Files

Abstract

The ultrashort and intense pulses of X-rays produced at X-ray free electron lasers (XFELs) have enabled unique experiments on the atomic level structure and dynamics of matter, with time-resolved studies permitted in the femto- and attosecond regimes. To fully exploit them, it is paramount to obtain a comprehensive understanding of the complex nonlinear interactions that can occur at such extreme X-ray intensities. Herein, we report on the experimental observation of a resonant double-core excitation scheme in N₂, where two 1σ core-level electrons are resonantly promoted to unoccupied {$1\pi^*_g\} molecular orbitals by a single few-femtosecond broad-bandwidth XFEL pulse. The production of these neutral two-site double core hole states is evidenced through their characteristic decay channels, which are observed in good agreement with high-level theoretical calculations. Such multi-core excitation schemes, benefiting from the high interaction cross sections and state- and site-selective nature of resonant X-ray interactions, should be generally accessible in XFEL irradiated molecules, and provide interesting opportunities for chemical analysis and for monitoring ultrafast dynamic processes.

Details

PDF

Statistics

from
to
Export
Download Full History