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We consider the calculation of electromagnetic fields generated by a point charge passing through an
anisotropic vacuum chamber of round or rectangular cross section with translational symmetry in the beam
direction. The anisotropy causes a frequency shift and can have a significant effect on modal coupling. It
must be accounted for in the design and analysis of accelerating structures. In this paper, field matching and
finite-difference techniques for the anisotropic waveguides are developed. Additionally a method that
mixes the field matching and the finite-differences is described. The numerical algorithms are implemented
in a computer code and cross-checked on several examples. The impact of the anisotropy along different
coordinate axes on the resonance frequency shifts is computed and analyzed.

DOI: 10.1103/PhysRevAccelBeams.21.064601

I. INTRODUCTION

Dielectric lined waveguides are under extensive study as
accelerating structures excited by charged beams [1]. Quartz
and cordierite structures have been beam tested, and accel-
erating gradient exceeding 100 MV/m has been demon-
strated [2]. Several materials used for accelerating structures
(sapphire, ceramic films, etc) possess significant anisotropic
properties. It is shown, for example, in [3] that the dielectric
anisotropy causes a frequency shift in comparison to dielec-
tric-lined waveguides with isotropic dielectric loadings.

The anisotropic dielectrics may be incorporated
either intentionally or unintentionally (processing-induced
anisotropy) [4]. Dielectric permittivity and conductivity
depend on the direction of wave propagation and polari-
zation in many materials. The anisotropy can have a
significant effect on modal coupling and must be accounted
for in the design and analysis of such structures.

There are many papers which describe impedance calcu-
lations of steady-state impedance for isotropic round and flat
layered chambers [5—9] with translational symmetry in the
beam direction. The rectangular case with one isotropic layer
was studied in [10-12].The solutions for isotropic structures
are obtained in analytical form or a field-matching approach
can be used to reduce the problem to a simple matrix
equation. In this paper we consider anisotropic transversally
nonhomogeneous round and rectangular chambers where the
field-matching technique does not work.

We start in Sec. II from formulation of the problem. Then
we review the general form of the impedance for round and
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rectangular waveguides in the nonrelativistic case. For a
special case of uniaxial anisotropy in the beam direction the
same field matching approach as for the isotropic case [5]
can be used. We consider shortly the required modifications
in Sec. III. For transversally nonhomogeneous materials the
structure can be approximated by many layers. However
such approach could be computationally expensive as it
requires calculation of modified Bessel or exponential
functions (of complex argument) for each layer.

A fully anisotropic case is treated in Sec. IV. The field-
matching technique does not work in this case. We consider
several possible analytical formulations and choose one with
non-singular differential equations. For this choice we
describe a simple finite-difference scheme. With a proper
permutation of mesh indexes we reduce a sparse matrix with
7 bands to a pentadiagonal one. It allows a fast algorithm of
complexity O(N) (N-number of mesh steps) for calculation
of impedances for non-homogeneous anisotropic materials.
Open boundary conditions are formulated for the case when
the last layer has an uniaxial anisotropy in the beam direction.

The finite difference method allows treating of full
anisotropy but could be time-consuming. For the case
when the anisotropic layers are thin we suggest in Sec. V a
combination of the field matching and the finite-difference
approaches.

Finally in Sec. VI the described methods are cross-
checked on several numerical examples. The algorithms are
implemented in numerical code ECHO [13,14].

II. PROBLEM FORMULATION

We consider a point-charge ¢ moving with constant
velocity v through a structure with round or rectangular
cross section. In the following we call the structure “round” if
it is axially symmetric. If the structure has a constant width
between two perfectly conducting planes and has rectangular
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FIG. 1. Transverse to z-axis cross-sections of “round” and
“rectangular” geometries. The point charge position is shown by
red circle.

cross-sections then we call such structure “rectangular.”
Figure 1 shows the transverse to z-axis cross sections of
round and rectangular structures. In the following we
consider only anisotropic materials with diagonal material
permittivity and permeability tensors, where the optical axes
coincide with coordinate ones. Hence their diagonals are
given by complex vectors €, j.

We assume that the charge is moving along a straight line
parallel to the longitudinal axis of the system, and we
neglect the influence of the wakefields on the charge
motion. In the frequency domain all fields will have the
time dependence e’ (w is the angular frequency) which
we will omit in the subsequent equations.

For round structures we will use cylindrical coordinates
r, @, z. The charge density in the frequency domain can be
expanded in Fourier series

p(r. .2 k) = e PN " p,(r) cos[m(p — @),
m=0
qé(r - Fo) (1)
mvrg(1 + 8,0)

where r,, ¢, are coordinates of the point charge g,
k=w/c, p=wv/c, cis velocity of light in vacuum, and
0,0 = 1 if m =1, 0 otherwise.

From the linearity of Maxwell’s equations the compo-
nents of the electromagnetic field can be represented by
infinite sums:

Pum(r) =

H,(r.¢.z.k) w [ Hom(r k)
E(r.g.2.k) | =P E, (k) | cos(m),
E.(r,p,z,k) =0\ E,,.(r.k)
E,(r,¢,z,k) w [ Egm(rik)
H,.(r,p,z,k) :e‘ikz//’z H,,,(r.k) | sin(me).
H,(r,¢,z.k) “\ H_,,(r k)

(2)

The electric displacement D and the magnetic induction B
are defined using complex permittivity and permeability
diagonal tensors

e (r k) 0 0
D= 0 €,(r. k) 0 E,
0 0 e (r k)
u.(r,k) 0 0
B = 0 Hy(r. k) 0 H.
0 0 u.(r k)

We do not have to assume any particular frequency
dependence. In order to include conductivity and other
losses in our code ECHOID we use the following expres-
sions (here we consider as example the r-component):

K, (r)

e (r k) = et + i+ i T
uo(ro k) = i (n)[1 + i85 (1),
w = kc,

where €. is the real part of the complex permettivity, z). is
the real part of the complex permeability, and the loss can
be introduced with the help of dielectric loss tangent o,
magnetic loss tangent & or/and with AC conductivity
following the Drude model [15], where x, is the DC
conductivity of the material and 7, its relaxation time.
We use similar expressions for ¢- and z-components of the
permittivity and the permeability tensors.

It is a direct consequence of Maxwell’s equations applied
to fields’ decomposition in Eq. (2), that for each mode
number m we can write an independent system of equations

m k .
—H_, + IBHW” =iwe,E,,,
r
k 0
_lﬁHr’m_E = iwe,E, .,
10 m
rar (rH(p m) _7Hr.m - lwezEzm + VP,
__Ezm+lﬁ (pm:_iwﬂrHr.mv
k 0 .
- lﬁEr.m - EEz,m = _lwﬂ(pH(/),m9
d m .
;8—<VE ) +7Er,m = _lw:quz,m’
10 .
_a_ (rHr m,ur) (pmﬂq; lkHz,m,uz =0,
10 m .
;8—( m€r) + 7E,/,_m€(/, — ikE_ €, = pp. (3)

We have reduced the initial three-dimensional problem to
an infinite set of independent one-dimensional problems,
Eq. (3), for the Fourier components of the field.

In rectangular case we choose a coordinate system with y
in the vertical and x in the horizontal directions; the z
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coordinate is directed along the beam direction. The structures considered in this paper have constant width 2w in x-direction
between two perfectly conducting side walls.
The charge density can be expanded in Fourier series

eik/P & _m ~q5(y — yo)

pm(y) Sin(kx.mXO) Sin(kx,mx)’ kx,m — A Pm (y) -

p(x,y,z,k) = o .

m=1

where x(, y, are coordinates of the point charge. Again it follows from the linearity of Maxwell’s equations that the
components of electromagnetic field can be represented by infinite sums:

H (x,y.2.k) kel o Hy (v, k)

Eeyeh) | =SS B0k | sin(hy),
E (x,y,2,k) "\ (v, k)
E.(x,y,7,k) kel o E m(y. k)
Hy(x.y.z,k) | = ” Z H, (v, k) | cos(k,,,x).
H.(x,y,z,k) =l H_,(y. k)

For each mode number m we can write an independent system of equations

k k 0 . 0 .
—kywH, m + Z,EH = iwe,E, ,, ﬁH - B_yHZ‘m = iweE, ,,. 8—yH”" + ket = iwe E, + vpy,,
k _ k 6 ) 0 .
kx.mEz,m + lﬁEx,m = _la)ﬂyHy,mﬁ ﬂ Ey m a _lw:“xHx,m’ 87)7 ( X, m) kx mEy m = _lw:quz.mv
5} , 0 :
a_y (Hy.mﬂy) + kx.me.mﬂx - lkHz,m,uz =0, a_y (Ey,mey) - kx,mEx,mex - lkEz,mez =Pm- (4)

We are interested in coupling impedances as defined in [5,16]. For round pipe the coupling impedance can be written as

kr kr
ZH(”O’CDO,”’(P’kvV) ZZ k 7 < ﬂ0> <7ﬂ> COS(m(q)—(po))+Zsc(r0,(p0,r,ga,k,)/),

kZ. ky/r5 4+ 12 = 2rorcos(p — @
Zoelro- o r. 4. koy) = _27r(}’20— 1) 0( = 7,50 : o ’ (5)

where 1,,, K, are modified Bessel functions of complex argument, y is the relative relativistic energy and we have written
explicitly the space charge contribution Z,.. Functions Z,,(k,y) are modal impedances to be found.
For a rectangular pipe the impedance reads

1 [ee]
Z (%0, yo, X, y, k) *Z (Yo, ¥ k. 7) sin(ky Xo) sin(kywX) + Zse (X0, Y0, X, ¥, k. 7),
m=1

kZ, ky/(x = %) + (v = y0)
Zz ) s Ay 7k’ - - K ) 6
se (X0, Y0, X, y. k. 7) 2277 — 1) 0( VB (6)

%

where the modal impedances read
Z(yo. v, k.y) = [Z35 (k. y) cosh(k, ,,y0) + Z3; (k. y) sinh(k, ,,y0)] cosh(k, ,,y)
+ 25 (k.y) cosh(ky . y0) + Z;; (k) sinh(ky ,, o)] sinh(k, ,,y).

2 K
kym =4t kim +—5=-
Y, > },2 ,BZ
In Egs. (5), (6) the infinite sum defines a so-called wall impedance. The longitudinal and the transverse wall impedances
are connected by the Panofsky-Wentzel theorem (see [5] for a detailed discussion).
The wake field effect in time domain is described by a longitudinal wake function which can be obtained by the Fourier
transform of the longitudinal impedance
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c

WH(S) = T[m Z\\(k)éiks/ﬁdk,

T

where s is the distance between the source and the test
particles [16].

III. FIELD MATCHING FOR
UNIAXTAL ANISOTROPY

In the general anisotropic case from system of first-order
Eq. (2) we obtain the second-order coupled equations for
z-components of the electric and the magnetic fields:

10 re 0O

ror z/%(p or ¢

e Lo,

rv |0rvd, vg,0r

iqd(r—ro)

10 ru, 0 m?u
—— I H,,,— | 552 H,
rorvg, or " <r21/2 TH ) e

_m [EL_LQ]EM _o

v|0rid. 12 Or

B, = K - ot
Vi, = kK2 —wtelul. (7)

The field matching technique for round and flat isotropic
pipes was considered, for example, in [5-9,12]. For the
case of uniaxial anisotropy along z-axis we use the same
technique, which we describe shortly in this section.

We consider the uniaxial anisotropy when the permit-
tivity and the permeability tensors are diagonal and for their
elements the following relations hold

pr(r) = py (7).

Inside of each layer where the complex permeability and
permittivity are constants (independent from r) Eq. (7)
reduce to the decoupled equations

- — aN = =
Ev Un Ny Hn
aN_l e
= ——
g1 €2, 1
“2. b2 a, ==
€1, M1 ao E
€0, Uo €0, Ho

Qo @y -+ AN-1ON 4 2w X

FIG. 2. Examples of “round” and “rectangular” layered geometry.

iqd(r — ro)v;

2
m €
o <r2 " r€r> o 72'}’0(1 +5m0>w€r

19 0 :
__r_er,m - (m_z—i_D%%)Hzm =0,

r

— WP, (8)

A general solution of homogeneous hyperbolic Eq. (8) can
be written in form

Ez,m(r) = C’Inlm Uir) + C'I?Km(yir>’
Hz,m(r) = Dmlm(l/ﬂr) +D?Km(y¢r)’

V= \/ez/e
Vi = vV ©)

where /,,, K,, are modified Bessel functions of complex
argument.

In the following we will numerate the layers by index j
and r = a; defines interface between the layers with
numbers j and j+ 1 (see Fig. 2). In order to find the
constants Cy/, Cy/, D"/, D%/ in Eq. (9) we can use 4

conditions at the interfaces between the layers:

ELn(a)) = ELi (ap),
H(a;) = HL (a)),
elElm(a;) = el ELL (a;),
plH] (@) = i B (a)), (10)

where the radial field components are defined through the
longitudinal ones as

; 10 mcp
E{‘m - __E{n7 “H m |
m(r) (ﬁar r © )

; ik (10 mce,
H oy (r )__2<,B5‘ H{ﬂZ+TEz,m>' (11)

From Egs. (9)—(11) at each interface r = a; we obtain the
relations

(Cm J+1 Cm J+1 Dm J+1 Dm J+1)T
= M;(C}. g/ D D)

where M is a complex matrix of order 4. We do not write
the explicit form of the elements of the matrix M;. They
can be written as a combination of modified Bessel
functions and the expressions are similar to those obtained
in [5] for an isotropic case.

The matrix connecting the coefficients from vacuum
layer to the coefficients of the last layer can be found as a
matrix product
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M = My_ My_,...M;M,.

From the boundary condition at the axis we have
D',’;’O = 0. If the last layer, j = N, is infinitely thick with
finite conductivity then we have open boundary condition.
The field should not diverge at infinity, giving
cwN = 0,D7N =0, and we are looking for the solution
of the followmg simple system

My My; 0 0 crljcg? M,
My My -1 0 D/ Cy® | M2
M3 Mz 00 ol jemd | M
My My 00 -1 DZ’N/C%’O My,
(12)

After numerically solving of Eq. (12) the modal longi-
tudinal impedance in Eq. (5) can be found as

ikz, 0
2”(},2 _ 1) Cz.O :

Zm(k’ 7/) ==

If the last layer, j = N, is closed with perfectly electric
conducting (PEC) material at r = ay, then we use a
modified matrix

M — M]??FMN_]MN_ZH.MIM(),

where M{?" is a matrix converting the field coefficients in
the field components H,, H, P and their derivatives:

Hr.m(aN) C;n’N

H(p.m(aN) B MCZF C;?’N

9 H - N m,N
or [ (/),mr] |r:aN DI

% [lurHr.m r] |r=aN DII?'N

Again we do not write the explicit form of the elements of
the matrix M$?F". They can be written as a combination of
modified Bessel functions and the expressions can be
obtained from Egs. (3), (9) in any computer program
supporting symbolic calculations.

The boundary conditions for perfectly conducting material
at ay can be written as H, ,(ay) = 0, 2- [Hym]l—ay = 0.
Hence in order to find the impedance we again use
Eq. (12) where the right-hand side has the same form but
the vector of unknowns is different: (CJ"°/C%°, D0/
Cx* Hoyp(an)/CR° 5 e H )] a0 / CR )T

For rectangular geometries we follow the same approach.
The field in the homogeneous uniaxially anisotropic layer
can be presented as sum of complex exponents

Ez‘m(r) Cm k) my + Cm »my
Hz’m<r) Dm k}xm\ +Dm wny

e __ 2 2 €;
ky,m - kxm + l/y o
V €y

Ko =[R2+ 1352,
Hy

2 _ 12p-2 2,2
vy = k°p weyﬂ).

In the following we consider only the case where the
rectangular structure is symmetric in the y-direction (up-
bottom symmetry). In this case Eq. (6) has a simpler form

Z,(y0,y.k.y) = Zy (k,y) cosh(ky o) cosh(k, ,,y)

+ Z); (k,y) sinh(k, ,,,yo) sinh(k, ,,,y).

The item Z5¢ (k,y) can be found from the solution of the
problem in the half of the domain with magnetic boundary
condition at the symmetry plane H, (0) = 0. If the last
layer, j = N, is infinitely thick with finite conductivity then
we have open boundary condition. The field should not
diverge at infinity and it results in C"" =0, D" = 0.
Hence we are looking for the solution of the following
system

My +My Mi3—My 0 0O
My +My Myz—Myy —1 0
M3 +M3z, My3—Mzy 0 0

My +My Myz—Myy, 0 —1 DT’N/ Cr_n,o_czz,o
—M,
-M

_ 22 (13)
—M3,
_M42

After numerical solution of Eq. (13) the item Z5¢ (k, y) can
be found as

2ikZ, cmo
Z5(k,y) = — Y
a(y* = DAY, (€m0 — C'10)
k2
k) m — k)zc mt =55
ys > yZﬁZ

The item Zj(k,y) can be found from the solution of
another problem in the half of the domain with electric
boundary condition at the symmetry plane E_,,(0) = 0. We
are looking for the solution of the following system
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crlj(cmo+ i)
Droj(Ccro+crt)
cm N/(Cm,0+cm,0)
DN /(CrO+CLY)

My-Mp Miz3+My, 00
My =My My+Myy —1 0
M3 —M3 M33+M34 0 0
My —My Myz+Myy 0 -1
—M
_| M (14)
—M3,
—My

After numerical solution of Eq. (14) the item Z3$ (k, y) can
be found as

2ikZ, crl

z5(ky) = - .
e (e ey

If the last layer, j = N, is closed with perfectly con-
ducting material at y = a, then we use a modified matrix in
the same way as described above for the round geometry.
We will not consider here a rectangular structure without
symmetry. In general, matrix M is a composition of
matrices for all layers. It can be found and treated in the
same way as described in [5] for an isotropic case.

IV. FINITE-DIFFERENCE METHOD
FOR FULL ANISOTROPY

In this section we describe a finite-difference method to
treat the round and the rectangular structures with arbitrary
anisotropic materials. We start with the round case. At the
beginning we have to decide which equations to use. The
system (3) contains 8 first-order equations for 6 unknown
field components. It can be reduced to only 2 second-order
equations. For example we can use Eq. (7) for longitudinal
components of electric and magnetic fields. However for
relativistic beam in vacuum these equations degenerate: the
coefficients in highest derivatives go to infinity. We would
like to have a pair of equations which are nonsingular and
give the field components even in a perfectly conducting
vacuum pipe. The relativistic charge in the limit v = ¢ in
perfectly conducting pipe does not have the longitudinal
field components. Hence the equations should be ones for
the transverse field components. A possible choice could be
to write equations for the radial components of electric and
magnetic fields. However for higher order modes, m > 0,
these equations have singular coefficients as well.

We suggest to solve the well-posed problem for trans-
verse components of magnetic field only,

910, g
E;zar[ o]+ by(r)H ’”mr]+r 6,M18r[’u’ ]
0 m
_E <r2€Z/4r [/’err,mr]) = —b,p(r)[Hg,’mr], (15)

d 1 d
b H
ar r/,tz ar [ﬂr r.m ] + r(r) [l'lr r,mr]
me, 0 0 (my,
—|H? - H:
+ 7‘26 ar[ (ﬂ»mr] ar r2ﬂz[ (p.mr]
o (my,
HO
o ().
o’p K m*u
b(ﬂ(r) = ¢ - 2 - 3 £ ’
r re. o rle,
w’e k> m2e
b,(r) = ¢ _ 5~ 3 r. (16)
oot e,

In order to remove the discontinuity of the azimuthal
component in the charge location r, we present the
azimuthal component of the magnetic field in the form

H(p,m :Hzam+Hgm7 gam (1 +5m0)
O(r—ry)
HO =210
¢ 2rr

where 6(r) is Heaviside function and H{ presents a
monopole harmonic of the self field of relativistic charge
in free space. Let us note that Hj, ,, has the meaning of the
scattered field only for the lowest monopole mode, m = 0,
and the relativistic charge. Another choice could be to take
Hg,m as a true m-harmonic of the self-field but this
introduces additional terms into the right-hand side of
Egs. (15), (16) without any clear improvement of the
accuracy of the numerical solution.

We introduce one dimensional mesh with shifted
positions of the transverse magnetic filed components as
shown in Fig. 3. The mesh in material is not equidistant
in general. It is chosen to sample the wave length in the
material properly and depends on the wave number
k = w/c. We use the standard second order approximations
of the derivatives [17] and the finite-difference scheme
reads

€0, Ko

é)1 (T), ﬁl (T)

h(p,O hr,0.5 h(p,l hr,l.S h(P,Z hr,2.5 hlp,N hr,N+0.5
® 1 1 1 1 1 1 S
T T T T T T >

0 Tos 1 Tis T2 Ty

TN+0.5 r

FIG. 3. One dimensional mesh and positions of the transverse
magnetic field components.
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1

h(ﬂ,i+l - h(/),i h(p,i - h(p,i—l
rit05 —Ti-05

—a,(ri_os)
Fig1 — T 7 ri—ri—

{%(rwo.s) ] + b, (ri)hy.

hyivos—hico. d (”i o.s)hr,i 05—d, (ri—o.s)hni—o.s
) Li40.5 =05 Yo\Tliy + @ :f(p(ri)’

+c,(r;
rit05 —Ti-05 Tit05 —Ti-05
1 hyivos = hyicos hyi—os = hyizis
[<>— S _ g (1, y) 208 TR | g s
ri—rig rivos5 —Ti-05 ri—0s5 —Ti-15
h,:—h,;,y d.(r)h,;—d. (ri_)h,;_
+erlrivgs) B - - ‘”’;._;,(1’ et p () (17)
1 11— 1 11—

where we have introduced the discrete field components &, ; = H;, ,,(r;)r;. hyivos = e (Fivos)Hym(Fivo5)Tivcos and the
following notation

1 m

a,(rivos) = m cy(ri) = m’
d(p(ri+0.5) = rl‘2+0.5€z(ri+’(/:l5)/"r(riJrO.S)’ f{p(ri) = _br(ri)[ng.rn(ri>ri]
1
ar(ri) = Villz('”i)’ ¢r(ricos) = rzZ—O.Sg(ﬂ(ri—’ZS)ez(ri—O.S)’
d,(r;) = r?ﬂ(p(rﬁﬂz(ri)’ Fi(ricos) = dr(ri)[Hg.m(ri)ri]r_iilrf.:’_il—l)[Hg,m(ri—l)ri—l]'

At the axis of axially symmetric geometry we have magnetic boundary condition

0
[Hl/i.rr”r:O =0, E [/‘rHr.rnr”r:O =0,

and the equations for i = 1 can be written in the form

1 hyo—=hya hya hyis—h.os d,(ris)h.s—d,(ros)h.os
§ d ) b h rl. r05 _ Yp\"l . p\10. 05 _ ’
Fs—Tos aqz(”l.s)irz_rl %(”0.5)71 + by (r1)hy1 +c,(r1) s —Fos s —Fos fo(r1)
1 hr . _hr . h Nl dr(rl)h L1
. {ar(’”l)i’]s 22 +b,(ros)h, o5+ ¢ (ros) 2= ———"==f,(ros).
1 rs—Tros r r

If the exterior boundary is perfectly conducting at ry, o5 = b then we have electric boundary condition for the magnetic
field

0
[JurHr,mr”r:b =0, E[H(p,mr”r:h =0,

and the equations for i = N can be written in form (17) with &, v, = hy, y, h, y405 = 0. Hence we have to solve a linear
system

Mh :fv h = (h(p,l’ h‘(/}.Z’ (AR} h‘(p.N’ hr,().S’ hr,l.Sv LERE) hr,NJrOAS)t? (18)

where the matrix M has dimensions 2N x 2N and the seven band structure shown in Fig. 4 on the left side.
In order to use a direct method of solution of linear system (18) we introduce the permutation matrix P, defined by

permutation of indices

2N +1-4, ieven,
{ (19

N+1-5L iodd

0; =
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FIG. 4. Reduction of seven band matrix to pentadiagonal form.

It converts the sparse seven band matrix M in pentadiag-
onal form P,MP. shown in Fig. 4 on the right side. The
new system allows for a direct solution with complexity
O(N) [18], meaning that the solution time is proportional to
the number of mesh points.

If the last layer is infinitely thick then we need an
open boundary condition to truncate the matrix at r = b. If

the last material has only uniaxial anisotropy like one
considered in Sec. III then we can easily write such a
condition. Indeed from the definition of the modified
Bessel functions of the second type, the open
boundary condition in the round geometry reads [see
Eq. (9)]

0 K¢ (ir
EEz,m'f' rmEz,m =0, K3, = |:m+ryr I;n r :|
vir
EHZ,m +THZm = 0’ K% = |: l/l;f :|

Combining Eq. (20) with Maxwells equations (3) we can
derive the open boundary conditions for the transverse
components of the magnetic field:

€ m*\ 0 m € m?2
orf ge -2 — P K —— H =0,
€Z< m K’,‘,,)ﬁr[ (/)m]+rl/[ (pm}+r|:r K/;1 €Z< m K/:n):|[,ur r,mr]

2 2 2
u m=\ 0 5 mi| ,vi W m B
;T: <K¢;, _K$n> E[,u,H,_mr] + rI/,Lu,H,’mr} +7 |:7‘ Kign_ﬂi: <K/,ln —I<;1>:| [Hq,’mr} =0.

We approximate these boundary condition on the one dimensional mesh with second order by finite differences [17]. The
final matrix will have the same structure as in previous situation with the perfectly conducting boundary (see Fig. 4).

After numerical solution of the linear system (18) the longitudinal electric field component and the impedance can be
found as

i 0
E,,(r) = ~ o lro)re E[Hw

E. .(ro) GK,(0r)

Im(’/(grO)2 1 (UorO)

ikZ
S 2a( - 1)

,mr”r:ro _er(r0> , Zm(k) =

In the case of rectangular geometry we again consider only the case with symmetry plane at y = 0. In this case we have to
solve two problems in half of the computational domain. The first problem for Z,.. has a magnetic boundary condition at the
symmetry plane (H,,,(0) = 0) and we approximate it in the same way as it was done at the axis for round geometry.
The second problem for Z has an electric boundary condition (E, ,, = 0) at the symmetry plane and we approximate it in
the same way as it was done for round geometry at PEC boundary.

If the last layer of the rectangular geometry is infinitely thick and has only uniaxial anisotropy then the open boundary
condition for the longitudinal field components reads

0 0

a_yEz,m + k;,mEz,m =0, a_sz,m —+ kl;,mHz.m =0,

Combining them with Maxwell’s equations (4) we can derive the open boundary conditions for the transverse components
of the magnetic field in the rectangular case:

€ k2 0 v e k2
€_y (k.f’,m - kg:) a_ny + V§Hx - kx.m |:kf\;m - e_y (kf’,m - k%:>:|Hym =0,

" <k};m B k;m) ainy + V%Hy - kx.m |: ') - kj;’m Hx,m =0.
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The longitudinal electric field component and the imped-
ance in the rectangular case can be found as

i 0
Em = TN 7me’ kme'm s
n00) == [ Hen| |+ ke 0)
zee (k) _ Ez.m (yO) _ 2G e_k_?,m
" cosh(k) ,y0)* k9, cosh(k9 . yo) ’
E 2G
Z;,:(k) _ z,m(y0> _k(\?m

~sinh(kS,y0)2 K0, sinh(K0,y0)

where H,,,H,, are solutions of the corresponding
problem with magnetic or electric boundary condition at
the symmetry plane.

V. COMBINATION OF FIELD MATCHING
AND FINITE-DIFFERENCE METHODS
FOR ANISOTROPIC WAVEGUIDES

The finite-difference method of the previous section
allows treating the full anisotropy but it could also be time-
consuming as it requires a mesh in the whole domain. In
this section we suggest a combination of the field matching
technique and of the finite-difference method.

Again we will start with a round geometry. In order to
describe the method, let us consider example shown in
Fig. 5: the first and the third layers allow solutions in
analytical form, Eq. (9), the middle layer is anisotropic
and could be treated only with finite-difference method.
Let us denote the coefficients in the first layer as
crt opt, DR, DR and the coefficients in the third layer
as C3,C%3, D", D3, In order to use the matrix
approach of Sec. III we need to find matrix MIP,
converting the first set of coefficients in the second one:

m,3 m,1
CI C[
m,3 m, 1
CK — MFP CK
1 1
m,3 m,1
DK DK

The matrix M5 can be found as a product of several simple
complex matrices of size 4 x 4:

My, = MEOMPAMEPMEPPMEF, (1)

where M¢F is the matrix introduced already at Sec. IIL. It
converts the coefficients C;', €', D™, D% in the mag-
netic field components (and their derivatives)
- N i
Hr,m<a1 )7Ht/1,m(a] >’E[qu,mr]|r=al"Eb"rHr,mr]|r=al" Here
the notation r = a| means a one-sided limit from below.
The matrices MI?F converts the one-sided limits of
the fields components from below H,,(ay),H, ,(a7),
2 [Hq,,mr]|,:al_,% Lu,H,,mrHr:al_ into one-sided limits
of the fields components from above H,,(aj),

field matching finite-difference field matching

é)1: l_il é)z (), ﬁz @) €3, 3

h(p,o h(p,l h(p,Z h(p,N h(p,N+1
—-o——o——o—+—o——0——0—t+—o0—>

=05 MNros hy1s

h hT,N—O.S hT,N+0.5 r

a; ap

FIG. 5. One dimensional mesh of combined method and
positions of the transverse magnetic field components.

0 0 -
H(p,m (a;r)7 or [H(p.mr] |r:uf7 or [”rHr.mr] |r:aT‘ The matrix
MZ4?F makes the same at r = a,. Finally matrix M42¢
converts the field components H,,(ai),H, (a3).

Oﬁr [H, ]| r=a Oﬁr [u,H, 1+ into the coefficients

3,3 D3 D, All these matrices can be found
easily in the analytical form with a help of any computer
program for symbolic calculations. Only the matrix
MP  converting H,,(af).H,,.(a]). % [H
% b’trHr,mr] |r=al+ into Hr,m(ag)’ H(/),m(ag)’ % [H(p,mr] ‘r:ag’

% [trH 7], requires application of the finite-difference

q;,mr”r:ar’

scheme of Sec. IV.

For the combined method we use the one-dimensional
mesh shown in Fig. 5. In order to obtain the second-order
approximation of the boundary conditions we use the
fictive nodes outside of the layer. The equations are
discretized in the same way as in Sec. IV for i=
1,....,N (see. Eq. (17) and we can write the undetermined
matrix equation

Mh =f,
i ntos)'s
(22)

h = (hgo,O’ h(p,h h(p,N-‘rlﬂ hy o5, hr,O.S’

where M is a nonsquare matrix of size 2N x (2N +4). In
order to reduce the number of the unknowns to 2N we will
use the boundary conditions at r =a; and exclude
hq).Oﬂ h(p,l ’ hr.—O‘S’ hr,O.S'
Let us write a general form of the boundary conditions at
r=da
Hr,m(af) = Br’ H(/;,m(a;r) = B(/N
0

0
E[Hw,mr] gt = Dgo’a D‘rHr,mr] gt =D,. (23)

-4
It is easy to write the second order approximation of the
first three equations (23) and obtain the expressions for

htp,O ’ h(/),l s hr,O.S :

h,.os = B,, hyo = B, = (ro5 —19)D,,
h,y = B, + (r\ = ros)D,.
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In order to find £, 5 we use the second order approximation of the fourth boundary condition and Eq. (23) for i = 1. After
a simple algebra we obtain:

_MN+1,lh(/7,l + My yi2hyo + My niaheogs + My nesDo(ris —7-g5s)

Myiingz +Myings

El

hy o5 =

where M; ; are elements of matrix M in Eq. (22). Through excluding of ko, h,, 1, h, o5, h, s from system Eq. (22) we
obtain a matrix equation with reduced matrix M" of size 2N x 2N:

M’h" :fr’ h" = (h(p.Z’ h(p,?av cees h(p,NJrl» hr.l.S’ hr,2.57 cees hr.NJr().S)[?

=015 3 fo5 fis fosefhos)'s Mij=Mjn,  i=1,...2N,  j=1,...N,
M{;=M,;,. i=1,...2N, j=N+1..2N, (24)

where

fi=f1=M hyo+ M shy, + M yiahgs), fy = 2—Mssh,;,
fos = fos— (Myyi1hyo+Myiiohy 1 + My nish—os + Myag yiahygos),
fis=fis— (Mysa2h, +Myioniahegs).

The matrix M" of system (24) has the form shown in Fig. 6 and it can be reduced with the permutations (19) to the upper
triangular matrix shown on the right. Hence the system requires only O(N) operations to solve it.

In order to find matrix M{? we need to solve the same equations but with 4 different sets of boundary conditions at
r = a;. The boundary conditions at r = a; for the first problem read

0

0
,,m(ar) =1, H(/,,m(af) =0, E[Hrﬂ-,mr]

—0, ZH,, —0.
N (9r['u ] +

’ r=a, r=a,

H

The field components

H,,(a5) = (hynio5 + Ny n_05)/2. H,,(ay) = hyy,

o hr,N+O.5 - hr,N—O.S

r=a, I'Nt+0.5 — FN-0.5

S L P

r=a, I'n+1 — I'n-1

will give the elements of the first column of matrix Mf?. The second column can be found from the solution of the same
equations but with another boundary condition at r = a;:

0

Hoplai) =0, Hyula) =1, & [Hy,]

—o,  ZymH,, —0.
N 87'[” ’ r] al

’r:al

Analogously we will find the third and the fourth columns of this matrix.

As can be seen from the above description we need to
solve the problem 4 times in the anisotropic layer only. If
-3 . e900s the layer is thin then the suggested method is faster than the
. finite-difference method of the previous section where the
e whole domain has to be discretized to sample the electro-
cesce magnetic field everywhere. At the rectangular geometry the
algorithm is exactly the same with corresponding equations
for the rectangular case.

: VI. NUMERICAL EXAMPLES

Recently, experimental demonstration of energy modu-

FIG. 6. Reduction of seven band matrix of combined method to lations in dielectric pipes was observed at the PITZ facility
upper triangular form. [19]. The experiment was performed with a dielectric pipe
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FIG. 7. The longitudinal and the transverse wake potentials near the pipe axis as obtained by time-domain code ECHO2D (solid black

line) and by frequency-domain code ECHOID (grey dashed line).

with an isotropic dielectric layer of permittivity € = 4.41¢,,.
The layer starts at radius ag = 0.45 mm and is closed with
PEC at a; = 0.55 mm. We take this dielectric pipe as our
first example and calculate the steady-state wake of a
relativistic Gaussian bunch with rms length ¢, = 25 ym. In
Fig. 7 we show the longitudinal and the transverse wake
potentials near the pipe axis. The longitudinal wake
potential for the charge distribution A(s) is defined as

W(s) = /_; w) (s")A(s = s")ds’.

The transverse wake potential is defined analogously and
W (s) means here the dipole component of the transverse
wake normalized by offset [16].

The gray dashed line shows the results obtained with
field matching method as described in Sec. III. The solid
line is obtained with time-domain code ECHO2D [13]. In
order to obtain the steady-state wake in time-domain we
have subtracted the wake for pipe of length 10 cm from the
wake of pipe of length 11 cm. The agreement of the curves
from two different methods confirms the correctness of the
results. In Fig. 8 the longitudinal wake potential and the

o WhilkV/(pC m)]

real part of the longitudinal impedance are shown. The
solid black lines show the results for the isotropic case and
the dashed grey line presents the result for the anisotropic
case when we have changed only the permittivity in radial
direction, €, = 6e5. We see a clear shift in the modal
frequencies for the anisotropic case. It cannot be treated
with the field matching only. Here we have used methods
described in Secs. IV, V. The wave number k was sampled
from 1 m™" to 10° m™! with step 0.2. In Table I the impact
of anisotropy along different coordinate axes on the lowest
resonance frequencies in longitudinal and transverse
(dipole) impedances is shown. The anisotropy in the beam
direction (along z-axis) makes the largest frequency shift in
the lowest frequency of the longitudinal impedance. For the
transverse (dipole) impedance, the frequency shift is
approximately the same for all anisotropy axes.

The execution times for all methods are shown in
Table II. Let us note that in this example we have used
a small conductivity k = 1 S/m to resolve the real part of
the impedance.

For the same aperture size the cylindrical geometry
allows to obtain the highest accelerating gradients.
Due to technological difficulties in preparing cylindrical

Re(Z))[MQ/m]

-100

30
25
20
15
10

-150 =

FIG. 8.

400 600 800 1000 1200 1400 1600
fIGHZ]

The longitudinal wake and the real part of the longitudinal impedance for dielectric pipe at PITZ. The solid black lines show

the results for isotropic case and the dashed grey line presents the result for anisotropic case.
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TABLE 1. Impact of round pipe anisotropy on the lowest resonance frequencies in longitudinal and transverse impedances.
€,/€ €,/€0 €./€o J) [GHz] Saip [GHZ]

Isotropic 441 4.41 4.41 290.5 269.2

r-anisotropy 6 4.41 4.41 279.8(-3.7%) 257.9(—4.2%)

@-anisotropy 441 6 4.41 290.5 258.2(—4.1%)

z-anisotropy 441 441 6 269.7(=7.2%) 258.1(—4.1%)

Isotropic 4.94 4.94 4.94 278.7(—4.1%) 257.9(—4.2%)

TABLE II. Execution time in seconds for different methods. TABLEIII. Impact of rectangular pipe anisotropy on the lowest
resonance frequencies in longitudinal and transverse (dipole)

Method Round Rectangular impedances.

Field Matching (Sec. III) 31 5

Finite-Difference (Sec. IV) 170 110 €y/€0 e/ey €./€ fH [GHz] faip [GHz]

Combined (Sec. V) 86 60 Isotropic 94 94 94 2536 16.41
y-anisotropy 11.5 9.4 9.4 25.00(—1.4%) 15.99(-2.6%)
x-anisotropy 9.4 11.5 94 24.67(-2.7%) 16.22(-1.2%)

structures with stringent requirements to tolerances the ~ Z-anisotropy 9.4 9.4 115 23.86(-5.9%) 16.15(-1.6%)
Isotropic 10.45 10.45 10.45 24.23(—4.5%) 16.03(-2.3%)

rectangular structures are considered as well. As a next
example we consider a Gaussian relativistic electron bunch
with parameters of the Argonne wakefield accelerator in the
sapphire-based rectangular accelerating structure [1,3]. The
rectangular structure has width 2w = 11 mm, the aniso-
tropic layer starts at ap = 1.5 mm and is closed by PEC at
a; = 2.39 mm. The permittivities along main axes are:
€, = €, = 9.4¢y, €, = 11.5¢,. It corresponds to a frequency
of 25.0 GHz of the accelerating mode of the structure. For
comparison a waveguide with isotropic dielectric filling
with € = 10.45¢, corresponds to the base frequency of
24.23 GHz. The electron bunch with energy 15 MeV,
charge 100 nC and bunch length 6, = 1.5 mm is consid-
ered. The dependence of the longitudinal electric field
component E, at the symmetry axis produced by the bunch
on the distance s = vt — z behind it is shown in Fig. 9. The
solid line corresponds to anisotropic sapphire, the dashed
line corresponds to isotropic filling. The wave number k
was sampled from 1 m~! to 20e4 m~! with step 0.2 and we
have calculated 5 the lowest odd Fourier harmonics in

Eq. (6). At this example we used a small conductivity
x = 0.05 S/m to resolve the real part of the impedance.
The data in Fig. 9 agree with the results published in [3]. A
frequency shift with a little influence on the wake field
amplitudes can be seen. In Table III the impact of
anisotropy along different coordinate axes on the lowest
resonance frequencies in longitudinal and transverse
(dipole) impedances is shown. As with the round pipe,
the anisotropy in the beam direction makes the largest
frequency shift in the lowest frequency of the longitudinal
impedance. For the transverse (dipole) impedance the
maximal frequency shift is due to y-anisotropy (the normal
direction to the dielectric layers).

The execution times of different methods discussed in
this paper for the rectangular example are shown in
Table II. It can be seen again that for the same accuracy
the combined method requires less computational time as
compared to a fully finite-difference one.

E,[MV/m] Re(Z))[MQ/m]
150 — : 5 .
]
100 [
s
50 [
3+t ]
0 '
2t i
-50 il
f
L 1 i
-100 1 i fl. k
X [ I
150 0 L. a L\A 3
24 26 28 30
f[GHz]

FIG. 9. The longitudinal electric field component and the real part of the longitudinal impedance for anisotropic (solid black line) and

isotropic (dashed gray line) rectangular structures.
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VII. CONCLUSION

In this paper we have considered the calculation of
coupling impedances generated by a point charge passing
through an anisotropic vacuum chamber of round or
rectangular cross-section. The field matching and finite-
difference techniques for the anisotropic waveguides are
developed. Additionally a method that mixes field match-
ing and finite-differences is described. Open boundary
conditions are formulated for the case when the last layer
has an uniaxial anisotropy in the beam direction.

The described methods are implemented in frequency-
domain code ECHOID and are cross-checked on several
numerical examples. We have shown a comparison of the
results with those obtained by completely different algo-
rithm of time-domain code ECHO2D. Additionally we have
reproduced the results of other authors published in [3].
Impact of the anisotropy along different coordinate axes on
the resonance frequencies shifts for round and rectangular
dielectric pipe examples is computed and analyzed.

The code ECHOI1D is available on the web [14], for further
advanced studies by the community.
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