Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

The detection of rapid dynamics in diverse physical systems is traditionally very difficult and strongly dominated by several noise contributions. Laser mode-locking, electron bunches in accelerators, and optical-triggered phases in materials are events that carry important information about the system from which they emerge. By detecting single-shot spectra with high repetition rates over long-time scales, new possibilities and applications to diagnose, control and tailor the spectral dynamics of lasers and electron beams in synchrotron and free-electron laser (FEL) accelerators open up. This contribution focuses on the latest developments of real-time, single-shot, high-repetition-rate detectors and data acquisition systems, with a special focus on emerging technologies and new possibilities in the diagnostics of rogue optical signals.

Details

Statistics

from
to
Export