (266)

where the symbols of type C l,l′,L
m,m′ are a shorthand notation for the Clebsch-Gordan coeffi-

cients ⟨lm l′m′|L(m+m′)⟩.
A direct consequence of the product formula together with the first orthogonality expres-
sion over SO(3) is the triple product integral relation, complex conjugate of [154, section
4.11 equation 5],
∫

SO(3)

dωDL
M,N(ω)D

l
m,n(ω)

∗Dl′
m′n′(ω)∗ =

8π2

2L+ 1
δM,(m+m′)δN,(n+n′)C

l,l′,L
m,m′C

l,l′,L
n,n′ . (267)
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Symmetry under complex conjugation [86, equation 4.22]

Dl
m,n(ω)

∗ = (−1)m−nDl
−m,−n(ω) = Dl

n,m(ω
−1) . (268)

In the special case of m = n = 0 the small Wigner-d matrices dlm,n(β) from equation (51)
reduce to [154, section 4.17 equation 2] Legendre polynomials

dl0,0(β) = Pl(cos(β)) . (269)

Clebsch-Gordan coefficients

The Clebsch-Gordan coefficients satisfy the following orthogonality relation [86, equation
3.9]

l+l′∑

l=|l−l′|
C l,l′,L

n,n′−nC
l,l′,L
k,k′−k = δk,nδn′,k′ . (270)
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