Files
Abstract
The detection of rapid dynamics in diverse physical systems is traditionally very difficult and strongly dominated by several noise contributions. Laser mode-locking, electron bunches in accelerators, and optical-triggered phases in materials are events that carry important information about the system from which they emerge. By detecting single-shot spectra with high repetition rates over long-time scales, new possibilities and applications to diagnose, control and tailor the spectral dynamics of lasers and electron beams in synchrotron and free-electron laser (FEL) accelerators open up. This contribution focuses on the latest developments of real-time, single-shot, high-repetition-rate detectors and data acquisition systems, with a special focus on emerging technologies and new possibilities in the diagnostics of rogue optical signals.