Files
Abstract
Optimizing grain boundary characteristics in polycrystalline materials can improve their properties. Many processing methods have been developed for grain boundary manipulation, including the use of intense radiation in certain applications. In this work, we used X-ray free electron laser pulses to irradiate single-crystalline bismuth selenide $(Bi_{2}Se_{3})$ and observed grain boundary formation and subsequent grain rotation in response to the X-ray radiation. Our observations with simultaneous transmission X-ray microscopy and X-ray diffraction demonstrate how intense X-ray radiation can rapidly change size and texture of grains.