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Abstract

Self-seeding is a promising approach to significantly narrow the SASE bandwidth
of XFELs to produce nearly transform-limited pulses. The implementation of this
method in the soft X-ray wavelength range necessarily involves gratings as dis-
persive elements. We study a very compact self-seeding scheme with a grating
monochromator originally designed at SLAC, which can be straightforwardly in-
stalled in the SASE3 type undulator beamline at the European XFEL. The monochro-
mator design is based on a toroidal VLS grating working at a fixed incidence angle
mounting without entrance slit. It covers the spectral range from 300 eV to 1000 eV.
The optical system was studied using wave optics method (in comparison with ray
tracing) to evaluate the performance of the self-seeding scheme. Our wave optics
analysis takes into account the actual beam wavefront of the radiation from the
coherent FEL source, third order aberrations, and errors from each optical element.
Wave optics is the only method available, in combination with FEL simulations,
for the design of a self-seeding monochromator without exit slit. We show that,
without exit slit, the self-seeding scheme is distinguished by the much needed ex-
perimental simplicity, and can practically give the same resolving power (about
7000) as with an exit slit. Wave optics is also naturally applicable to calculations
of the self-seeding scheme efficiency, which include the monochromator transmit-
tance and the effect of the mismatching between seed beam and electron beam.
Simulations show that the FEL power reaches 1 TW and that the spectral density
for a TW pulse is about two orders of magnitude higher than that for the SASE
pulse at saturation.
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Preprint submitted to 7 March 2013



1 Introduction

Self-seeding is a promising approach to significantly narrow the SASE band-
width and to produce nearly transform-limited pulses [1]-[10]. Considerable
effort has been invested in theoretical investigation and R&D at the LCLS
leading to the implementation of a hard X-ray self-seeding (HXRSS) setup
that relies on a diamond monochromator in transmission geometry. Follow-
ing the successful demonstration of the HXRSS setup at the LCLS [11], there
is a need for an extension of the method in the soft X-ray range.

In general, a self-seeding setup consists of two undulators separated by
a photon monochromator and an electron bypass, normally a four-dipole
chicane. The two undulators are resonant at the same radiation wavelength.
The SASE radiation generated by the first undulator passes through the
narrow-band monochromator. A transform-limited pulse is created, which
is used as a coherent seed in the second undulator. Chromatic dispersion
effect in the bypass chicane smears out the microbunching in the electron
bunch produced by the SASE lasing in the first undulator. The electrons
and the monochromatized photon beam are recombined at the entrance
of the second undulator, and radiation is amplified by the electron bunch
until saturation is reached. The required seed power at the beginning of the
second undulator must dominate over the shot noise power within the gain
bandpass, which is order of a kW in the soft X-ray range.

For self-seeding in the soft x-ray range, proposed monochromators usually
consists of a grating [1], [4]. Recently, a very compact soft x-ray self-seeding
(SXRSS) scheme has appeared, based on grating monochromator [12]-[14].
The delay of the photons in the last SXRSS version [14] is about 0.7 ps
only. The proposed monochromator is composed of only three mirrors and
a toroidal VLS grating. The design adopts a constant, 1 degree incidence-
angle mode of operation, in order to suppress the influence of movement
of the source point in the first SASE undulator on the monochromator
performance.

In this article we study the performance of the soft X-ray self-seeding scheme
for the European XFEL upgrade. In order to preserve the performance of the
baseline undulator, we fit the magnetic chicane within the space of a single 5
m undulator segment space at SASE3. In this way, the setup does not perturb
the undulator focusing system. The magnetic chicane accomplishes three
tasks by itself. It creates an offset for monochromator installation, it removes
the electron microbunching produced in the upstream seed undulator, and
it acts as an electron beam delay line for compensating the optical delay
introduced by the monochromator. The monochromator design is compact
enough to fit with this magnetic chicane design. The monochromator design

3



adopted in this paper is an adaptation of the novel one by Y. Feng et al.
[14], and is based on toroidal VLS grating, and has many advantages. It
consists of a few elements. In particular, it operates without entrance slit,
and is, therefore, very compact. Moreover, it can be simplified further. Quite
surprisingly, a monochromatic seed can be directly selected by the electron
beam at the entrance of the second undulator. In other words, the electron
beam plays, in this case, the role of an exit slit. By using a wave optics
approach and FEL simulations we show that the monochromator design
without exit slits works in a satisfactory way.

With the radiation beam monochromatized down to the Fourier transform
limit, a variety of very different techniques leading to further improve-
ment of the X-ray FEL performance become feasible. In particular, the most
promising way to extract more FEL power than that at saturation is by ta-
pering the magnetic field of the undulator [15]-[21]. A significant increase in
power is achievable by starting the FEL process from a monochromatic seed
rather than from shot noise [19]-[26]. In this paper we propose a study of the
soft X-ray self-seeding scheme for the European XFEL, based on start-to-
end simulations for an electron beam with 0.1 nC charge [27]. Simulations
show that the FEL power of the transform-limited soft X-ray pulses may be
increased up to 1 TW by properly tapering the baseline (SASE3) undulator.
In particular, it is possible to create a source capable of delivering fully-
coherent, 10 fs (FWHM) soft X-ray pulses with 1014 photons per pulse in the
water window.

The availability of free undulator tunnels at the European XFEL facility
offers a unique opportunity to build a beamline optimized for coherent
diffraction imaging of complex molecules like proteins and other biologi-
cally interesting structures. Full exploitation of these techniques require 2
keV - 6 keV photon energy range and TW peak power pulses. However,
higher photon energies are needed to reach anomalous edges of commonly
used elements (such as Se) for anomalous experimental phasing. Potential
users of the bio-imaging beamline also wish to investigate large biological
structures in the soft X-ray photon energy range down to the water win-
dow. A conceptual design for the undulator system of such a bio-imaging
beamline based on self-seeding schemes developed for the European XFEL
was suggested in [28]-[29]. The bio-imaging beamline would be equipped
with two different self-seeding setups, one providing monochromatization
in the hard x-ray wavelength range, using diamond monochromators and
one providing monochromatization in the soft x-ray range using a grating
monochromator. In relation to this proposal, we note that the design for a
soft x-ray self-seeding scheme discussed here can be implemented not only
at the SASE3 beamline but, as discussed in [28]-[29], constitutes a suitable
solution for the bio-imaging beamline in the soft x-ray range as well.
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Fig. 1. Design of the SASE3 undulator system for TW mode of operation in the soft
X-ray range.
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Fig. 2. Layout of the SASE3 self-seeding system, to be located in the space freed
after removing the undulator segment U5. The compact grating monochromator
design relies on a scheme originally proposed at SLAC. G is a toroidal VLS grating.
M1 is a rotating plane mirror, M2 is a tangential cylindrical mirror, M3 is a plane
mirror used to steer the beam. The deflection of both electron and photon beams is
in the horizontal direction.
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Fig. 3. Focusing at the slit. Distance between waist, characterized by plane wave-
front, and grating as a function of the photon energy.

2 Self-seeding setup description

A design of the self-seeding setup based on the undulator system for the
European XFEL baseline is sketched in Fig. 1. The method for generating
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Table 1
Parameters for the x-ray optical elements
1 Distance to grating.
2 Principal ray hit point.

Element Parameter
Value at photon energy Required

precision
Unit

300 eV 600 eV 1000 eV

G Line density (k) 1123 0.2% l/mm

G Linear coeff (n1) 2.14 1% l/mm2

G Quad coeff (n2) 0.003 50% l/mm3

G Groove profile Blased 1.2◦ - -

G,M1 Roughness (rms) - 2 nm

G Tangential radius 160 1% m

G Sagittal radius 0.25 10% m

G Diffraction order +1 -

G Incident angle 1 - deg

G Exit angle 5.615 4.028 3.816 - deg

Source distance 1 3160 3470 3870 - mm

Source size 30.3 27.7 24.2 - µm

Image distance 1 1007 1004 1007 - mm

Image size 2.22 2.45 2.22 - µm

M1 Location 1 2 33.2 43.8 52.6 - mm

M1 Incident angle 3.307 2.514 2.093 - deg

S Slit location 1 1007 0.5 mm

S Slit width 2 5% µm

M2 Location 1 1220 1 mm

M2 Incident angle 0.859 - deg

M2 Tangential radius 27.3 1% m

M3 Location 1 1348.3 - mm

M3 Incident angle 0.859 - deg

Optical delay 935 757 662 - fs
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Fig. 4. Focusing at the slit. Variation of the distance between waist and slit normal-
ized on the Rayleigh range as a function of the photon energy.
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Fig. 5. Resolving power as a function of the photon energy for a monochromator
equipped with exit slit (bold curve) and without exit slit (circles). The calculation
with exit slit is for a slit width of 2µm.

highly monochromatic, high power soft x-ray pulses exploits a combination
of a self-seeding scheme with grating monochromator with an undulator
tapering technique. The self-seeding setup is composed by a compact grat-
ing monochromator originally proposed at SLAC [14], yielding about 0.7 ps
optical delay, and a 5 m-long magnetic chicane.

Usually, a grating monochromator consists of an entrance slit, a grating, and
an exit slit. The grating equation, which describes how the monochromator
works, relies on the principle of interference applied to the light coming
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Fig. 6. Current profile for a 100 pC electron bunch at the entrance of the first
undulator.
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Fig. 7. Results of seeding efficiency simulations, showing the normalized output
power from the second FEL amplifier as a function of the exit slit width for differ-
ent photon energies. The FEL amplifier operates in the linear regime. Results are
obtained by wave optics and FEL simulations.

from the illuminated grooves. Such principle though, can only be applied
when phase and amplitude variations in the electromagnetic field are well-
defined across the grating, that is when the field is perfectly transversely
coherent. The purpose of the entrance slit is to supply a transversely coherent
radiation spot at the grating, in order to allow the monochromator to work
with an incoherent source and with a given resolution. However, an FEL
source is highly transversely coherent and no entrance slit is required in this
case [30, 31].
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Fig. 8. First order efficiency of the blazed groove profile. Here the groove density is
1100 lines/mm, Pt coating is assumed, at an incidence angle of 1◦. The blaze angle
is 1.2◦; the anti-blaze angle is 90◦.
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Fig. 9. Power distribution and spectrum of the SASE soft x-ray radiation pulse at
the exit of the first undulator.

Fig. 2 shows the optical configuration of the self-seeding monochromator.
Table 1 summarizes the optical parameters of the setup. The design of the
monochromator was optimized with respect to the resolving power and the
seeding efficiency. The design energy range of the monochromator is in the
0.3 keV - 1 keV interval with a resolution of about 7000. It is only equipped
with an exit slit. A toroidal grating with variable line spacing (VLS) is used
for imaging the FEL source to the exit slit of the monochromator. The grat-
ing has a groove density of 1120 lines/mm. The first coefficient D1 of the
VLS grating is D1 = 2.1/mm2. The grating will operate in fixed incident
angle mode in the +1 order. The incident X-ray beam is imaged at the exit
slit and re-imaged at the entrance of the seed undulator by a cylindrical
mirror M2. In the sagittal plane, the source is imaged at the entrance of
the seed undulator directly by the grating. The monochromator scanning
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Fig. 10. Line profile of the self-seeding monochromator without exit slit. The calcu-
lation is for a photon energy of 0.8 keV. The overall efficiency of the monochromator
beamline is about 5%.
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Fig. 11. Power distribution and spectrum of the SASE soft x-ray radiation pulse after
the monochromator. This pulse is used to seed the electron bunch at the entrance
of the second undulator.

is performed by rotating the post-grating plane mirror. The scanning re-
sults on a wavelength-dependent optical path. Therefore, a tunability of the
path length in the magnetic chicane in the range of 0.05 mm is required to
compensate for the change in the optical path.

The choice was made to use a toroidal VLS grating similar to the LCLS
design [14]. As pointed out in that reference, the source point in the SASE
undulator moves upstream with the photon energy. The proposed design
has been chosen in order to minimize the variation of the image distance. The
object distance was based on FEL simulations of the SASE3 undulator at the
exit of the fourth segment U4, Fig. 1. The monochromator performance was
calculated using wave optics. The exact location of the waist, characterized
by a plane wavefront, Fig. 3 and Fig. 4, was found to vary with the energy
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Fig. 13. Energy of the seeded FEL pulse as a function of the distance inside the
output undulator.

around the slit within 2.7 mm, which is small compared to the Rayleigh
range, Fig. 4. This defocusing effect was fully accounted for in the wave
optics treatment, and the impact of this effect on the resolving power is
negligible. The resolving power achievable with the exit slit is shown in Fig.
5. It approaches 8000, and is sufficient to produce temporally transform-
limited seed pulses with FWHM duration between 25 fs and 50 fs over the
designed photon energy range. This duration is sufficiently longer than the
FWHM duration of the electron bunch, about 15 fs in standard mode of
operation at 0.1 nC charge, Fig. 6. The resolving power depends on the size
of the FEL source inside the SASE undulator, on the size of the exit slit
(assumed fixed at 2µm) and on third order optical aberrations.

The operation of the self-seeding scheme involves simultaneous presence of
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monochromatized radiation and electron beam in the seed undulator. This
suggests to consider a particularly interesting approach to solve the task
of creating a monochromatized seed. In fact, the resolving power needed
for seeding can be achieved without exit slit by combining the presence
of radiation and electron beam in the seed undulator. The influence of the
spatial dispersion in the image plane at the entrance of the seed undulator
on the operation of the self-seeding setup without exit slit can be quanti-
fied by studying the input coupling factor between the seed beam and the
ground mode of the FEL amplifier. A combination of wave optics and FEL
simulations is the only method available for designing such self-seeding
monochromator without exit slit. This design has the advantage of a much
needed experimental simplicity, and could deliver a resolving power as that
with the exit slit. The comparison of resolving powers for these two designs
is shown in Fig. 5. The size of the beam waist near the slit is about 2.2-2.4µm.
The operation without exit slit would give worse resolving power than the
conventional mode of operation only when the slit size is smaller than 2 µm.
Wave optics and FEL simulations are naturally applicable also for calculat-
ing suppression of the input coupling factor, due to the effect of a finite size
of the exit slit. The effect of the slit on the seeding efficiency shown in Fig. 7.
When the slit size is smaller than 2 µm, the effective seed power is reduced
by as much as a factor 2−3. We conclude that the mode of operation without
exit slit is superior to the conventional mode of operation, and a finite slit
size would only lead to a reduction of the monochromator performance.

The efficiency of the grating should be specified over the range of photon
energies where the grating will be used. The efficiency was optimized by
varying the groove shapes. Blazed grating was optimized by adjusting the
blaze angle; sinusoidal grating by adjusting the groove depth, and rectan-
gular grating by adjusting the groove depth, and assuming a duty cycle
of 50%. The blazed profile is substantially superior to both sinusoidal and
laminar alternatives. For the specified operating photon energy range, the
optimal blaze angle is 1.2 degree, and the expected grating efficiency with
platinum coating is shown in Fig. 8. This curve assumes a constant incident
angle of 1 degree.

The electron beam chicane contains four identical dipole magnets, each of
them 0.5 m-long. Given a magnetic field B = 0.8T and an electron momen-
tum p = 10GeV/c, this length corresponds to a dipole bending angle of 0.7
degrees. The choice of the strength of the magnetic chicane only depends
on the delay that we want to introduce. In our case, as already mentioned, it
amounts to 0.23 mm, or 0.7 ps. Parameters discussed above fit with a short,
5 m-long magnetic chicane to be installed in place of a single undulator
module. Such chicane, albeit very compact, is however strong enough to
create a sufficiently large transverse offset for the installation of the optical
elements of the monochromator.
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Despite the unprecedented increase in peak power of the X-ray pulses at
SASE X-ray FELs some applications, including bio-imaging , require still
higher photon flux [32]-[36]. The most promising way to extract more FEL
power than that at saturation is by tapering the magnetic field of the un-
dulator. Tapering consists in a slow reduction of the field strength of the
undulator in order to preserve the resonance wavelength, while the kinetic
energy of the electrons decreases due to FEL process. The undulator taper
could be simply implemented at discrete steps from one undulator segment
to the next. The magnetic field tapering is provided by changing the undula-
tor gap. Here we study a scheme for generating TW-level soft X-ray pulses in
a SASE3 tapered undulator, taking advantage of the highly monochromatic
pulses generated with the self-seeding technique, which make the tapering
very efficient. We optimized our setup based on start-to-end simulations
for an electron beam with 100 pC charge. In this way, the output power of
SASE3 could be increased from the baseline value of 100 GW to about a TW
in the photon energy range between 0.3 keV and 1 keV.

Summing up, the overall self-seeding setup proposed here consists of three
parts: a SASE undulator, a self-seeding grating monochromator and an
output undulator in which the monochromtic seed signal is amplified up to
the TW power level. Calculations show that in order not to spoil the electron
beam quality and to simultaneously reach signal dominance over shot noise,
the number of cells in the first (SASE) undulator should be equal to 4. The
output undulator consists of two sections. The first section is composed
by an uniform undulator, the second section by a tapered undulator. The
transform-limited seed pulse is exponentially amplified passing through
the first uniform part of the output undulator. This section is long enough, 6
cells, in order to reach saturation, which yields about 100 GW power. Finally,
in the second part of the output undulator the monochromatic FEL output
is enhanced up to the TW power level taking advantage of a 3.5% taper of
the undulator magnetic field over the last 11 cells after saturation.

Simulations were performed with the help of the Genesis code [37] run-
ning on a cluster in the following way: first we calculated the 3D field
distribution at the exit of the first undulator, and downloaded the field file.
Subsequently, we performed a temporal Fourier transformation followed by
filtering through the monochromator, by using the filter amplitude transfer
function. The electron microbunching is washed out by presence of non-
zero chicane momentum compaction factor R56. Therefore, for the second
undulator we used a beam file with no initial microbunching, and with an
energy spread induced by the FEL amplification process in the first SASE
undulator. The amplification process in the second undulator starts from
the seed field-file. Shot noise initial conditions were included, see section 5
for details. The output power and spectrum after the first (SASE) undulator
tuned at 1.5 nm is shown in Fig. 9. The instrumental function is shown in
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Fig. 10. The shape of this curve was found as a response of the input cou-
pling factor on the offset of the seed monochromatic beam at the entrance
of the seed undulator due to spatial dispersion. The absolute value of the
transmittance accounts for the absorption of the monochromatic beam in
the grating and in the three mirrors, for a total of 5%. The influence of the
transverse mismatching of the seed beam at the entrance of the seed undu-
lator is accounted for by an additional suppression of the input coupling
factor. The resolution of the self-seeding monochromator is good enough,
and the spectral width of the filter is a few times shorter than the coher-
ent spectral interval (usually referred to as ”spike”) in the SASE spectrum.
Therefore, the seed radiation pulse is temporally stretched in such way that
the final shape only depends on the characteristics of the monochroma-
tor. The temporal shape and spectrum of the seed signal are shown in Fig.
11. The overall duration of the seed pulse is inversely proportional to the
bandwidth of the monochromator transmittance spectrum. The particular
temporal shape of the seed pulse simply follows from a Fourier transfor-
mation of the monochromator transfer function. The output FEL power and
spectrum of the entire setup, that is after the second part of the output un-
dulator is shown in Fig. 12. The evolution of the output energy in the photon
pulse as a function of the distance inside the output undulator is reported
in Fig. 13. The photon spectral density for a TW pulse is about two orders
of magnitude higher than that for the SASE pulse at saturation (see Fig. 12).
Given the fact that the TW-pulse FWHM-duration is about 10 fs, the relative
bandwidth is 3 times wider than the transform-limited bandwidth. There is
a relatively large energy chirp in the electron bunch due to wakefields effect.
Nonlinear energy chirp in the electron bunch induces nonlinear phase chirp
in the seed pulse during the amplification process in the output undulator.
Our simulations automatically include this effect. This phase chirp increases
the time-bandwidth product by broadening the seeded FEL spectrum (see
section 5 for details).

3 Theoretical background for designing a grating monochromator

3.1 Wave optics approach

In this section we derive the spatial frequency transfer function for wave
propagation and the Fresnel diffraction formula commonly used in Fourier
optics. We then analyze the propagation of a Gaussian beam through ideal
lenses and mirrors spaced apart from each other.
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3.1.1 Spatial frequency transfer function and spatial impulse response for wave
propagation

We start from the homogeneous wave equation for the electric field in the

space-time domain, ~E(t,~r) expressed in cartesian coordinates:

∇2~E − 1

c2

∂2~E

∂t2
= 0 . (1)

Here c indicates the speed of light in vacuum, t is the time and ~r is a 3D
spatial vector identified by cartesian coordinates x, y, z. As a consequence,

the following equation for the field ~̄E(ω,~r) in the space-frequency domain
holds:

∇2~̄E + k2
0
~̄E = 0 , (2)

where k0 = ω/c. Eq. (2) is the well-known Helmholtz equation. Here ~̄E(ω,~r)
is temporal Fourier transform of the electric field. We explicitly write the
definitions of the Fourier transform and inverse Fourier transform for a
function f (t) in agreement with the notations used in this paper as:

f̄ (ω) =

∞
∫

−∞

f (t) exp[iωt]dt ,

f (t) =
1

2π

∞
∫

−∞

f̄ (ω) exp[−iωt]dω (3)

Similarly, the 2D spatial Fourier transform of ~̄E(x, y, z, ω), with respect to the
two transverse coordinates x and y will be written as

~̂E(ω, kx, ky, z) =

∞
∫

−∞

dx

∞
∫

−∞

dy~̄E(ω, x, y) exp[ikxx + ikyy] , (4)

so that

~̄E(ω, x, y, z) =
1

4π2

∞
∫

−∞

dkx

∞
∫

−∞

dky
~̂E(ω, kx, ky) exp[−ikxx − ikyy] . (5)
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With the help of this transformation the Helmholtz equation, which is a par-
tial differential equation in three dimensions, reduces to a one-dimensional

ordinary differential equation for the spectral amplitude ~̂E(ω, kx, ky, z). In
fact, by taking the 2D Fourier transform of Eq. (2), we have

d2~̂E

dz2
+ k2

0













1 − k2
x

k0
−

k2
y

k2
0













~̂E = 0 . (6)

We then obtain straightforwardly

~̂E(ω, kx, ky, z) = ~̂E(ω, kx, ky, 0) exp

















ik0z

√

1 − k2
x

k2
0

−
k2

y

k2
0

















, (7)

where Ê(ω, kx, ky, z) is the output field and Ê(ω, kx, ky, 0) is the input field.
Further on, when the temporal frequencyωwill be fixed, we will not always
include it into the argument of the field amplitude and simply write e.g.
Ê(kx, ky, z). It is natural to define the spatial frequency response of the system
as

H(kx, ky, z) =

~̂E(kx, ky, z)

~̂E(kx, ky, 0)
= exp

















ik0z

√

1 − k2
x

k2
0

−
k2

y

k2
0

















. (8)

Here the ratio between vectors has to be interpreted component by compo-
nent. H is the spatial frequency transfer function related with light propa-
gation through a distance z in free space. If we assume that k2

x + k2
y ≪ k2

0,
meaning that the bandwidth of the angular spectrum of the beam is small
we have

H(kx, ky, z) ≃ exp[ik0z] exp
[

− iz

2k0
(k2

x + k2
y)
]

. (9)

In other words, we enforce the paraxial approximation. In order to obtain

the output field distribution in the space-frequency domain ~̄E(x, y, z) at the
distance z away from the input position at z = 0, we simply take the inverse
Fourier transform of Eq. (7). If the paraxial approximation is now enforced
we obtain

~̄E(x, y, z) =

∞
∫

−∞

∞
∫

−∞

dx′ dy′ ~̄E(x′, y′, 0)h(x − x′, y − y′, z)

16



�� ��

�� ��

Fig. 14. Gaussian beam transformation by a lens. A Gaussian beam with plane
wavefront and waist w1, located at a distance d1 from the thin lens with focal length
f is transformed to a Gaussian beam of plane wavefront and waist w2, located at a
distance d2, according to Eq. (28).

= ~̄E(x, y, 0) ∗ h(x, y, z) , (10)

where

h(x, y, z) =
1

4π2
exp[ik0z]

×
∞

∫

−∞

∞
∫

−∞

dkx dky exp
[

− iz

2k0
(k2

x + k2
y)
]

exp[−ikxx − ikyy] . (11)

The result in Eq. (10) indicates that h(x, y, z) is the spatial impulse response
describing the propagation of the system in the formalism of Fourier optics.
h(x, y, z) is readily evaluated as

h(x, y, z) = − ik0

2πz
exp[ik0z] exp

[

ik0

2z
(x2 + y2)

]

. (12)

Eq. (10) is the Fresnel diffraction formula. In order to obtain the output

field distribution ~̄E(x, y, z), we need to convolve the input field distribution
~̄E(x, y, 0) with the spatial impulse response h(x, y, z).
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3.1.2 Gaussian beam optics

We now specialize our discussion considering a Gaussian beam with initially
(at z = 0) plane wavefront in two transverse dimensions. In order to simplify
the notation, we will consider one component of the field in the space-
frequency domain only.

Ē(x, y, 0) = A exp

[

−
x2 + y2

w2
0

]

, (13)

where w0 is the waist of the Gaussian beam. The spatial Fourier transform
of Ē is given by

Ê(kx, ky, 0) = Aπw2
0 exp

[

−
w2

0

4

(

k2
x + k2

y

)

]

. (14)

Using Eq. (9), after propagation over a distance z one obtains

Ê(kx, ky, z) = Ê(kx, ky, 0)H(kx, ky, z)

= Aπw2
0 exp[ik0z] exp

[

− iz

2k0

(

k2
x + k2

y

)

]

exp

[

−
w2

0

4

(

k2
x + k2

y

)

]

= Aπw2
0 exp[ik0z] exp

[

−
iq

2k0

(k2
x + k2

y)

]

, (15)

where q is the so-called q-parameter of the Gaussian beam

q = z − izR , (16)

where zR defines the Rayleigh range of the Gaussian beam

zR = k0w2
0/2 . (17)

The spatial profile of the beam after propagation through a distance z can
be found by taking the inverse Fourier transform of Eq. (15):

Ē(x, y, z) = −
iAk0w2

0

2q
exp[ik0z] exp

[

i
k0

2q
(x2 + y2)

]

, (18)

which can also be written as

Ē(x, y, z) = A
w0

w(z)
exp[iφ(z) + ik0z]
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× exp

[

−
(x2 + y2)

w2(z)

]

exp

[

i
k0

2R(z)
(x2 + y2)

]

, (19)

where

w2(z) = w2
0

[

1 +
(

z

zR

)2
]

, (20)

R(z) =
1

z

(

z2 + z2
R

)

, (21)

and

φ(z) = − arctan
[

z

zR

]

, (22)

with zR defined in Eq. (17). Note that the width w(z) of the Gaussian beam
is a monotonically increasing function of the propagation distance z, and

reaches
√

2 times its original width, w0, at z = zR. The radius of curvature
R(z) of the wavefront is initially infinite, corresponding to an initially plane
wavefront, but it reaches a minimum value of 2zR at z = zR, before starting
to increase again. The slowly varying phase φ(z), monotonically varies from
0 at z = 0 to −π/2 as z −→ ∞, assuming the value π/4 at z = zR.

Note that the q-parameter contains all information about the Gaussian,
namely its curvature R(z) and its waist w(z). The knowledge of the transfor-
mation of q as a function of z fully characterizes the behavior of the Gaussian
beam.

An optical system would usually comprise lenses or mirrors spaced apart
from each other. While Gaussian beam propagation in between optical ele-
ments can be tracked using the translation law above, Eq. (18), we still need
to discuss the law for the transformation of q by a lens. The transparency
function for a thin converging lens is of the form

T f (x, y) = exp

[

− ik0

2 f
(x2 + y2)

]

. (23)

The optical field immediately behind a thin lens at position z is related to
that immediately before a lens by

Ē(x, y, z) = T f (x, y)Ēbefore(x, y, z)
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= −
iAk0w2

0

2q
exp[ik0z] exp

[

i
k0

2q
(x2 + y2)

]

exp

[

− ik0

2 f
(x2 + y2)

]

= −
iAk0w2

0

2q
exp[ik0z] exp

[

i
k0

2ql
(x2 + y2)

]

(24)

where Ēbefore(x, y, z) is given by Eq. (15) and ql, the transformed of q, is
defined by

1

ql

=
1

q
− 1

f
. (25)

As example of application we analyze the focusing of a Gaussian beam by
a converging lens. We assume that a Gaussian beam with plane wavefront
and waist w1, is located at distance d1 from a thin lens with focal length f .
After propagation through a distance d2 behind the lens, it is transformed
to a beam with plane wavefront and waist w2, Fig. 15. Using Eq. (16) and
Eq. (25) we can find the transformed q-parameter at distance d2. From Eq.
(16), immediately in front of the lens we have

q(d1) = q(0) + d1 , (26)

Immediately behind the lens, the q-parameter is transformed to ql according
to Eq. (16):

1

ql
=

1

q(0) + d1
− 1

f
. (27)

Finally, using again Eq. (16), we find the q-parameter after propagation
through a distance d2 behind the lens:

q(d2 + d1) = ql + d2 . (28)

The Gaussian beam is said to be focused at the point z = d2+d1 where q(d2+d1)
becomes purely imaginary again, meaning that the Gaussian beam has a
planar wavefront. Thus, calculating explicitly q(d2 + d1), setting q(d2 + d1) =
ik0w2

2/2, and equating imaginary parts we obtain

w2
2 =

w2
1

f 2

[(d1 − f )2 + (k0w2
1
/2)2]

. (29)

Equating the real part of q(d2 + d1) to zero one obtains instead
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d2 = f + f 2
(d1 − f )

[(d1 − f )2 + (k0w2
1
/2)2]

. (30)

Note that the Gaussian beam does not exactly focus at the geometrical back
focus of the lens. Instead, the focus is shifted closer to the lens. In other
words the ”lensmaker” equation valid in geometrical optics

1

d1
+

1

d2
=

1

f
(31)

is modified to

1

d1 + z2
R
/(d1 − f )

+
1

d2

=
1

f
, (32)

which is just another way of writing Eq. (30) and is well known from a long
time (see e.g. [38]).

3.2 Beam propagation in inhomogeneous media

In section 3.1, we considered the problem of wave propagation in a homo-
geneous medium, namely vacuum, characterized by constant permittivity,
ǫ = 1. We specialized our investigations to the case of a Gaussian beam and,
additionally, we analyzed propagation of a Gaussian beam through a thin
lens using the wave optics formalism. The description of wave propagation
through a thin lenses does not require the use of wave propagation theory
in inhomogeneous media. In fact, as we have seen, thin lenses contribute
to the wave propagation via a phase multiplication. In other words, if we
consider a wave field in front of and immediately behind a lens, we find
that the phase of the wave has changed, while its amplitude has remained
practically the same. A mirror may be equivalently modeled by a similar
phase transformation.

Of course, strictly speaking, the polarization of the light has an influence
on its reflection properties from the lenses. However, if we are willing to
disregard such reflection phenomena, we are justified to use the scalar wave
equation to describe the wave optics of lenses, and to model a thin lens as
described before. In this section we will study, at variance, wave propagation
in a medium that is inhomogeneous. Therefore, we will be in position to
numerically analyze such effects as reflection of X-rays from gratings or
mirrors.
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3.2.1 Wave equation

The fundamental theory of electromagnetic fields is based on Maxwell equa-
tions. In differential form and in the space-time domain, these can be written
as

~∇ · ~D = 4πρ ,
~∇ · ~B = 0 ,

~∇ × ~E = −1

c

∂~B

∂t
,

~∇ × ~H = 4π

c
~j +

1

c

∂~D

∂t
. (33)

Here ~j is the current density and ρ denotes the electric charge density. ~E and
~B are the macroscopic electric and magnetic field in the time domain, while
~D and ~H are the corresponding derived fields, related to ~E and ~B by

~D = ǫ~E ,
~B = µ~H,
~j = σ~E , (34)

where ǫ denotes the permittivity, µ the permeability, and σ the conductivity
of medium. In this article we do not consider any magnetic or conductive
media. Hence µ = 1 and σ = 0. Moreover, ρ = 0. The permittivity ǫ is,
instead, a function of the position, i.e., ǫ = ǫ(x, y, z), which allows us to con-
sider inhomogeneous media such as a mirror with rough surface. Maxwell
equations can be manipulated mathematically in many ways in order to
yield derived equations more suitable for certain applications. For example,
from Maxwell equations we can obtain an equation which depends only on

the electric field vector ~E:

~∇ × (~∇ × ~E) = −1

c

∂(~∇ × ~B)

∂t
= − ǫ

c2

∂2~E

∂t2
. (35)

It is worth noting that this equation holds even if ǫ varies in space. However,

the ~∇ × (~∇ × (·)) operator is not very easy to use, so that it is advantageous
to use the vector identity

~∇ × (~∇ × ~E) = ~∇(~∇ · ~E) − ∇2~E , (36)

which holds if we use a cartesian coordinate system. Exploiting ~∇ · ~D = 0

and ~D = ǫ~E we rewrite Eq. (35) as
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∇2~E + ~∇












~E ·
~∇ǫ
ǫ













=
ǫ

c2

∂2~E

∂t2
. (37)

The second term on the left-hand side of Eq. (37) is in general non-zero
when there is a gradient in the permittivity of the medium. However, if the

spatial variation of ǫ is small, one can neglect the term in ~∇ǫ/ǫ. If we are
content with this approximation, we can study the propagation of light in
inhomogeneous media using the wave equation

∇2~E =
ǫ

c2

∂2~E

∂t2
, (38)

where, once more, ǫ = ǫ(x, y, z). By taking the temporal Fourier transform of
Eq. (38) we obtain, similarly as for Eq. (2)

∇2~̄E + k2
0ǫ
~̄E = 0 , (39)

where, as before, ~̄E = ~̄E(ω, x, y, z) is the temporal Fourier transform of electric
field, and k0 = ω/c.

It is necessary to investigate under what conditions the wave equation, Eq.
(38) is a good approximation of Eq. (37), since the latter equation is far more
difficult to handle and not very useful for actual calculations. The condition

for neglecting the term in ~∇ǫ/ǫ is usually formulated as the requirement that
the relative change of ǫ over the distance of one wavelength be less than
unity [39], that is

R = |ǫ2 − ǫ1|/|ǫ1| ≪ 1 , (40)

where ǫ2 − ǫ1 is the difference in the dielectric constants at two positions
spaced by a wavelength. By examining the arguments which lead to condi-
tion (40), it can be usually found that the gradient term is compared with
the main term ǫ∂2E/∂t2 in Eq. (37).

However, a more careful look at Eq. (37) reveals that condition (40) is not
adequate. In order to see this, let us present the main Eq. (37) in another,

equivalent form. Consider the dielectric dipole moment density ~P related to

the electric field ~E according to ~P = χ~E, where χ is the electric susceptibility.

The field ~D is basically the sum of ~E and ~P according to

~D = ~E + 4π~P = (1 + 4πχ)~E = ǫ~E . (41)
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Using Maxwell equations

~∇ · ~D = 0 , ~∇ × ~H = 1

c

∂~E

∂t
+

4π

c

∂~P

∂t
, (42)

we can recast Eq. (37) in the form

c2∇2~E − ∂
2~E

∂t2
= 4π

∂2~P

∂t2
− 4πc2~∇

(

~∇ · ~P
)

. (43)

Eq. (43) separates terms which are present in free-space (on the left hand
side) from terms related with the propagation through the dielectric medium
(on the right hand side). When the gradient term in Eq. (43) can be neglected,
one gets back Eq. (39). However, at variance with the treatment in [39],
in order for this approximation to be applicable the gradient term must
not introduce important changes to the part of the equation relative to
propagation through the dielectric. In other words, the gradient term should

be small compared with−4πω2~̄P, and not with the entire term−ω2~̄E−4πω2~̄P.
This hints to the fact that a correction of condition (40) to

R = |ǫ2 − ǫ1|/|ǫ1 − 1| ≪ 1 . (44)

Note that for optical wavelengths and in general, in regimes where ǫ is
sensibly larger than unity, condition (40) and condition (44) will not lead
to much different regions of applicability. An important difference arises
when one considers the x-ray range, where ǫ is very near unity. In that
case, according to condition (44), the wave equation is not applicable in
such situations. However, in that case we can limit ourselves to small angles
of incidence. As we will see, condition (44) will be modified under the
additional small angle approximation.

Instead of using directly the field equation in the form of Eq. (43), we can use
the Green theorem to express the Fourier-transformed of Eq. (43) in integral
form. We first apply a temporal Fourier transformation to Eq. (43) to obtain
the inhomogeneous Helmholtz equation

c2∇2~̄E + ω2~̄E = −4πω2~̄P − 4πc2~∇
(

~∇ · ~̄P
)

. (45)

Note that here ~̄P is the temporal Fourier transform of ~P. We now introduce

a Green function for the Helmholtz wave equation, G(~r, ~r′), defined as

(

∇2 + k2
0

)

G(~r, ~r′) = −δ
(

~r − ~r′
)

. (46)
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For unbounded space, a Green function describing outgoing waves is given
by

G(~r, ~r′) =
1

4π

exp
[

ik0|~r − ~r′|
]

|~r − ~r′|
. (47)

With the help of Eq. (47) we can write a formal solution for the field equation
Eq. (45) as:

~̄Ed =

∫

d~r′ G(~r, ~r′)
[

ω2~̄P(~r′) + c2~∇
(

~∇ · ~̄P(~r′)
)]

, (48)

where we solve for the diffracted field only. Eq. (48) is the integral equivalent
of the differential equation Eq. (45). This integral form is convenient to
overcome the difficulty of comparing the two terms on the right-hand side

of Eq. (37). Integrating by parts the term in grad ~∇
(

~∇ · ~̄P(~r′)
)

twice we obtain

~̄Ed =

∫

d~r′ G(~r, ~r′)
[

ω2~̄P(~r′) − c2k2
0~n(~n · ~P(~r′))

]

, (49)

where ~n = (~r − ~r′)/|~r − ~r′| is the unit vector from the position of the ”source”

to the observer. We assume that the condition k0 ≫ 1/|~r − ~r′| holds for all
values of ~r occurring in the integral in Eq. (49). We thus account for the

radiation field only. It is then possible to neglect the derivative of 1/|~r − ~r′|
compared to the derivative of exp[ik0|~r − ~r′|] when we integrate by parts.

Moreover, the edge term in the integration by parts vanishes since ~P = 0
at infinity. We note that the combination of the first and second term in

the integrand obviously exhibits the property that the diffracted field ~Ed is
directed transversely with respect to vector ~n, as it must be for the radiation
field. Furthermore, one can see that only the second term is responsible for
the polarization dependance.

Returning to X-ray optics, we can easily obtain that the second term in
the integrand of Eq. (49) includes, in this case, an additional small factor

proportional to the the diffraction angle θd ∼ (~n · ~P)/|~P| ≪ 1, which can be
neglected under the grazing incidence approximation. Finally, we conclude
that for describing the reflection of a coherent X-ray beam from the interface
between two dielectrics, one can use the wave equation Eq. (39) under the
grazing incidence condition with accuracy

θ2
i ≪ 1 ,
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θ2
d ≪ 1 . (50)

It is very important to realize that, in order for Eq. (39) to apply, it is not suffi-
cient that the paraxial approximation for X-ray propagation in vacuum or in
a dielectric be satisfied. Additionally, incident and diffracted angles relative
to the interface between dielectric and vacuum must be small compared to
unity, according to condition (50).

3.2.2 The split-step beam propagation method

Let us return to the model for inhomogeneous media given by the wave
equation, Eq. (39). We can always write

~̄E(x, y, z) = ~A(x, y, z) exp[ik0z] . (51)

By substituting this expression into Eq. (39) we derive the following equation
for the complex field envelope:

∇2
⊥
~A +

∂2 ~A

∂z2
+ 2ik0

∂ ~A

∂z
+ k2

0δǫ
~A = 0 , (52)

where ∇2
⊥ denotes the transverse Laplacian, and δǫ ≡ ǫ − 1. If the electric

field is predominantly propagating along z-direction with an envelope ~A
which varies slowly with respect to the wavelength, Eq. (51) separates slow

from fast varying factors. We actually assume that ~A is a slowly varying
function of z in the sense that

∣

∣

∣

∣

∣

∣

∂ ~A

∂z

∣

∣

∣

∣

∣

∣

≪ k0
~A . (53)

This assumption physically means that, within a propagation distance along

z of the order of the wavelength, the change in ~A is much smaller than ~A itself.
With this assumption, Eq. (52) becomes the paraxial Helmholtz equation for
~A in inhomogeneous media, which reads

∇2
⊥
~A + 2ik0

∂ ~A

∂z
+ k2

0δǫ
~A = 0 , (54)

A large number of numerical methods can be used for analyzing beam
propagation in inhomogeneous media. The split-step beam propagation
method is an example of such methods. To understand the idea of this
method, we re-write Eq. (54) in the operator form [40, 41]
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∂ ~A

∂z
= (D + S) ~A , (55)

where D = −(2ik0)−1∇2
⊥ is the linear differential operator accounting for

diffraction, also called the diffraction operator, and S = (ik0/2)δǫ is the

space-dependent, or inhomogeneous operator. Both operators act on ~A si-
multaneously, and a solution of Eq. (55) in operator form is given by

~A(x, y, z + δz) = exp [(D + S) δz] ~A(x, y, z) . (56)

Note that, in general, D and S do not commute. In order to see this, it is
sufficient to consider the dependence ofSon z. As a result, exp [(D +S) δz] ,
exp[Dδz] exp[Sδz)]. More precisely, for two non-commuting operators D
and S, we have

exp[Dδz] exp[Sδz)] = exp[(D + S)δz] + [D,S]
δz2

2
+ ... , (57)

where [D,S] = DS − SD is the commutator of D and S. However, for an
accuracy up to the first order in δz, we can approximately write:

exp[(D + S)δz] ≃ exp[Dδz] exp[Sδz] . (58)

This means that, when the propagation step δz is sufficiently small, the
diffraction and the inhomogeneous operators can be treated independently
of each other in Eq. (56), and we obtain

~A(x, y, z + δz) = exp[Sδz] exp[Dδz] ~A(x, y, z) . (59)

The role of the operator acting first, exp[Dδz], is better understood in the
spectral domain. This is the propagation operator that takes into account the
effect of diffraction between the planes at position z and z+ δz. Propagation
is readily handled in the spatial-frequency domain using transfer function
for propagation given by

HA(kx, ky, δz) =
Â(kx, ky, δz)

Â(kx, ky, 0)
= exp[−i(k2

x + k2
y)δz/(2k0)] . (60)

This is nothing but Eq. (9), specialized for the slowly varying envelope of
the field.

Hence, the action of the exponential operator exp[Dδz] is carried out in the
Fourier domain using the prescription
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exp[Dδz] ~A(x, y, z) = FT−1
{

exp[−i(k2
x + k2

y)δz/(2k0)]Â(kx, ky, δz)
}

, (61)

where ”FT−1” refers to the inverse spatial Fourier transform defined as in
Eq. (5). The second operator, exp[Sδz], describes the effect of propagation in
the absence of diffraction and in the presence of medium inhomogeneities,
and is well-described in the spatial domain.

Summing up, a prescription for propagating A(x, y, z) along a single step in
δz can be written as

A(x, y, z + δz) = exp[ik0δǫ δz/2]

×FT−1
{

exp[−i(k2
x + k2

y)δz/(2k0)]Â(kx, ky, δz)
}

. (62)

The algorithm repeats the above process until the field has traveled the
desired distance. The usefulness of the Fourier transform lies in the fact
that one can reduce a partial differential operator to a multiplication of the
spectral amplitude Â(kx, ky, z) with a phase transformation function. Since
D is just a number in the spatial Fourier domain, the evaluation of Eq. (59)
is straightforward.

3.3 Grating Theory

x

z

D

ℇ

ℇ = 0

Fig. 15. Grating geometry and notation.
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Fig. 16. Scattering geometry for a diffraction grating.

r1(x)

x

z

A(x1,0,z1)

P(x′,y′,z′) O′

O

r2(x)

B(x2,0,z2)

Fig. 17. Schematic diagram of diffraction from a plane grating. The gray area rep-
resents the grating volume. A point source is located at A. Point P is an arbitrary
point inside the grating volume. Grating can be divided into layers. Each layer is
either homogeneous or modulated with refractive index that changes periodically
as a function of z at any given height x.

The derivation of the grating condition describing the geometry of light
diffraction by gratings presented in textbooks usually relies on Huygens
principle. At variance, our treatment of gratings theory is based on first
principles, namely Maxwell equations, still retaining basic simplicity.
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Fig. 18. Plane grating in the case of a monochromatic point source. The virtual
image of the real source is located at a distance r′ = r · (sin(θD)/ sin(θI))

2 behind the
grating.
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Fig. 19. Geometry of the reflection. The properties of the grating are naturally
described in terms of the asymmetry parameter b = sin(θD)/ sin(θI)
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Toroidal grating
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Y (sagittal 
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Fig. 20. Schematic diagram of a toroidal grating. A point source is located at A.
Point P is an arbitrary point of the grating.
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1
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z

z
2

x
2

A

B

Fig. 21. Coordinate notation. The coordinate systems (x, y, z), (x1, y1, z1) and
(x2, y2, z2) correspond to grating, incoming beam and diffracted beam; the axes
z, z1 and z2 are along grating surface, incident and exit principal rays respectively.
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a)

b)

Fig. 22. Schematic diagram of a VLS grating element used in theoretical analysis.
The VLS grating is represented by a contribution of a planar grating with fixed line
spacing and a thin lens.

3.3.1 Plane grating

Ruled gratings are essentially two-dimensional structures. As such, their
surface S can be described by a function, e.g. x = f (y, z), which expresses
one of the three coordinates (in this case, x) as a function of the other two,
Fig. 15. Let the beam be incident from vacuum (x > 0) on the periodic
cylindrical interface illustrated in Fig. 16. In this case, since S is cylindrical,
f can be considered as the only function of z independently on the value of
y, and one has that x = f (z) is a periodic function of period D (with spatial
wave number K = 2π/D). Susceptibility is a periodic function of z and can
be described by the Fourier series

δǫ = 4πχ =
∞
∑

m=−∞
um(x) exp[imKz] . (63)

We want to obtain a diffracted wave, which we express in its most general
form as Eq. (49), from the knowledge of the field incident on the grating.

Using the relation between ~̄P and ~̄E, and the explicit expression for G in Eq.
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(47) we can write the following integral equation for the electric field:

~̄Ed(~r) = k2
0

∫

d~r′
exp[ik0|~r − ~r′|]
|~r − ~r′|

χ(x′, z′)

×
{[

~̄Ed(~r′) + ~̄Ei(~r′)
]

− c2~n
[

~n ·
(

~̄Ed(~r′) + ~̄Ei(~r′)
)]}

. (64)

It is customary to solve the scattering problem by a perturbation theory,

assuming that at all points in the dielectric medium the diffracted field ~Ed

is much smaller than the incident field ~Ei. This allows one to neglect the
diffracted electric field on the right hand side of Eq. (64) with the incident

field ~Ei, yielding

~Ed(~r) = k2
0

∫

d~r′
exp[ik0|~r − ~r′|]
|~r − ~r′|

χ(x′, z′)[~Ei(~r′) − c2~n(~n · ~Ei(~r′))] , (65)

where for simplicity we neglected the bar in the notation for the field in the
space-frequency domain.

In order to compute ~Ed in Eq. (65) we need to specify the incident field

distribution ~Ei(~r′) within the dielectric medium. In fact, according to Eq. (65)

the integration ranges over all coordinates d~r′, but χ is different from zero
inside the dielectric. Consider Fig. 17, where we sketch the geometry for our
problem. Monochromatic light from a point source A(x1, y1, z1) is incident on
a point P(x′, y′, z′) located into the grating, i.e. into our dielectric medium.
Point A is assumed, for simplicity, to lie in the xz plane, i.e. A = A(x1, 0, z1).
The plane xz is called the tangential plane (or the principal plane, or the
dispersive plane). The plane yz is called the sagittal plane. As a first step

we need to express the incident field ~Ei, appearing in Eq. (65), at the generic
point P inside the dielectric. In order to do so, since we deal with a point
source, we can take advantage of the spatial impulse response of free-space.
As we have seen, this is nothing but the expression for a spherical wave
originating from A

~Ei(x
′, y′, z′) = E0

exp[ik0|~r′ − ~r1|]
|~r′ − ~r1|

. (66)

After this, we consider that the beam is diffracted to the point B = B(x2, 0, z2).
Mathematically, diffraction is taken care of by the Green’s function in Eq.
(65), which represents a secondary source from point P. Finally, an explicit
expression for χ is given in Eq. (63).
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Even without explicit calculation of the integral in Eq. (65), a lot can be
said analyzing the phase in the integrand. In fact, since integration in Eq.
(65) involves an oscillatory integrand, the integrand does not contribute
appreciably unless the arguments in the exponential functions vanishes. We
therefore calculate the total phase in the integrand of Eq. (65), and analyze
it.

Calculations can be simplified by applying the paraxial approximation.

In fact, one can rely on it for writing expansions for AP = |~r′ − ~r1| and

PB = |~r2 − ~r′| entering into the expression for the phase. This can be done

in terms of the distances r1(x) = AO′ and r2(x) = O′B, where O′ = (x′, 0, 0),
x′ being the x-coordinate of point P. However, further simplifications apply
by noting that, in paraxial approximation, light actually traverses a very
small portion of material with susceptibility χ. The range of coordinates
x′, y′, z′ inside the grating is much smaller than the distances r1 and r2. In
other words, the grating size and its thickness are much smaller than r1

and r2. Additionally, we assume that the grating thickness is much smaller
than the relevant transverse size. Thus, we can neglect the dependence of
distances r1 and r2 on x′ in the expansion for the incident wave and in the

Green function exponent, and use the approximations r1 ≃ AO and r2 ≃ OB,
where O = (0, 0, 0) is a pole on the surface of grating, Fig. 17. Thus, the path
AOB defines the optical axis of the beam, and the angle of incidence and of
diffraction, α and β in Fig. 16, are simply following that optical axis. If points
A and B lie on different sides of the xz plane, angles α and β have opposite
sign.

Starting from the expressions

AP
2
= [r1 sinα + z′]2 + y′2 + [r1 cosα]2 ,

PB
2
= [r2 sin β + z′]2 + y′2 + [r2 cos β]2 . (67)

and using a binominal expansion we can write the incident wave as

~Ei(x
′, y′, z′) =

E0 exp

[

ik0

(

r1 + z′ sinα +
z′2 cos2 α

2(r1 + z′ sinα)
+

y′2

2(r1 + z′ sinα)

)]

=

E0 exp

[

ik0

(

r1 + z′ sinα +
z′2 cos2 α

2r1
+

y′2

2r1
− z′3 sinα cos2 α

2r2
1

−
z′y′2 sinα

2r2
1

)]

,

(68)

The exponent of the Green function under the integral Eq. (65) as a function
of the coordinates x′, y′ and z′ of the point P on the grating. From Fig. 17,
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one obtains

exp[ik0|~r − ~r′|] =

exp

[

ik0

(

r2 + z′ sin β +
z′2 cos2 β

2(r2 + z′ sin β)
+

y′2

2(r2 + z′ sin β)

)]

=

exp

[

ik0

(

r2 + z′ sin β +
z′2 cos2 β

2r2

+
y′2

2r2

−
z′3 sin β cos2 β

2r2
2

−
z′y′2 sin β

2r2
2

)]

,

(69)

We will now show that the periodic structure of the gratings restricts the
continuous angular distribution of the diffracted waves to a discrete set of
waves only, which satisfy the well-known grating condition. In order to
do so, we insert Eq. (63), Eq. (68), and Eq. (69) into Eq. (65). As noticed
above, the integrand does not contribute appreciably unless the arguments
in the exponential functions vanishes. From Eq. (63), Eq. (68), and Eq. (69)
it follows that the total phase in Eq. (65) can be expressed as a power series

φ = k0[r1 + r2 + C10z′ + C20z′2 + C02y′2 + C30z′3 + C12z′y′2 + ...] . (70)

Typically, third order aberration theory is applied to the analysis of grating
monochromators. In that case, the power series needs to include third order
terms. The explicit expressions for the coefficients Ci j are

C10 =
nK

k0
+ sinα + sin β ,

C20 =
1

2

[

1

r1

cos2 α +
1

r2

cos2 β
]

,

C02 =
1

2

[

1

r1
+

1

r2

]

,

C30 = −
1

2r2
1

sinα cos2 α − 1

2r2
2

sin β cos2 β ,

C12 = −
1

2r2
1

sinα − 1

2r2
2

sin β . (71)

C20 and C02 are the coefficients describing defocusing. C30 describes the
coma, and C12 the astigmatic coma aberration 2 . In practice, the most impor-
tant ones are defocusing and coma. Ideal optics would require the phase φ
to be independent of z.

2 Differences in sign for C10, C30 and C12 with respect to literature are due to a
different definition of the direction of the z-axis, which points towards B, and not
towards A.
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Note that the presence of the term nK/k0 in the C10 coefficient directly follows
from the insertion of Eq. (63) into Eq. (65). As said above, it is the periodic
structure of the gratings which restricts the continuous angular distribution
of the diffracted waves to a discrete set of waves. In order to find the direction
of incident and diffracted beam, we impose the condition C10 = 0, yielding:

nK + k0(sinα + sin β) = 0 . (72)

Eq. (72) is also valid for a plane mirror, if the grating period is taken equal
to infinity. This fact can be seen inspecting Eq. (72), which yields α = −β for
D −→ ∞, which is nothing but the law of mirror reflection.

Eq. (72) is known as the grating condition. This condition shows how the
direction of incident and diffracted wave are related. Both signs of the
diffraction order n appearing into the equation are allowed. Assuming for
simplicity diffraction into first order, i.e. n = +1, one has

λ = D(cosθi − cosθd) , (73)

where θi and θd are the angles between the grating surface and, respectively,
the incident and the diffracted directions. By differentiating this equation in
the case of a monochromatic beam one obtains

b =
dθd

dθi
=

sinθi

sinθd
(74)

Note that b = Wi/Wd is the ratio between the width of the incident and of
the diffracted beam. Fig. 19 shows the geometry of this transformation. As
has been pointed out elsewhere this is just the consequence of Liouville’s
theorem.

The effect of the plane grating on the monochromatic beam is twofold: first,
the source size is scaled by the asymmetry factor b defined in Eq. (74) and,
second, the distance between grating and virtual source behind the grating
is scaled by the square of the asymmetry factor b, Fig. 18. In order to illustrate
this fact, we consider a 1D Gaussian beam with an initially plane wavefront,
described by the field amplitude (along a given polarization component)
ψ(x, 0) = exp[−x2/w2

0]. Assuming that the plane grating is positioned at
z, the spatial spectrum of the Gaussian beam immediately in front of the
grating, i.e. after propagation in free-space by a distance z from the waist
point, is given by

ψ(kx, z) =
√
πw0 exp[ik0z] exp

[

−
k2

xw2
0

4

]

exp

[

− ik2
xz

2k0

]

. (75)
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However, according to Eq. ((74)), the transformation of the angular spectrum
performed by grating can be described with the help of k′x = bkx, so that
immediately after grating one obtains

ψ(kx, z) =
√
πw0 exp[ik0z] exp

[

−
k
′2
x w2

0

4b2

]

exp

[

− ik
′2
x z

2k0b2

]

. (76)

We can interpret Eq. (76) in the following way: the Gaussian beam diffracted
by the grating is characterized by a new virtual beam waist w′0 = w0/b and by
a new virtual propagation distance z′ = z/b2. Introducing the dimensionless
distance through the relation z/LR, where LR is called the Rayleigh length,
we can conclude that this dimensionless distance is invariant under the
transformation induced by the plane grating.

The treatment of the diffraction grating given above yielded most of the
important results needed for further analysis. In particular, it allowed us to
derive the grating condition and it also allowed us to study the theory of
grating aberrations. Our theoretical approach reaches into the foundation
of electrodynamics, as is based on the use of Maxwell equations. Note that
the treatment considered so far was carried out under the assumption of the
validity of the first order perturbation theory, i.e. we assumed that for all the
points in the dielectric medium, the diffracted field is negligible with respect
to the incident field. The properties of the field actually exploited amount
to the fact that in the yz plane, the diffracted field has the same phase as the
incident field plus an extra-phase contribution nKz′. If we go up to second
and higher orders in the perturbation theory we can see that this property
remains valid, and results derived above still hold independently of the
application of a perturbation theory. Note that inside the grating the beam
is attenuated with a characteristic length that is much shorter compared to
the range of the grating surface coordinates, and can always be neglected
in the phase expansion. We can immediately extend the range of validity of
our analysis to arbitrary values of the dielectric constant. The general proofs
of the grating condition and of the results of the theory of grating aberration
are derived from first principles as follows [42].

First let us note that two-dimensional problems are essentially scalar in
nature, and can be expressed in terms of only one single independent elec-
tromagnetic field variable, either Ey or Hy. Here we will working consid-
ering the TE polarization, i.e. we will be focusing on Ey. The action of the
grating on the electromagnetic field can be modeled, mathematically, as
an operator G that transforms an incident field into a diffracted field, i.e.
Ed(z, y) = G[Ei(z, y)]. Since the grating is periodic and extends to infinity, the
action of the operator G is invariant under translation by a grating period:
Ed(z+D, y) = G[Ei(z+D, y)]. Since the incoming beam is incident at an angle
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θi, this translation adds an extra path distance D cosθi to the incident wave
Ei, for a phase change

Ei(z +D, y) = exp(ik0D cosθi)Ei(z, y) . (77)

Also, since the set of Maxwell partial differential equations is linear, any
solution multiplied by a constant is still a solution and one obtains

G[Ei(z +D, y)] = G[exp(iδφ)Ei(z, y)] = exp(iδφ)Ei(z, y) , (78)

where δφ = k0D cosθi. Now, since

G[Ei(z +D, y)] = Ed(z +D, y) (79)

we must have

exp(iδφ)Ed(z, y) = Ed(z +D, y) . (80)

In other words, the diffracted field is a pseudo-periodic function. Now, since
the product Ed exp[−ik0z cosθi] is a periodic function, it can be represented
as a Fourier series expansion on the grating period D, and we can write the
diffracted field as

Ed(z, y) =

+∞
∑

m=−∞
Em(y) exp[imKz + ik0z cosθi] . (81)

This result is fully general, and all that is required to prove it is that the
grating is periodic. Eq. (81) is sufficient for describing the geometry of the
beam diffraction by the grating. We can use Eq. (81) to derive once more the
grating condition.

In order to illustrate this fact, we see that the phase of the integrand in
the integral Eq. (64) consists of three terms: the first term is the phase
in the Green function, the second is the phase in Eq. (63), and the third

is the phase in ~Ed. The first and the second terms are known, and have

already been analyzed. Eq. (81) shows the structure of the phase for ~Ed in
the case for a plane wave impinging on the grating with incident angle θi.

In principle, the incident field ~Ei comes from a point source located in A,
and consists of a diverging spherical wave. Such spherical wave can always
been decomposed in plane waves and, due to the validity of the paraxial
approximation, only those plane wave components with angle near to θi

should be considered. Therefore, neglecting small corrections in ∆θi, one

38



can take the phase in Eq. (81) as a good approximation for the phase of the
diffracted field. Then, considering the expansion in Eq. (69) to the first order
in z′ one obtains, without using a perturbative approach, that the term in z′

in the integrand in Eq. (64) is given by (m+n)K+k0(cosθi−cosθd). Imposing
that this term be zero, and remembering that α = π/2−θi, one gets back Eq.
(72).

This result, albeit very general, still says nothing about the grating efficiency.
We still do not know anything about the amplitudes of the diffracted waves.
In order to determine these coefficients we need to model the grooves of
the grating. At this point, we need to apply classical numerical integration
techniques [43, 44].

3.3.2 VLS plane grating

A diffractive plane grating can focus a diffracted beam when the groove
spacing properly varies with the groove position; such a grating is called
a variable-line-spacing (VLS) grating. A VLS plane grating can be incor-
porated into the monochromator to act as both dispersive and spectrally
focusing component. The working principle of such kind of grating can be
understood by expressing the groove spacing D(z) as a function of the co-
ordinate z along the perpendicular to the grooves. So it can be expanded as
a polynomial series 3 :

D(z) = D0 +D1z +D2z2 + ... , (82)

where the term D0 is the spacing at the pole of the grating (located, by
definition, at z = 0), while D1 and D2 are the parameters for the variation of
the ruling with z. Now susceptibility is not a periodic function of z anymore,
and can be described by the Fourier integral:

δǫ = 4πχ =

∞
∫

−∞

B(K, x) exp[iKz]dK . (83)

Let us assume, for simplicity, that the distance between grooves varies ac-
cording to the linear law: D(z) = D0+D1z. Now we also assume that D1 ≪ 1
and we apply the so-called adiabatic approximation imposing that the width
of the peaks in the spectrum B(K, x) is much narrower than the harmonic

3 Another choice of line-spacing parametrization found in literature is the expan-
sion of the line density n(z) = 1/D(z) = n0 + n1z + n2z2 + .... With these definitions,
n1 and n2 are the same as in Table 1.
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separation K0 = 2π/D0 between the peaks. In this case, Eq. (83) can be
represented in the form

δǫ =
+∞
∑

−∞
Bn(x, z) exp[inK0z] , (84)

where the complex amplitudes Bn(x, z) are all slowly varying function of the
z coordinate on the scale of the period D0. This means that the terms in sum
over n in Eq. (84) can be analyzed separately for each value of n. For the case
of a linearly chirped grating considered here, the slowly varying amplitude
of the nth harmonic is given by

Bn = An(x) exp

[

i
z2

2

dK

dz

]

, (85)

where dK/dz = 2πd(1/D)/dz = −(2π/D2
0)D1 is the chirp parameter.

We now substitute Eq. (84) into Eq.(65) and, as before, we express the phase
in the integrand as a power series. Only the C20 term differs, with respect to
the expression in Eq. (71). In fact, for a linearly chirped grating we obtain
[45]

C20 = −
λ

2D2
0

D1 +
1

2r1

cos2 α +
1

2r2

cos2 β . (86)

The condition C20 = 0 has to be verified in order to guarantee imaging in
the tangential plane.

Here we used Maxwell equations for studying the imaging properties of
VLS grating. However, certain aspects of this theory can be derived in a
simple way using ray optics. For convenient use in the following discus-
sions, it is necessary to make clear the reference coordinate systems and rays
describing the optical system. Fig. 21 shows the VLS plane grating optical
system with an object point A. The coordinate systems (x, y, z) , (x1, y1, z1)
and (x2, y2, z2) correspond, respectively, to the grating, to the incident beam,
and to the diffracted beam; the axes z, z1 and z2 are along the grating surface,
the incident and the exit principal rays, respectively. As shown in Fig. 16,
the input beam is incident on grating at angle θi. The diffracted angle θd is
a function of the groove distances according to the grating equation

λ = D(cosθi − cosθd) . (87)

By differentiating over z for the case of a monochromatic beam we obtain

40



dD

dz
(cosθi − cosθd) = −dθd

dz
D sinθd , (88)

yielding

[λ/D2
0(sin2 θd)]D1 = −

dθd

dx2
, (89)

where we used the relation z sinθd = x2.

Let us now define a thin lens as a device that deflects every light beam inci-
dent parallel to the optical axis in such a way that it crosses the optical axis at
a fixed distance f after passing through the lens. In paraxial approximation,
the thin lens equation assumes the familiar form dθd = −dx2/ f . The physical
meaning of Eq. (89) is that the VLS plane grating can be represented by a
combination of a planar grating with fixed line spacing and a lens after the
grating, with a focal length f equal to the focal length of the VLS grating

f = [λD1/D
2
0(sin2 θd)]−1 , (90)

as shown in Fig. 21. It may seem surprising that the focal length depends on
θd only. However, it is reasonable to expect an influence of the assumption
that the lens placed after the grating. One intuitively expects that full transfer
matrix for the VLS grating should not depend on the choice of the lens
position. It will be shown below that indeed, the transfer matrix satisfies
this invariance.

An ABCD matrix is intended to represent any arbitrary paraxial element,
or optical system located between an input plane and an output plane. In
the present case, the optical element is the VLS plane grating with the input
plane corresponding to the plane perpendicular to the incident beam and
with the output plane the plane perpendicular to the diffracted beam. The
most usual application for ray matrices is to forming the image of the object
The most usual application for ray matrices is the determination of the
image of the object located at the input plane. In this case, some important
properties of optical system are obtained when any of the ABCD parameters
vanish [46].

The total optical system from the object plane (to which point A belongs)
to the image plane (to which point B belongs), see Fig. 21, is represented by
the matrix:

















Atot Btot

Ctot Dtot

















=

















1 r2

0 1

































1 0

−1/ f 1

































b 0

0 1/b

































1 r1

0 1

















, (91)
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where b is the asymmetric parameter sinθi/ sinθd, see [47]. The explicit
expression for the total matrix elements are

Atot = b − br2/ f ,
Btot = br1 − br1r2/ f + r2/b ,
Ctot = −b/ f ,
Dtot = −br1/ f + 1/b . (92)

The condition Btot = 0 has to be verified in order to guarantee imaging of the
object at the output plane. In fact, when Btot = 0, any point source at the input
plane focuses at the corresponding point in the output plane, regardless of
the input angle. Therefore, the output plane is the image plane. Dividing the
equation Btot = 0 by r1r2 on the left hand side we find the imaging equation
[48]

b

r1

+
1

br2

=
D1λ

D2
0

sinθi sinθd

, (93)

which is identical to the imaging condition C20 = 0 which we derived above
from first principles, because sinθi = cosα and sinθd = cos β. It thus follows
that the ABCD matrix for the VLS plane grating in the tangential plane has
the general form

















Atot Btot

Ctot Dtot

















=

















Atot 0

−1/ ftot Dtot

















(94)

with the effective focal length given by [48]

1

ftot
=

λD1

D2
0

sinθi sinθd

, (95)

which is symmetric in θi and θd as it must be. The ABCD matrix elements
can be used to characterize width and wavefront curvature of the Gaussian
beam after its propagation through the VLS grating.

3.3.3 Toroidal grating

A logical extension of the plane VLS grating concept described above follows
from the idea to rule the VLS grooves on a toroidal surface, producing a
toroidal VLS grating [49]. Additional design parameters, namely tangential
and sagittal radius, are then available to control imaging aberrations and
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to optimize the grating monochromator performance [50]. We consider a
curved VLS grating and we assume that the surface of the grating is toroidal
with tangential and sagittal radius of curvature R and ρ respectively, see Fig.
20. Let us assume that the distance between the grooves varies according to
quadratic law:

D(z) = D0 +D1z +D2z2 . (96)

As before, the susceptibility is not a periodic function with respect to z, and
in adiabatic approximation can be represented in the form

δǫ =
+∞
∑

−∞
Bn(x, z) exp[inK0z] , (97)

which is identical to Eq. (84), where complex amplitudes Bn are slowly
varying functions of the z coordinate on the scale of the period D0. In the
case of quadratically chirped grating, the nth amplitude is given by

Bn = An(x) exp[iK′z2/2 + iK′′z3/6] , (98)

where

K′ = 2π(1/D)′ = −2πD1/D
2
0 = 2πn1 ,

K′′ = 2π(1/D)′′ = −4π[D2/D
2
0 −D2

1/D
3
0] = 4πn2 , (99)

are the linear and quadratic chirp parameters.

From the geometry (see Fig. 20), and similarly as done before we can write

AP
2
= [r1 sinα + z]2 + y2 + [r1 cosα − x]2 ,

PB
2
= [r2 sin β + z]2 + y2 + [r2 cos β − x]2 , (100)

where the coordinate x on the toroidal surface is related to z and y by the
equation of the torus

x = R − R













1 −
z2 + y2

R2
+ 2

ρ

R

(ρ

R
− 1

)













1 −
(

1 −
y2

ρ2

)1/2






















1/2

. (101)

The integrand in Eq. (65) is oscillatory, and does not contribute appreciably
to the total integral unless the arguments of the exponential function van-
ishes. Using Eq. (65), Eq. (68) and Eq. (69), together with Eq. (97), Eq. (98),
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Eq. (100), and Eq. (101), it is then possible to expand the phase as a power
series such as

φ = k0(r1 + r2 + C10z + C20z2 + C02y2 + C30z3 + C12zy2 + ...) . (102)

The explicit expressions for coefficients Ci j are [51]

C10 =
nλ

D0
+ (sinα + sin β) ,

C20 =
nλn1

2
+

1

2

[

cos2 α

r1

+
cos2 β

r2

− cosα

R
−

cos β

R

]

,

C30 =
nλn2

3
− 1

2

[(

cos2 α

r1

− cosα

R

)

sinα

r1

+

(

cos2 β

r2

−
cos β

R

)

sin β

r2

]

,

C02 =
1

2

[

1

r1
− cosα

ρ

]

+
1

2

[

1

r2
−

cos β

ρ

]

,

C12 = −
1

2

[(

1

r1

− cosα

ρ

)

sinα

r1

+

(

1

r2

−
cos β

ρ

)

sin β

r2

]

, (103)

where the condition C10 = 0 yields back the grating condition, C20 = 0 yields
the position of the tangential focus position, C02 = 0 that of the sagittal focus,
and the relation C30 = 0 minimizes the coma aberration.

In section 4.3.4 we will demonstrate that toroidal grating aberrations can be
modeled very straightforwardly using a geometrical approach. This deriva-
tion is very different from the analytical method used in literature. We
heavily relied on geometrical considerations, and we hope that calculations
performed in section 4.3.4 are sufficiently straightforward to give an intu-
itive understanding of Eq. (103).

4 Modeling of self-seeding setup with grating monochromator

4.1 Source properties

In order to perform calculations of the grating beamline performance, one
needs the effective source size and position through the operating photon
energy range. The properties of the effective source are found from steady-
state simulations with the help of the code Genesis 1.3 [37]. The simulations
include electron beam parameters (emittance, energy spread, peak current)
found by start-to-end simulations for the 0.1 nC electron bunch mode of op-
eration. Beam parameters for the steady-state simulations have to be chosen
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Fig. 23. Distance of the source from the SASE undulator exit as a function of photon
energy. Results are found by means of FEL simulations.
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Fig. 24. Size of the source waist as a function of the photon energy. Results found
by means of FEL simulations.

to match the parameters of the bunch slice with maximum peak current. The
properties of the effective source can be found from the simulated field at
the SASE undulator exit. This is accomplished by propagating the simulated
field backwards from the undulator exit in order to find the position of the
waist. The field must to be propagated in free-space. An in-house free-space
wavefront propagation code was used to this purpose. The code is written
in MATLAB and based on fast Fourier transform implementation of the
Fourier optics method discussed in section 3.1. Fig. 23 shows the distance
from the source to the SASE undulator exit as a function of the photon en-
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Fig. 25. Dependence of the input coupling factor A on the position of the Gaussian
beam waist. Here ~ω = 500 eV.
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Fig. 26. Optimal position of the Gaussian beam waist (characterized by plane wave-
front) into the second undulator as a function of the photon energy. The waist size
of the seed beam is equal to the source waist size in the first undulator. A usual
figure of merit is the optimal position of the waist for the maximal input coupling
factor. Results are obtained using wave optics and FEL simulations.

ergy. It is seen that the source point moves upstream with increasing photon
energy by as much as one meter. The Gaussian fit gives the source waist size
w0, as shown in Fig. 24.
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Fig. 27. Ratio of input coupling factor for nominal and optimal seeding as a function
of the photon energy.
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Fig. 28. Transverse mismatch between monochromatic seed and electron beam as
a function of exit slit width for different photon energies. A useful figure of merit
measuring the mismatch is the input coupling factor normalized to the asymptotic
case without exit slit. Results obtained using wave optics and FEL simulations.

4.2 Focusing at the second undulator entrance

Let us study the problem of optimal focusing of the seed radiation on the
electron beam at the undulator entrance. We consider the case when the
seed radiation has the form of a Gaussian beam, and when the FEL operates
at exact resonance. The optimal focusing conditions can be found running
steady-state simulations in Genesis 1.3 [37].
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Fig. 29. Results of FEL amplifier simulations showing the influence of the wavefront
tilt in the seed beam. The normalized input coupling factor is plot as a function of
the tilt angle for two photon energies.

The waist of the Gaussian beam is located at position z0, where we have
a plane phase front and a Gaussian distribution of amplitude. When the
undulator is sufficiently long, the output power grows exponentially with
undulator length, and the power gain, G =Wout/Wseed, can be written as

G = A exp[z/Lg] , (104)

where z is the undulator length and Lg is called the power gain length.
In the linear regime the power gain does not depend on the input power
Wseed, so that the input coupling factor A is a function of two parameters
only: the coordinate of the waist location, z0, and the waist size, w0. There
are always optimal values of Gaussian beam parameters, w0 and z0, when
the input coupling factor A achieves its maximum. In order to simplify the
optimization problem, we will not study any change in w0, but rather set it
equal to the waist size of the effective source in the SASE undulator. Fig. 25
shows the dependence of the input coupling factor A on the focus coordinate
z0 at the photon energy of 500 eV. The optimal coordinate of the waist point
is a function of the photon energy. The plot of this function is presented in
Fig. 26. It is clearly seen that the optimal position of the waist located 1−2 m
inside the seeding undulator. The plots allow one to maximize the seeding
efficiency at fixed power of the seed beam.

From the above analysis follows that that a one-to-one imaging of the ra-
diation beam at the exit of the first undulator onto the entrance plane of
the second undulator (which is obviously optimal in the case of negligible
chicane influence) becomes non-optimal in the case of our interest. This is
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a consequence of the fact that the microbunching in the electron beam is
washed out by the chicane and, therefore, at the entrance of the second
undulator the seed radiation beam interacts with a ”fresh” electron beam.
Numerical simulations show that the reduction factor for the one-to-one
imaging case compared with the optimal case is about 30%.

The main efforts in developing our design for a self-seeding monochromator
are focused on resolution and compactness. Therefore, there is somewhat
a residual mismatching between seed and electron beam on the nominal
mode of operation. From Fig. 27 one can see that seed beam on the nominal
mode of operation is generated with a mismatching of only 10 − 20% .

Wave optics, together with FEL simulations are naturally applicable also to
the study the influence of finite slit size on the amplification process into
the second undulator. In particular, we studied the influence of the exit slit
size on the seeding efficiency. Such effect is shown in Fig. 7. One can see that
decreasing the slit size drastically decreases the efficiency. The reason for
this is a reduction of the seed power and the introduction of an additional
mismatch between the seed beam and the electron beam. It is instructive
to study these two effects separately. Fig. 28 shows the ratio of the input
coupling factors for seeding with and without slit, as a function of the slit
size. When the slit size is smaller than 2µm, diffraction on the slit drastically
decreases input coupling factor. On the other hand, for a slit size of about
2µm, perturbation of the Gaussian beam shape leads to about 10 − 15%
increase in the input coupling factor.

In order to calculate the tolerance on the wavefront tilt of the seed beam, it is
necessary to have knowledge of the angular acceptance of the FEL amplifier.
Results of simulations performed with the code Genesis [37]are shown in
Fig. 29. The minimum of the FWHM power amplification bandwidth (0.2
mrad) is achieved at the photon energy of 1 keV.

4.3 Resolution

A preliminary resolution study was first performed using Gaussian optics
calculations. Subsequently, in order to have a more realistic wave optics
simulation, after using Gaussian beam treatment, the beam distribution
was modeled using FEL simulations and accounting for third order optical
aberrations.Optimized specifications have then been verified by ray-tracing
simulations, accounting for all geometrical aberrations, as reported in the
end of this section. The reason for first modeling the source as a Gaussian
beam was to obtain a completely analytical, albeit approximated description
of the self-seeding monochromator operation.
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Fig. 30. The number of illuminated grooves (number of grooves per waist of radi-
ation beam illuminated) N as a function of photon energy.
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Fig. 31. Resolving power of the grating monochromator as a function of the exit slit
size for different photon energies.

4.3.1 Analytical description

Let us first assume that the incident FEL beam is characterized by a Gaussian
distribution. In this case, the ABCD matrix formalism is a powerful tool to
describe the propagation of the beam through an arbitrary paraxial optical
system. The optical system for the grating monochromator comprises grat-
ing, slit and mirrors spaced apart from each other. All these optical elements
(grating, mirrors and free-space), with the exception of the slit, can be rep-
resented with the help of ABCD matrices, which can be used to characterize
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Fig. 32. Resolving power of the grating monochromator as a function of the photon
energy for different slit sizes.
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Fig. 33. Image waist size on the exit-slit plane as a function of the photon energy. The
curve are calculated with analytical formulas. Squares are the result of numerical
calculations with the split-step beam propagation method.

the width and the wavefront curvature of an optical Gaussian beam after its
propagation through a grating monochromator without exit slit. Gaussian
beam transformation due to mirrors, and translation in between mirrors can
be tracked using the law for the transformation of q in Eq. (28). It can be
convenient to describe the diffraction of a Gaussian beam from a toroidal
VLS grating using the ABCD matrix formalism too. The relevant geometry
is shown in Fig. 20. The grating has a local groove spacing D(z) = D0 + D1z
at a position z on the grating surface, a radius of curvature of the substrate R
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Fig. 34. Maximal resolving power, i.e. resolving power at closed slits, as a function
of photon energy. Results are obtained using wave optics calculations. Squares
are calculated using coherent Gaussian beam, and circles are calculated using FEL
beam.
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Fig. 35. Profile of the output spectral line from the grating monochromator without
exit slit at different photon energies. Results are obtained by wave optics and FEL
simulations. The FWHM of the spectral line would indicates a resolving power of
7000 in photon energy range 0.3 keV - 1 keV.

in the tangential plane, and ρ in the sagittal plane. In the tangential plane, a
toroidal VLS grating can be represented by combination of a planar grating
with fixed line spacing and lens after the grating, Fig. 22, with a focal length
equal to the focal length of the toroidal VLS grating
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In the sagittal plane the toroidal VLS grating can be represented by a single
lens with a focal length

f2 =

[

sinθi

2ρ
+

sinθd

2ρ

]−1

(106)

In our analysis we calculate the propagation of the input signal to different
planes of interest within the monochromator. We start by writing the input
field in object plane, that is the source plane, as

Ẽ(x, y) = exp

[

− x2

w2
0

−
y2

w2
0

]

. (107)

As shown in Fig. 16, the input beam is incident on the grating at the angle
θi. The diffracted beam emerges at an angle θd, and is a function of the
wavelength according to grating equation. Assuming diffraction into n = +1
order, one has

λ = D0(cosθi − cosθd) . (108)

By differentiating this equation one obtains

dθd

dλ
=

1

D0θd

, (109)

where we assume grazing incidence geometry, θi ≪ 1 and θd ≪ 1. The
physical meaning of this equation is that different spectral components of
the outcoming beam travel in different directions. As said above, in the
tangential plane the toroidal VLS grating is represented as combination of
plane grating and convergent lens. We are interested in determining the
intensity distribution in the image plane, i.e. at the slit position. The grating
introduces angular dispersion, which the lens transforms into spatial dis-
persion in the slit plane. The spatial dispersion parameter, which describes
the proportionality between spatial displacement and optical wavelength is
given by

η = λ
dx

dλ
=

d2λ

D0θd
, (110)
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where d2 is the distance between grating and image plane. In our case study,
the relative difference between focal length and image distance is about 1%.
As a result one may approximately write d2 = f1. The spectral resolution
of the monochromator equipped with an exit slit depends on the spot size
in the slit plane, is related with the individual wavelengths composing the
beam, and with the rate of spatial dispersion with respect to the wavelength.
For a Gaussian input beam, the intensity distribution in the waist plane, that
is the slit plane, is given by I = exp(−2x2/w2

s ), where ws is the waist size on
the slit. A properly defined merit function is indispensable for the design
of a grating monochromator. A merit function based on the spread of the
radiation spots is a suitable choice in our case of interest. Let us consider
the limiting case of a slit with much narrower opening than the spot size of
the beam for a fixed individual wavelength centered at x = 0. In this case,
the Gaussian instrumental function (i.e. the spectral line profile of the beam
after monochromatization) is given by

I = exp













−2

(

f1λ

wsD0θd

)2 (
∆λ

λ

)2












. (111)

The resolving power is often associated to the FWHM∆λ of the instrumental
function through the relation R = λ/(∆λ). In our case of interest the resolving
power is consequently given by

R =
f1λ

1.18wsD0θd

. (112)

The effect of a plane grating on the monochromatic beam is, as previously
discussed, twofold: first, the source size is scaled by the asymmetry factor
b = θi/θd and, second, the distance between grating and virtual source
before the grating is scaled by the square of the asymmetry factor. In our
case, the waist of the virtual source w′0 and the distance d′

1
are thus given by

w′0 = w0θd/θi ,
d′1 = d1(θd/θi)

2 . (113)

After propagation through a distance d2 behind the lens, the Gaussian beam
is said to be focused at the point where it has a plane wavefront. Using Eq.
(30), we obtain

ws =
w′0 f1

[(d′
1
− f1)2 + z

′2
R

]1/2
, (114)
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where z′R = zR(θd/θi)
2 is the Rayleigh range associated with the virtual

source. In our case of interest, f1/d′1 ∼ 10−2, and the waist transforms as

ws = w0
θi

θd

f1

[d2
1
+ z2

R
]1/2

. (115)

Using this relation we can recast the expression for the resolving power in
the form

R =
λzR(1 + d2

1
/z2

R
)1/2

1.18w0θiD0

=
πw0(1 + d2

1
/z2

R
)1/2

1.18θiD0

, (116)

and with the help of Eq. (29), we finally obtain

R =
πwg

1.18θiD0

, (117)

where wg is the actual waist size of the Gaussian beam after propagation
through a distance d1, i.e in the plane immediately in front of the grating. In
that plane beam has finite radius of curvature and its intensity is given by

I = I0 exp

[

−2
x2

w2
g

]

. (118)

We now introduce the new parameter N = wg/(D0θi), which may be identi-
fied as the number of illuminated grooves within the projected beam-waist
size wg/θi, and is related to the resolving power by

R =
πN

1.18
. (119)

The number of illuminated grooves is plotted against the photon energy in
Fig. 30. Influencing factors include the variation of the source size, and the
actual distance between source and grating.

We now turn to consider the case with an arbitrary slit width. Generally,
the presence of the slit modifies the output spectrum, and the instrumental
function is essentially a convolution of the diffraction-limited (Gaussian)
instrumental function with the slit transmission function. As in the case for
a diffraction-limited asymptotic, the resolving power is associated to the
FWHM ∆λ of the instrumental function through the relation R = λ/(∆λ).
Fig. 31 and Fig. 32 illustrate the dependence of the resolving power on slit
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width and photon energy. Note that in our particular case study of self-
seeding, the word ”resolving power” presented on Fig. 31 and Fig. 32 is
to be understood in a narrow sense. Namely, as we will discuss below,
the electron beam, which interacts with the seed beam into the second
undulator, plays the role of the exit slit with some effective width, and this
additional spectral filtering is always present. Here we are not to discuss
about the overall modification of the output spectrum, but only about how
the presence of the slit modifies the spectrum of the transmitted beam.

4.3.2 Simulations using beam propagation method

Above we analyzed the resolution of the grating monochromator using
an analytical method. Here we show simulation results using the beam
propagation method (BPM). We used a in-house developed MATLAB code
that calculates the propagation of the monoenergetic beam through the
monochromator. The accuracy of the beam propagation method could be
tested with analytical results for the Gaussian beam approximation. We
simulated the focusing of the Gaussian beam by a toroidal VLS grating on
the exit slit. Fig. 33 shows the dependence of waist size as a function of
photon energy. From Fig. 33 it can be seen that there is a good agreement
between numerical and analytical results.

Most of the results presented in this article were obtained in the framework
of a Gaussian beam model. This is a very fruitful approach, allowing one to
study many features of the self-seeding monochromator by means of rela-
tively simple tools. However, it is relevant to make some remarks on the ap-
plicability of the Gaussian beam model. In practical situations the FEL beam
has no Gaussian distribution, and the question arises whether a Gaussian
approximation yields a correct design for a self-seeding monochromator.
We therefore performed the same analysis using BPM simulations. With the
help of the plots presented in Fig. 34 one can give a quantitative answer to
the question of the accuracy of the Gaussian beam model. Numerical simu-
lations for the monochromator have been performed in the steady-state FEL
beam approximation using geometry parameters (in particular, the position
of the slit) obtained from the Gaussian beam approximation. One can see
that the the characteristics of the monochromator designed using a Gaus-
sian beam approach do not differ significantly from those based on a model
exploiting steady-state FEL beam distribution.

4.3.3 Modeling the monochromator without slit

When describing the operation of the self-seeding setup, we always con-
sidered the exit slit as spectral filter. However, to some extent this is a
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Fig. 36. Input coupling factor as a function of wavelength detuning.

simplification since in reality, for sufficiently large slit sizes, the filtering is
automatically produced by the second FEL amplifier. In fact, the angular
dispersion of the grating causes a separation of different optical frequencies
at the entrance of the second undulator. The spectral resolution without
slit depends on the radiation spot-size at the entrance of the second un-
dulator related with individual frequencies, and on the rate of the spatial
dispersion with respect to frequencies. The center frequency of the pass-
band filter is determined by the transverse position of the electron beam.
The resolving power is limited by the electron beam transverse size, and
can be high in the whole photon energy range covered by the monochro-
mator. This mode of operation has the an advantage. In fact, it is important
to maximize the transmission through the monochromator in order to pre-
serve both the beam power and the transverse beam shape. It can easily be
demonstrated that such beam power loss and mismatching are minimized
when the monochromator operates without a slit.

It is important to quantitatively analyze this filtering process. The influence
of the spatial dispersion at the entrance of the second undulator on the
operation of the self-seeding setup can be quantified by studying the input
coupling factor between seed beam and FEL amplifier. In the linear regime,
the input coupling factor A can be found independently for each individual
frequency, and allows for a convenient measure of the influence of the seed-
beam displacement. In practice, it is sufficient to consider the limiting case of
an instrumental function bandwidth (∼ 0.02%) much narrower than the FEL
amplification bandwidth (∼ 0.5%). In this case the resolution is defined by
the response of the FEL amplifier power on the seed displacement in the case
of a monochromatic beam transmitted through the monochromator without
slit. A spatial dispersion parameter, which describes the proportionality
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Fig. 37. Optical scheme and coordinate systems for a toroidal grating system. The
lower sketch is an enlarged fraction of the upper one.

between spatial displacement and frequency at the entrance of the second
undulator, can be found by monochromator simulations using our BPM
code. The instrumental functions of the self-seeding setup without slit for
different photon energies are presented in Fig. 35. In order to calculate the
tolerance on the frequency detuning of the seed beam, it is necessary to
have knowledge of the frequency response of the FEL amplifier. Results of
simulations are shown in Fig. 36.

4.3.4 Method for computing third order aberrations for a toroidal grating

In this paragraph we study the theory of third-order aberrations theory
for a toroidal grating. It is first necessary to clearly define the reference
coordinate systems used to describe the optical system. Fig. 37 shows the
toroidal grating and the object point A. The three coordinate systems (x, y, z),
(x1, y1, z1), and (x2, y2, z2) are used to describe the position of the wave on
the optical surface, the incoming wavefront and the diffracted wavefront,
respectively. The ray AOB is referred to as the principal ray. In the following,
the wavefront aberrations, the positions of the object and image plane are
specified with respect to this ray. The wavefront aberration W for a spherical
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Fig. 38. Resolving power of the grating monochromator at closed slit as a function
of the photon energy. Results are obtained using wave optics calculations. Squares
are calculated for an optical system without aberrations, and triangles are results
for an aberrated optical system.
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Fig. 39. Effect of aberrations on the monochromator performance. Results are ob-
tained using wave optics calculations. Simulations of the instrumental function at
closed exit slit for aberrated and non-aberrated optical system are compared. Here
~ω = 300 eV.

wave passing through a point P in the system is defined as the path difference

between the principal and auxiliary ray: W = APB − AOB. Here we take
advantage of the paraxial approximation obtained by ignoring all terms but
the first quadratic terms in x1 and y1. Let us assume that point A is in the
tangential plane and P(x1, 0, z1) is any point on the grating surface satisfying
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the constraint y1 = 0. The equation for the path AP is

AP = z1 +
x2

1

2z1
= AF +

PF
2

2AF
, (120)

where AF = AO − OD − FD, OD = |z| cosα, FD = x cosα, PF = CD − CE =
|z| cosα−x sin α. Here (x, y, z) are the coordinates of the point P in the grating
coordinate system and the coordinate system is chosen in such a way that
x > 0. Neglecting all terms of order higher than the second in x and y, the
form of a toroidal surface can be expressed by the equation

x =
z2

2R
+

y2

2ρ
, (121)

where R and ρ are tangential and sagittal radius of curvature. Thus, the
distance PC is given by x = z2/(2R). Finally, we have

AP − AO = z sinα − z2

2R
cosα +

[

z cosα + z2 sinα/(2R)
]2

2 [r1 + z sinα − z2 cosα/(2R)]
, (122)

where we used the notation AO = r1. Expanding this last difference as a
power series in z including the third order yields

AP − r1 =

z sinα +
z2

2r1

cos2 α − z2

2R
cosα − z3

2r2
1

sinα cos2 α +
z3

2Rr1

cosα sinα .

(123)

Extension to the case of nonzero sagittal coordinate can be derived in the
same way as above and results into an additional term ∆T

∆T =
y2

1

2z1
=

y2

2r1
+

y2

2ρ
cosα −

y2z

2r2
1

sinα . (124)

Note that the difference BP − BO can be obtained following the same pro-
cedure described above, simply replacing the incidence angle α with the
diffraction angle β. From Eq. (123), Eq. (124), Eq. (102), and Eq. (103) one
obtains that the power series of z and y are identical.

In the previous sections, we studied the monochromator performance using
a beam propagation method. We performed simulations in the framework
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of a simple model. Toroidal VLS grating was represented by a combination
of a planar grating with a fixed line spacing and a lens after the grating. A
BPM code was used to describe the propagation of a beam with an arbitrary
initial field distribution through a paraxial system which was a combination
of free-space, lens and plane grating with fixed line spacing. The problem
to be solved now, is how to account for third order aberrations in the frame
of the BPM code. In the case of a point source this problem has simple
solution. Propagation from point source for a distance r1 from the grating,
reflection from the grating, and subsequent propagation to the image plane
along a distance r2 from the grating becomes similar to propagation through
a plane grating with fixed line spacing, an ideal thin lens and an additional
transparency at the lens position, which changes the phase of the reflected
beam according to

δφ = k0C30z3 + k0C12zy2 = k0C30

(

x2

θd

)3

+ k0C12

(

x2

θd

)

y2
2 , (125)

where x2 and y2 are the coordinates of the wavefront immediately behind
the grating. Generally, in order to obtain the output field distribution at a
distance z away from the input in the paraxial approximation, we need to
convolve the input field distribution with the spatial impulse response

h(x − x′, y − y′, z) ∼ exp

[

−ik0

(x − x′)2 + (y − y′)2

2z

]

, (126)

and the above-described method to account for third order aberrations is not
applicable. The case with finite source size is more complicated, and should
be studied separately. However, in the far-zone approximation, which is our
case of practical interest, the ratio between source size and beam size in the
plane immediately in front of the grating is relatively small. Also, the image
size is much smaller than the beam size in the plane immediately behind
the grating. As a result, the algorithm described above is applicable. In this
way, third order aberrations can be included into our study.

Fig. 38 shows a plot of the resolving power derived from BPM code account-
ing for aberrations. Clearly, the performance is limited by aberrations only
at low photon energies close to 300 eV. Fig. 39 illustrates the influence of
aberrations on the lineshape at the photon energy of 300 eV. The profile is
highly asymmetric, owing to aberrations dominated by the primary coma.
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Fig. 40. Reflectivity of the post-grating optical components of the beamline. The
solid line shows the combined effect of the last two fixed-angle mirrors. The dashed
line represents the reflectivity of the rotation mirror M1.
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Fig. 41. First order efficiency for two different groove profiles. In both cases, the
groove density is 1100 lines/mm, Pt coating is assumed. The incidence angle is
1◦. Lamellar grating (rectangular): 11 nm groove depth, 50% duty cycle. Blazed
grating: 1, 2◦ blaze angle, 90◦ anti-blaze angle.

4.4 Beamline efficiency

It is important to calculate the expected total reflectivity of the monochroma-
tor beamline. The reflectivity of the mirrors was calculated using the code
CXRO [52]. Mirrors are assumed to be platinum-coated. The reflectivity of
post grating optical components are shown in Fig. 40 as a function of the
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Fig. 42. Overall efficiency of the monochromator beamline without exit slit as a
function of the photon energy. The grating and the three mirrors are platinum–
coated.

photon energy. The combining effect of two fixed angle mirrors cannot be
neglected. In the soft X-ray range, platinum has reflectivity of about 92%
at 0.86 degree grazing angle. The compound loss over two last reflections
is thus appreciable. The most significant single factor in the post grating
efficiency is, as expected, the low reflectivity of the rotating plane mirror
M1. This is because the first post-grating mirror operates at a relatively
large incident angle of about 2 degrees. The grating efficiency was calcu-
lated using the code GSolver 5.2 [53]. For comparison, Fig. 41 shows the first
order efficiency for two typically-used grating profiles, blazed and laminar.
Both gratings have a groove density of 1120 lines/mm, are considered to
operate at an incidence angle of 1◦, and have had their geometry optimized
for maximum efficiency in the first order. Gratings are also assumed to be
platinum-coated. The blazed grating was optimized by adjusting the blaze
angle and the laminar grating by adjusting the groove depth. A laminar
profile is widely used due to its good suppression of the second and higher
diffraction orders. A blazed profile is preferable from the point of view of ab-
solute efficiency. Since the necessity of high seed power at the entrance of the
second undulator and harmonic contributions are not an issue, the blazed
profile has been chosen. The total reflectivity of the beamline with blazed
grating is shown in Fig. 42. This reflectivity refers to the π-polarization com-
ponent. The beamline reflectivity for the σ-polarization component is not
significantly different.
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Fig. 43. Optical delay caused by the use of monochromator as a function of photon
energy.

4.5 Energy tuning and optical delay

Grating

Rotating mirror M1

0.182mm

1.921mm

Fig. 44. Principle of photon energy tuning. A plane scanning mirror, M1, is rotated
to maintain a fixed exit beam direction and focal spot at the exit slit. The mirror M1

and grating are schematically shown for two photon energies: 1 keV (solid) and 0.5
keV (dashed line).

In order to maintain a constant direction of the exit beam, a scanning post
grating mirror is placed in the diffracted beam, and rotated to direct the beam
towards the exit slit. Thus, with a fixed grating and exit slit one can maintain
a good focus over a wide photon energy range by simply translating and

64



Incident 

wavefront

Reflected 

wavefront

�

Δ� = 2�� sin �

�(�, �)

Fig. 45. Thin-shifter-like behavior of surface roughness for small mean square of
surface displacement, adapted from [54].

rotating a plane mirror to aim the diffracted light at the exit slit. Translating
the mirror during rotation scanning can be achieved by pivoting the mirror
at a point above the center of the mirror. During the energy tuning the beam
walks along the surface of M1, as shown in Fig. 44. The optical delay caused
by the use of the grating monochromator is about 0.7 ps and its energy-
dependence is shown in Fig. 43. The delay is not constant, but varies with
the energy due to the fact that X-rays reflect off the post-grating mirror M1
at different points, and take different optical paths as the energy is tuned.
The image on the slit plane is also found to vary by 1 µm in the dispersion
direction, amounting to a change of 1 µrad in the angle of incidence, which
is small compared to the divergence of the beam at the slit plane. As such,
the impact of this effect on the monochromator performance is negligible.

4.6 Effects of mirror surface errors

A very important issue is the preservation of the radiation wavefront from
the source to the entrance of the second undulator. Estimates of the re-
quirements on the mirror for grating monochromators are usually based
on ray-tracing codes for incoherent light sources. Since the XFEL beam will
be almost transform-limited, one needs to perform simulations of the effect
of the mirror imperfections by wavefront propagation codes. It is easy to
demonstrate that an error δh on the optical surface will perturb the wave-
front of a phase φ, according to

φ =
4πδh

λ
sinθi , (127)

where θi is the angle of incidence with respect to the surface. In the case of a
grating, the phase shift can be expressed in terms of incidence and diffracted
angles:

φ = 2π(sinθi + sinθd)
δh

λ
. (128)

65



0 2 4 6 8 10
-10

-5

0

5

10

he
ig

ht
 [n

m
]

length [cm]

10-5 10-4 10-3
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
S

D
 [

m
3 ]

Spatial frequency [1/ m]

Fig. 46. Distribution of residual height error and one-dimensional power spectral
density (1D PSD) for the mirrors. The upper graph shows the height error profile
for a 10 cm-long plane mirror M1. The lower graph is the 1D PSD corresponding
to the profile.

In practice,φ represents the deformation of the wavefront in the propagation
direction divided by the wavelength.

A reflection from the mirror becomes similar to the propagation through
a transparency at the mirror position, which just changes the phase of the
reflected beam without changing its amplitude, [54] (see Fig. 45). For the
shifter model to be applicable, the phase change must be small, i.e. |φ| << 1.
Optical elements were modeled as a phase shifters, and the problem of
simulating a monochromator was reduced to the proper description of the
phase shifters and of the propagation of the wavefront in vacuum between
the phase shifters. The main wavefront distortion at the slit position and at
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Fig. 47. Effect of surface roughness on the monochromator performance. Simula-
tions of the instrumental function at closed slit for different root-mean-square of
surface displacements are shown in the figure. Here ~ω = 1 keV.
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Fig. 48. Effect of surface roughness on the monochromator performance. Simula-
tions of the instrumental function without exit slit for different root-mean-square
of surface displacements. Here ~ω = 1 keV.

the entrance of the second undulator originates from the grating and the
plane mirror M1. Applying the Marechal criterion, i.e. requiring a Strehl
ratio larger than 0.8, and treating the errors from the different optics inde-
pendently, we obtain the following condition for the rms height error hrms

[55]:

2hrmsθi

√
N < λ/14 , (129)
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where θi is the grazing angle of incidence and N is the number of optical
elements. The most tight requirements corresponds to shortest wavelength.
The grating operates at a fixed incidence angle θi = 1 degree, and at 1 keV
photon energy, the diffraction angle is about 3.2 degrees. This corresponds
to an incidence angle (θi + θd)/2 = 2.2 degree for the mirror M1. From
Marechal criterion we conclude that a height error hrms = 1 nm should be
sufficient for diffraction-limited monochromatization at the photon energy
of 1 keV. This is a very tight requirement. State-of-the art manufacturing
achieves routinely rms values of 2 nm for 10 cm-long mirrors and one needs
to perform detailed simulations of the surface error effect for understanding
the requirements on the roughness.

The surface errors were generated from power spectral density (PSD) func-
tions described in mirrors specifications. The part of the PSD, which makes
the most significant contribution to the overall rms height error, is the low
spatial-frequency part. An example of profile and PSD of mirror surface
errors is shown in Fig. 46. Due to the very small incident angle, the beam
footprint is much larger in the tangential direction than in the sagittal direc-
tion. The lowest spatial frequency that contributes is in order of θi/w ∼ 1/cm
in the tangential direction. Here w is the beam size at the optical element. It
follows that the grating and the mirrors will disturb the wavefront mainly
in the tangential direction. Simulations were performed using a BPM code.
The surface figure can be directly mapped onto the optical field coordinate
system using the geometrical transformation described above. Examples of
the simulated focus at the exit slit for 1 nm, 2 nm and 4 nm rms quality
optics are presented in Fig. 47. Non Gaussian tails are seen on the sides of
the instrumental function. The influence of surface errors on the resolution
in the case when the slit is absent is shown in Fig. 48. An rms roughness of
order of 2 nm seems at present to be acceptable for the self-seeding setup.

4.7 Ray-tracing results

The optical system was simulated using the ray-tracing code SHADOW
[56] in order to evaluate the performance of the monochromator. The reason
for modeling the monochromator using ray-tracing is the need to check
the results found by wave optics calculations, especially minimization of
aberrations. The source has been modeled as a Gaussian-shaped beam and
with Gaussian divergence distribution as a function of wavelength, since
the XFEL source will be nearly transform-limited. We performed ray-tracing
simulations at three different photon energies, 1000.2 eV, 1000.0 eV and
999.8 eV. We assumed the rms value of 17.1 µm for the source size, and

68



Fig. 49. Results from ray tracing simulations at the plane of the exit slit for three
photon energies 999.8 eV, 1000.0 eV and 1000.2 eV, obtained from the ray-tracing
program SHADOW. The histograms show the number of rays as a function of x
and y coordinates. From the separation of the photon energies, a resolving power
of 5000 would be expected.

5.57 µrad for the beam divergence 4 . No figure errors (i.e. no slope errors)
were included. In this way, the FEL source has been propagated over grating
and exit slit, and then over the refocusing mirror. Ray-tracing results at
the plane of the exit slit for photons of 1000.2 eV, 1000.0 eV, and 999.8
eV (when the monochromator is tuned to 1000 eV) are shown in Fig.49.
The histograms show that in the dispersive (tangential) and non-dispersive
(sagittal) direction the distribution is almost Gaussian. As it can be seen
from the figure, the focusing properties of the monochromator at this photon
energy are excellent, and resolution is larger than 5000. The corresponding
ray-tracing results for 0.5 keV photons are shown in Fig. 50. The figure shows
that the same focusing quality is obtained also in this case. Actually, this is
the case for all photon energies in the range between 0.3 keV and 1 keV due
to the VLS toroidal grating parameters, minimizing defocusing and coma
aberrations. Fig. 51 and Fig. 52 display results of ray-tracing simulations at
the entrance of the second undulator.

4 We call the product of the rms divergence angle by the rms source size the
emittance ǫ of the photon beam, ǫ = σ′σ = λ/4π. For a two-dimensional distribution
the definition of the Gaussian beam emittance applies to each direction.
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Fig. 50. Results from ray tracing simulations at the plane of the exit slit for three
photon energies 499.9 eV, 500.0 eV and 500.1 eV, obtained from the ray-tracing
program SHADOW. The histograms show the number of rays as a function of x
and y coordinates. From the separation of the photon energies, a resolving power
of 5000 would be expected.

The location of the beam focus, shown in Fig. 53, was found to vary with
the energy around the slit. Fig. 53 also shows a comparison between results
found with ray tracing and wave optics calculations. Fig. 54 summarizes the
energy resolution obtained from the linear dispersion and the FWHM of the
spot size at the exit slit plane as a function of the photon energy. Comparing
to the optimal slit distance found by wave optics calculations, it is seen
that there is a very good agreement between coherent and incoherent mod-
els. However a complete, straightforward analysis of the full self-seeding
monochromator setup can be only be performed in terms of wave optics.

4.8 Heat load

X-ray optics can survive the high average power during one macropulse
from the European XFEL. The heat load can be evaluated by considering
the absorbed power on the grating. In table 2 we consider the case for an
electron beam with 0.1 nC charge. The power absorbed by the grating can
be evaluated by taking into account the parameters of the first undulator
source (see section 5 and Fig. 58) and the total reflectivity of the grating,
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Fig. 51. Results from ray tracing simulations at the entrance of the second undulator
for three photon energies 999.8 eV, 1000.0 eV and 1000.2 eV, obtained from the
ray-tracing program SHADOW. The histograms show the number of rays as a
function of x and y coordinates. From the separation of the photon energies, a
resolving power of 5000 would be expected.

Table 2
Heat load on the grating

Units

Photon energy keV 0.8

Incident power W 4.5

Absorbed power W 1.4

Footprint cm2 0.02

Power density W/mm2 0.7

Fig. 55. The results presented here refer to the case of an impinging pulse
train composed by 2700 FEL pulses of 0.001 mJ each, at the photon energy
of 800 eV. The power is averaged over the 0.6 ms of the pulse train, which is
the most extreme approximation. A similar power density, 0.6 W/mm2- 1.3
W/mm2 absorbed in the grating has been reported in previous studies for
the European XFEL [57].
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Fig. 52. Results from ray tracing simulations at the entrance of the second undulator
for three photon energies 499.9 eV, 500.0 eV and 500.1 eV obtained from the ray–
tracing program SHADOW. The histograms show the number of rays as a function
of x and y coordinates. From the separation of the photon energies, a resolving
power of 5000 would be expected.
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Fig. 53. Focusing at the slit position. Variation of the focus location as a function
photon energy.
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Fig. 54. Resolving power of the grating monochromator at closed slit, as a function
of the photon energy. Squares are calculated using wave optics and including
aberrations, and circles are calculated with ray-tracing code.
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Fig. 55. Total reflectivity of the grating as a function of photon energy.

4.9 Single shot damage

While the average absorbed power on the grating power is still moderate,
the peak power within the single pulse from the first SASE undulator will be
in the range of a fraction of GW. At these power levels, the main issue may
be no longer related with thermal distortion, but rather with the possibility
of ablation of the grating surface, which would result in permanent damage.
Ablation depends on the radiation dose per pulse, which can be quantified
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Table 3
Parameters for the mode of operation at the European XFEL used in this paper.

Units

Undulator period mm 68

Periods per cell - 73

Total number of cells - 21

Intersection length m 1.1

Energy GeV 10.5

Charge nC 0.1

as the energy absorbed in the volume defined by the projected beam area
on the optical element and by one attenuation length, which is the depth
into the material, measured along the surface normal, where the radiation
intensity falls to 2, 72 times of its value at the surface. Normalized to one
atom this energy corresponds to the atomic dose near the surface [58]

D =
Epulse(1 − R)θi

2πσ2lattnA
, (130)

where Epulse is the energy in one radiation pulse, R is the reflectivity, latt is the
attenuation length, σ is the rms of the Gaussian beam intensity distribution
immediately in front of the grating, and nA denotes the element-specific
density of atoms. For Pt coating we find nA ∼ 6.4 · 1022 cm−3, R ∼ 0.7, latt ∼ 2
nm 5 , σ ∼ 0.05 mm, and Epulse ∼ 0.001 mJ. The calculated dose reaches up
to 15 meV/atom. This is about 30 times below the melting threshold for Pt
[13]. The grating is therefore safe from damage.

5 FEL simulations

With reference to Fig. 1, we performed a feasibility study with the help of
the FEL code Genesis 1.3 [37] running on a parallel machine. We will present
a feasibility study for the SASE3 FEL line of the European XFEL, based on
a statistical analysis consisting of 100 runs. The overall beam parameters
used in the simulations are presented in Table 3.

The expected beam parameters at the entrance of the SASE3 undulator,
and the resistive wake inside the undulator are shown in Fig. 56, [27]. The

5 at 2 degrees grazing incidence. We also assume that the incident angle is 1 degree,
and that the blaze angle is about 1 degree too.
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Fig. 56. Results from electron beam start-to-end simulations at the entrance of
SASE3. (First Row, Left) Current profile. (First Row, Right) Normalized emittance
as a function of the position inside the electron beam. (Second Row, Left) Energy
profile along the beam. (Second Row, Right) Electron beam energy spread profile.
(Bottom row) Resistive wakefields in the SASE3 undulator.

evolution of the transverse electron bunch dimensions are plotted in Fig. 57.

The SASE pulse power and spectrum after the first undulator is shown in
Fig. 58. This pulse goes through the grating monochromator. The monochro-
mator lineshape is presented in Fig. 10. At the exit of the monochromator,
one obtains the seed pulse, Fig. 59. As explained before, the monochromator
introduces only a short optical delay of about 0.7 ps, which can be easily
compensated by the electron chicane. The chicane also washes out the elec-
tron beam microbunching. As a result, at the entrance of the second (output)
undulator the electron beam and the radiation pulse can be recombined.
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Fig. 57. Evolution of the horizontal and vertical dimensions of the electron bunch
as a function of the distance inside the SASE3 undulator. The plots refer to the
longitudinal position inside the bunch corresponding to the maximum current
vale.

Fig. 58. Power distribution and spectrum of the X-ray radiation pulse after the first
undulator. Grey lines refer to single shot realizations, the black line refers to the
average over a hundred realizations.

If the output undulator is not tapered, one needs 7 sections to reach satu-
ration. The best compromise between power and spectral bandwidth are
reached after 6 sections, Fig. 60. In this case, the evolution of the energy per
pulse and of the energy fluctuations as a function of the undulator length
are shown in Fig. 61. The pulse now reaches the 100 GW power level, with
an average relative FWHM spectral width narrower than 10−3. Finally, the
transverse radiation distribution and divergence at the exit of the output
undulator are shown in Fig. 62.

The most promising way to increase the output power is via post-saturation
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Fig. 59. Power distribution and spectrum of the X-ray radiation pulse after the
monochromator. This pulse is used to seed the electron bunch at the entrance of the
output undulator. Grey lines refer to single shot realizations, the black line refers
to the average over a hundred realizations.

Fig. 60. Power distribution and spectrum of the X-ray radiation pulse after the
second undulator in the untapered case. Grey lines refer to single shot realizations,
the black line refers to the average over a hundred realizations.

tapering. Tapering consists in a slow reduction of the field strength of the
undulator in order to preserve the resonance wavelength, while the kinetic
energy of the electrons decreases due to the FEL process. The undulator
taper could be simply implemented as a step taper from one undulator
segment to the next, as shown in Fig. 63. The magnetic field tapering is
provided by changing the undulator gap. A further increase in power is
achievable by starting the FEL process from the monochromatic seed, rather
than from noise. The reason is the higher degree of coherence of the radiation
in the seed case, thus involving, with tapering, a larger portion of the bunch
in the energy-wavelength synchronism. Using the tapering configuration
in Fig. 63, one obtains the output characteristics, in terms of power and
spectrum, shown in Fig. 64. The output power is increased of about a factor
ten, allowing one to reach about one TW. The spectral width remains almost
unvaried, with an average relative bandwidth (FWHM) narrower than 10−3.
The evolution of the energy per pulse and of the energy fluctuations as
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Fig. 61. Evolution of the energy per pulse and of the energy fluctuations as a
function of the undulator length in the untapered case. Grey lines refer to single
shot realizations, the black line refers to the average over a hundred realizations.
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Fig. 62. (Left plot) Transverse radiation distribution in the untapered case at the
exit of the output undulator. (Right plot) Directivity diagram of the radiation dis-
tribution in the case of tapering at the exit of the output undulator.

a function of the undulator length are shown in Fig. 61. The transverse
radiation distribution and divergence at the exit of the output undulator are
shown in Fig. 66. By comparison with Fig. 62 one can see that the divergence
decrease is accompanied by an increase in the transverse size of the radiation
spot at the exit of the undulator.

Finally, it is interesting to compare the results for the self-seeded beam with
the characteristics of the SASE pulse at SASE3 generated with the same elec-
tron beam. The output SASE characteristics at saturation, in terms of power
and spectrum, shown in Fig. 67. The evolution of the energy in the SASE
pulse and of the energy fluctuations as a function of the undulator length
are shown in Fig. 68. The transverse radiation distribution and divergence
at saturation are shown in Fig. 69.
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Fig. 63. Taper configuration for high-power mode of operation at 1.5 nm.

Fig. 64. Power distribution and spectrum of the X-ray radiation pulse after the
second undulator in the tapered case. Grey lines refer to single shot realizations,
the black line refers to the average over a hundred realizations.
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Fig. 65. Evolution of the energy per pulse and of the energy fluctuations as a
function of the undulator length in the tapered case. Grey lines refer to single shot
realizations, the black line refers to the average over a hundred realizations.
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Fig. 66. (Left plot) Transverse radiation distribution in the case of tapering at the
exit of the output undulator. (Right plot) Directivity diagram of the radiation dis-
tribution in the case of tapering at the exit of the output undulator.

Fig. 67. Power distribution and spectrum of the baseline SASE X-ray radiation pulse
at saturation. Grey lines refer to single shot realizations, the black line refers to the
average over a hundred realizations.

6 Conclusions

Historically, self-seeding methods were first proposed for the soft X-ray
region, and were based on the use of grating monochromators [1], [4]. How-
ever, self-seeding techniques were first successfuly demonstrated in the hard
X-ray region at the LCLS [11], based on the use of a crystal monochromator.
The working principle for such monochromator was invented in [8], and
resulted into a very compact self-seeding setup design fitting within a sin-
gle undulator module. During the last three years, significant efforts were
dedicated to both theoretical investigation and R&D at the LCLS, leading to
the design of a compact self-seeding setup in the soft X-ray range, based on
a grating monochromator. The evolution of the design can be reconstructed
from [12]-[14], striving at the same time for the needed resolution and com-
pactness. The development of a self-seeding grating monochromator with
the same compactness of a single-crystal monochromator is a challenging
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Fig. 68. Evolution of the energy per pulse and of the energy fluctuations as a
function of the undulator length in the case of the baseline SASE pulse. Grey lines
refer to single shot realizations, the black line refers to the average over a hundred
realizations.
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Fig. 69. (Left plot) Transverse radiation distribution in the case of the baseline SASE
pulse at saturation. (Right plot) Directivity diagram of the radiation distribution in
the case of the baseline SASE pulse at saturation.

problem. However, the final design of the LCLS soft X-ray self-seeding
setup has many advantages. It is very compact and fits within one undula-
tor module. It is very simple and includes only four optical elements. It does
not include an entrance slit and during discussions, authors of [14] pointed
that this design might be operated even without exit slit by using the elec-
tron beam and the spatial dispersion at the second undulator entrance for
spectral filtering purpose.

In this article we present a technical study for a soft x-ray self-seeding setup
at the European XFEL. In particular we focus on design and performance
of a very compact self-seeding grating monochromator, based on the LCLS
design, which has been adapted to the needs of the European XFEL. Usu-
ally, soft X-ray monochromators operate with incoherent sources and their
design is based on the use of ray-tracing codes. However, XFEL beams are
almost completely transversely coherent, and in our case the optical system
was studied using a wave optics method in combination with FEL simu-
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lations to evaluate the performance of the self-seeding scheme. Our wave
optics analysis takes into account the actual FEL beam wavefront, third or-
der aberrations and surface errors from each optical elements. Wave optics
together with FEL simulations are naturally applicable to the study the in-
fluence of finite slit size on the seeding efficiency. Most results presented in
[14] were obtained in the framework of a Gaussian beam model, in combi-
nation with ray-tracing for Gaussian ray distribution. This is a very fruit-
ful approach, allowing one for studying many features of the self-seeding
monochromator by means of relatively simple tools. Using our approach,
we give a quantitative answer to the question of the accuracy of the Gaus-
sian beam model. It is also important to quantitatively analyze the filtering
process without exit slit. Wave optics in combination with FEL simulations
is the only method available to this aim. We conclude that the mode of
operation without slit is superior to the conventional mode of operation,
and a finite slit size would only lead to a reduction of the monochromator
performance. We therefore propose an optimized design based on a toroidal
VLS grating and three mirrors, without exit slit. The monochromator covers
the range between 300 eV and 1000 eV, with a resolution never falling below
7000, and introduces a photon delay of only 0.7 ps. This allows the entire self-
seeding setup to be fit into a single 5 m-long undulator segment. The overall
performance of the setup is studied with the help of FEL simulations, which
show that, in combination with post-saturation tapering, the SASE3 base-
line at the European XFEL could deliver TW-class, nearly Fourier-limited
radiation pulses in the soft X-ray range. Although we explicitly studied the
a soft x-ray self-seeding setup for the SASE3 undulator baseline at the Euro-
pean XFEL, the same setup can be used without modifications also for the
dedicated bio-imaging beamline, a concept that was proposed in [28]-[29]
as a possible future upgrade of the European XFEL. By exploiting third har-
monic generation and fresh bunch technique together with the self-seeding
mode of operation [59]-[61] one can extend the operation of the soft x-ray
self-seeding setup to the range between 1 keV up to 3 keV, thus covering
the sulfur K-edge without changes in the grating monochromator design
[29]. The X-ray beam will thus be delivered in ultrashort pulses with 1 TW
peak power within the extended photon energy range between 0.3 keV up
to 3 keV. For operation at higher photon energies x-ray self-seeding setups
based on single crystal monochromators can be used.
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