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We consider the calculation of electromagnetic fields generated by a point charge passing through an
anisotropic vacuum chamber of round or rectangular cross section with translational symmetry in the beam
direction. The anisotropy causes a frequency shift and can have a significant effect on modal coupling. It
must be accounted for in the design and analysis of accelerating structures. In this paper, field matching and
finite-difference techniques for the anisotropic waveguides are developed. Additionally a method that
mixes the field matching and the finite-differences is described. The numerical algorithms are implemented
in a computer code and cross-checked on several examples. The impact of the anisotropy along different
coordinate axes on the resonance frequency shifts is computed and analyzed.
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I. INTRODUCTION

Dielectric lined waveguides are under extensive study as
accelerating structures excited by charged beams [1]. Quartz
and cordierite structures have been beam tested, and accel-
erating gradient exceeding 100 MV=m has been demon-
strated [2]. Several materials used for accelerating structures
(sapphire, ceramic films, etc) possess significant anisotropic
properties. It is shown, for example, in [3] that the dielectric
anisotropy causes a frequency shift in comparison to dielec-
tric-lined waveguides with isotropic dielectric loadings.
The anisotropic dielectrics may be incorporated

either intentionally or unintentionally (processing-induced
anisotropy) [4]. Dielectric permittivity and conductivity
depend on the direction of wave propagation and polari-
zation in many materials. The anisotropy can have a
significant effect on modal coupling and must be accounted
for in the design and analysis of such structures.
There are many papers which describe impedance calcu-

lations of steady-state impedance for isotropic round and flat
layered chambers [5–9] with translational symmetry in the
beam direction. The rectangular casewith one isotropic layer
was studied in [10–12].The solutions for isotropic structures
are obtained in analytical form or a field-matching approach
can be used to reduce the problem to a simple matrix
equation. In this paper we consider anisotropic transversally
nonhomogeneous round and rectangular chamberswhere the
field-matching technique does not work.
We start in Sec. II from formulation of the problem. Then

we review the general form of the impedance for round and

rectangular waveguides in the nonrelativistic case. For a
special case of uniaxial anisotropy in the beam direction the
same field matching approach as for the isotropic case [5]
can be used. We consider shortly the required modifications
in Sec. III. For transversally nonhomogeneous materials the
structure can be approximated by many layers. However
such approach could be computationally expensive as it
requires calculation of modified Bessel or exponential
functions (of complex argument) for each layer.
A fully anisotropic case is treated in Sec. IV. The field-

matching technique does not work in this case. We consider
several possible analytical formulations and choose onewith
non-singular differential equations. For this choice we
describe a simple finite-difference scheme. With a proper
permutation of mesh indexes we reduce a sparse matrix with
7 bands to a pentadiagonal one. It allows a fast algorithm of
complexityOðNÞ (N-number of mesh steps) for calculation
of impedances for non-homogeneous anisotropic materials.
Open boundary conditions are formulated for the case when
the last layer has anuniaxial anisotropy in thebeamdirection.
The finite difference method allows treating of full

anisotropy but could be time-consuming. For the case
when the anisotropic layers are thin we suggest in Sec. V a
combination of the field matching and the finite-difference
approaches.
Finally in Sec. VI the described methods are cross-

checked on several numerical examples. The algorithms are
implemented in numerical code ECHO [13,14].

II. PROBLEM FORMULATION

We consider a point-charge q moving with constant
velocity v through a structure with round or rectangular
cross section. In the followingwe call the structure “round” if
it is axially symmetric. If the structure has a constant width
between two perfectly conducting planes and has rectangular
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cross-sections then we call such structure “rectangular.”
Figure 1 shows the transverse to z-axis cross sections of
round and rectangular structures. In the following we
consider only anisotropic materials with diagonal material
permittivity and permeability tensors, where the optical axes
coincide with coordinate ones. Hence their diagonals are
given by complex vectors ϵ; μ.
We assume that the charge is moving along a straight line

parallel to the longitudinal axis of the system, and we
neglect the influence of the wakefields on the charge
motion. In the frequency domain all fields will have the
time dependence eiωt (ω is the angular frequency) which
we will omit in the subsequent equations.
For round structures we will use cylindrical coordinates

r;φ; z. The charge density in the frequency domain can be
expanded in Fourier series

ρðr;φ; z; kÞ ¼ e−ikz=β
X∞
m¼0

ρmðrÞ cos½mðφ − φ0Þ�;

ρmðrÞ ¼
qδðr − r0Þ

πvr0ð1þ δm0Þ
; ð1Þ

where r0, φ0 are coordinates of the point charge q,
k ¼ ω=c, β ¼ v=c, c is velocity of light in vacuum, and
δm0 ¼ 1 if m ¼ 1, 0 otherwise.
From the linearity of Maxwell’s equations the compo-

nents of the electromagnetic field can be represented by
infinite sums:0
BB@

Hφðr;φ; z; kÞ
Erðr;φ; z; kÞ
Ezðr;φ; z; kÞ

1
CCA ¼ e−ikz=β

X∞
m¼0

0
BB@

Hφ;mðr; kÞ
Er;mðr; kÞ
Ez;mðr; kÞ

1
CCA cosðmφÞ;

0
BB@

Eφðr;φ; z; kÞ
Hrðr;φ; z; kÞ
Hzðr;φ; z; kÞ

1
CCA ¼ e−ikz=β

X∞
m¼0

0
BB@

Eφ;mðr; kÞ
Hr;mðr; kÞ
Hz;mðr; kÞ

1
CCA sinðmφÞ:

ð2Þ
The electric displacement D and the magnetic induction B
are defined using complex permittivity and permeability
diagonal tensors

D ¼

0
B@

ϵrðr; kÞ 0 0

0 ϵφðr; kÞ 0

0 0 ϵzðr; kÞ

1
CAE;

B ¼

0
B@

μrðr; kÞ 0 0

0 μφðr; kÞ 0

0 0 μzðr; kÞ

1
CAH:

We do not have to assume any particular frequency
dependence. In order to include conductivity and other
losses in our code ECHO1D we use the following expres-
sions (here we consider as example the r-component):

ϵrðr; kÞ ¼ ϵ0rðrÞ½1þ iδϵrðrÞ� þ i
κrðrÞ

ω½1þ iωτrðrÞ�
;

μrðr; kÞ ¼ μ0rðrÞ½1þ iδμrðrÞ�;
ω ¼ kc;

where ϵ0r is the real part of the complex permettivity, μ0r is
the real part of the complex permeability, and the loss can
be introduced with the help of dielectric loss tangent δϵr,
magnetic loss tangent δμr or/and with AC conductivity
following the Drude model [15], where κr is the DC
conductivity of the material and τr its relaxation time.
We use similar expressions for φ- and z-components of the
permittivity and the permeability tensors.
It is a direct consequence of Maxwell’s equations applied

to fields’ decomposition in Eq. (2), that for each mode
numbermwe can write an independent system of equations

m
r
Hz;m þ i

k
β
Hφ;m ¼ iωϵrEr;m;

− i
k
β
Hr;m −

∂
∂rHz;m ¼ iωϵφEφ;m;

1

r
∂
∂r ðrHφ;mÞ −

m
r
Hr;m ¼ iωϵzEz;m þ vρm;

−
m
r
Ez;m þ i

k
β
Eφ;m ¼ −iωμrHr;m;

− i
k
β
Er;m −

∂
∂r Ez;m ¼ −iωμφHφ;m;

1

r
∂
∂r ðrEφ;mÞ þ

m
r
Er;m ¼ −iωμzHz;m;

1

r
∂
∂r ðrHr;mμrÞ −

m
r
Hφ;mμφ − ikHz;mμz ¼ 0;

1

r
∂
∂r ðrEr;mϵrÞ þ

m
r
Eφ;mϵφ − ikEz;mϵz ¼ ρm: ð3Þ

We have reduced the initial three-dimensional problem to
an infinite set of independent one-dimensional problems,
Eq. (3), for the Fourier components of the field.
In rectangular case we choose a coordinate system with y

in the vertical and x in the horizontal directions; the z

FIG. 1. Transverse to z-axis cross-sections of “round” and
“rectangular” geometries. The point charge position is shown by
red circle.
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coordinate is directed along the beam direction. The structures considered in this paper have constant width 2w in x-direction
between two perfectly conducting side walls.
The charge density can be expanded in Fourier series

ρðx; y; z; kÞ ¼ e−ikz=β

w

X∞
m¼1

ρmðyÞ sinðkx;mx0Þ sinðkx;mxÞ; kx;m ¼ πm
2w

; ρmðyÞ ¼
qδðy − y0Þ

v
;

where x0, y0 are coordinates of the point charge. Again it follows from the linearity of Maxwell’s equations that the
components of electromagnetic field can be represented by infinite sums:0

B@
Hxðx; y; z; kÞ
Eyðx; y; z; kÞ
Ezðx; y; z; kÞ

1
CA ¼ e−ikz=β

w

X∞
m¼1

0
B@

Hx;mðy; kÞ
Ey;mðy; kÞ
Ez;mðy; kÞ

1
CA sinðkx;mxÞ;

0
B@

Exðx; y; z; kÞ
Hyðx; y; z; kÞ
Hzðx; y; z; kÞ

1
CA ¼ e−ikz=β

w

X∞
m¼1

0
B@

Ex;mðy; kÞ
Hy;mðy; kÞ
Hz;mðy; kÞ

1
CA cosðkx;mxÞ:

For each mode number m we can write an independent system of equations

− kx;mHz;m þ i
k
β
Hx;m ¼ iωϵyEy;m; −i

k
β
Hy;m −

∂
∂yHz;m ¼ iωϵxEx;m;

∂
∂yHx;m þ kx;mHy;m ¼ iωϵzEz;m þ vρm;

kx;mEz;m þ i
k
β
Ex;m ¼ −iωμyHy;m; −i

k
β
Ey;m −

∂
∂yEz;m ¼ −iωμxHx;m;

∂
∂y ðEx;mÞ − kx;mEy;m ¼ −iωμzHz;m;

∂
∂y ðHy;mμyÞ þ kx;mHx;mμx − ikHz;mμz ¼ 0;

∂
∂y ðEy;mϵyÞ − kx;mEx;mϵx − ikEz;mϵz ¼ ρm: ð4Þ

We are interested in coupling impedances as defined in [5,16]. For round pipe the coupling impedance can be written as

Zkðr0;φ0; r;φ; k; γÞ ¼
X∞
m¼0

Zmðk; γÞIm
�
kr0
γβ

�
Im

�
kr
γβ

�
cosðmðφ − φ0ÞÞ þ Zscðr0;φ0; r;φ; k; γÞ;

Zscðr0;φ0; r;φ; k; γÞ ¼ −
kZ0

2πðγ2 − 1ÞK0

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ r2 − 2r0r cosðφ − φ0Þ

p
γβ

�
; ð5Þ

where Im, K0 are modified Bessel functions of complex argument, γ is the relative relativistic energy and we have written
explicitly the space charge contribution Zsc. Functions Zmðk; γÞ are modal impedances to be found.
For a rectangular pipe the impedance reads

Zkðx0; y0; x; y; kÞ ¼
1

w

X∞
m¼1

Zmðy0; y; k; γÞ sinðkx;mx0Þ sinðkx;mxÞ þ Zscðx0; y0; x; y; k; γÞ;

Zscðx0; y0; x; y; k; γÞ ¼ −
kZ0

2πðγ2 − 1ÞK0

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p
γβ

�
; ð6Þ

where the modal impedances read

Zmðy0; y; k; γÞ ¼ ½Zcc
m ðk; γÞ coshðky;my0Þ þ Zsc

m ðk; γÞ sinhðky;my0Þ� coshðky;myÞ
þ ½Zcs

m ðk; γÞ coshðky;my0Þ þ Zss
m ðk; γÞ sinhðky;my0Þ� sinhðky;myÞ;

ky;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x;m þ k2

γ2β2

s
:

In Eqs. (5), (6) the infinite sum defines a so-called wall impedance. The longitudinal and the transverse wall impedances
are connected by the Panofsky-Wentzel theorem (see [5] for a detailed discussion).
The wake field effect in time domain is described by a longitudinal wake function which can be obtained by the Fourier

transform of the longitudinal impedance
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wjjðsÞ ¼
c
2π

Z
∞

−∞
ZjjðkÞeiks=βdk;

where s is the distance between the source and the test
particles [16].

III. FIELD MATCHING FOR
UNIAXIAL ANISOTROPY

In the general anisotropic case from system of first-order
Eq. (2) we obtain the second-order coupled equations for
z-components of the electric and the magnetic fields:

1

r
∂
∂r

rϵr
ν2rφ

∂
∂r Ez;m −

�
m2ϵφ
r2ν2φr

þ ϵz

�
Ez;m

þ m
rv

� ∂
∂r

1

ν2rφ
−

1

ν2φr

∂
∂r

�
Hz;m ¼ iqδðr − r0Þ

πr0ð1þ δm0Þω
;

1

r
∂
∂r

rμr
ν2φr

∂
∂rHz;m −

�
m2μφ
r2ν2rφ

þ μz

�
Hz;m

−
m
rv

� ∂
∂r

1

ν2φr
−

1

ν2rφ

∂
∂r

�
Ez;m ¼ 0;

ν2rφ ¼ k2β−2 − ω2ϵ2rμ
2
φ;

ν2φr ¼ k2β−2 − ω2ϵ2φμ
2
r : ð7Þ

The field matching technique for round and flat isotropic
pipes was considered, for example, in [5–9,12]. For the
case of uniaxial anisotropy along z-axis we use the same
technique, which we describe shortly in this section.
We consider the uniaxial anisotropy when the permit-

tivity and the permeability tensors are diagonal and for their
elements the following relations hold

ϵrðrÞ ¼ ϵφðrÞ; μrðrÞ ¼ μφðrÞ:

Inside of each layer where the complex permeability and
permittivity are constants (independent from r) Eq. (7)
reduce to the decoupled equations

1

r
∂
∂r r

∂
∂r Ez;m −

�
m2

r2
þ ν2r

ϵz
ϵr

�
Ez;m ¼ iqδðr − r0Þν2r

πr0ð1þ δm0Þωϵr
;

1

r
∂
∂r r

∂
∂rHz;m −

�
m2

r2
þ ν2r

μz
μr

�
Hz;m ¼ 0;

ν2r ¼ k2β−2 − ω2ϵ2rμ
2
r : ð8Þ

A general solution of homogeneous hyperbolic Eq. (8) can
be written in form

Ez;mðrÞ ¼ Cm
I ImðνϵrrÞ þ Cm

KKmðνϵrrÞ;
Hz;mðrÞ ¼ Dm

I ImðνμrrÞ þDm
KKmðνμrrÞ;

νϵr ¼ νr
ffiffiffiffiffiffiffiffiffiffi
ϵz=ϵr

p
;

νμr ¼ νr
ffiffiffiffiffiffiffiffiffiffiffi
μz=μr

p
; ð9Þ

where Im, Km are modified Bessel functions of complex
argument.
In the following we will numerate the layers by index j

and r ¼ aj defines interface between the layers with
numbers j and jþ 1 (see Fig. 2). In order to find the
constants Cm;j

I ; Cm;j
K ;Dm;j

I ; Dm;j
K in Eq. (9) we can use 4

conditions at the interfaces between the layers:

Ej
z;mðajÞ ¼ Ejþ1

z;m ðajÞ;
Hj

z;mðajÞ ¼ Hjþ1
z;m ðajÞ;

ϵjrE
j
r;mðajÞ ¼ ϵjþ1

r Ejþ1
r;m ðajÞ;

μjrH
j
r;mðajÞ ¼ μjþ1

r Hjþ1
r;m ðajÞ; ð10Þ

where the radial field components are defined through the
longitudinal ones as

Ej
r;mðrÞ ¼ ik

ν2r

�
1

β

∂
∂r E

j
m;z þmcμr

r
Hz;m

�
;

Hj
r;mðrÞ ¼ ik

ν2r

�
1

β

∂
∂rH

j
m;z þmcϵr

r
Ez;m

�
: ð11Þ

From Eqs. (9)–(11) at each interface r ¼ aj we obtain the
relations

ðCm;jþ1
I ; Cm;jþ1

K ;Dm;jþ1
I ; Dm;jþ1

K ÞT
¼ MjðCm;j

I ; Cm;j
K ; Dm;j

I ; Dm;j
K ÞT;

where Mj is a complex matrix of order 4. We do not write
the explicit form of the elements of the matrix Mj. They
can be written as a combination of modified Bessel
functions and the expressions are similar to those obtained
in [5] for an isotropic case.
The matrix connecting the coefficients from vacuum

layer to the coefficients of the last layer can be found as a
matrix productFIG. 2. Examples of “round” and “rectangular” layered geometry.
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M ¼ MN−1MN−2…M1M0:

From the boundary condition at the axis we have
Dm;0

K ¼ 0. If the last layer, j ¼ N, is infinitely thick with
finite conductivity then we have open boundary condition.
The field should not diverge at infinity, giving
Cm;N
K ¼ 0; Dm;N

K ¼ 0, and we are looking for the solution
of the following simple system

0
BBB@

M11 M13 0 0

M21 M23 −1 0

M31 M33 0 0

M41 M43 0 −1

1
CCCA
0
BBB@

Cm;0
I =Cm;0

K

Dm;0
I =Cm;0

K

Cm;N
K =Cm;0

K

Dm;N
K =Cm;0

K

1
CCCA ¼

0
BBB@

−M12

−M22

−M32

−M42

1
CCCA:

ð12Þ

After numerically solving of Eq. (12) the modal longi-
tudinal impedance in Eq. (5) can be found as

Zmðk; γÞ ¼ −
ikZ0

2πðγ2 − 1Þ
Cm;0
I

Cm;0
K

:

If the last layer, j ¼ N, is closed with perfectly electric
conducting (PEC) material at r ¼ aN , then we use a
modified matrix

M ¼ MC2F
N MN−1MN−2…M1M0;

where MC2F
N is a matrix converting the field coefficients in

the field components Hr, Hφ and their derivatives:

0
BBB@

Hr;mðaNÞ
Hφ;mðaNÞ

∂
∂r ½Hφ;mr�jr¼aN

∂
∂r ½μrHr;mr�jr¼aN

1
CCCA ¼ MC2F

N

0
BBB@

Cm;N
I

Cm;N
K

Dm;N
I

Dm;N
K

1
CCCA:

Again we do not write the explicit form of the elements of
the matrix MC2F

N . They can be written as a combination of
modified Bessel functions and the expressions can be
obtained from Eqs. (3), (9) in any computer program
supporting symbolic calculations.
The boundary conditions for perfectly conductingmaterial

at aN can be written as Hr;mðaNÞ ¼ 0, ∂
∂r ½Hφ;mr�jr¼aN ¼ 0.

Hence in order to find the impedance we again use
Eq. (12) where the right-hand side has the same form but
the vector of unknowns is different: ðCm;0

I =Cm;0
K ;Dm;0

I =
Cm;0
K ;Hφ;mðaNÞ=Cm;0

K ; ∂
∂r ½μrHr;mr�jr¼aN=C

m;0
K ÞT .

For rectangular geometries we follow the same approach.
The field in the homogeneous uniaxially anisotropic layer
can be presented as sum of complex exponents

Ez;mðrÞ ¼ Cmþek
ϵ
y;my þ Cm

−e−k
ϵ
y;my;

Hz;mðrÞ ¼ Dmþek
μ
y;my þDm

−e−k
μ
y;my;

kϵy;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x;m þ ν2y

ϵz
ϵy

r
;

kμy;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x;m þ ν2y

μz
μy

r
;

ν2y ¼ k2β−2 − ω2ϵ2yμ
2
y:

In the following we consider only the case where the
rectangular structure is symmetric in the y-direction (up-
bottom symmetry). In this case Eq. (6) has a simpler form

Zmðy0; y; k; γÞ ¼ Zcc
m ðk; γÞ coshðky;my0Þ coshðky;myÞ

þ Zss
mðk; γÞ sinhðky;my0Þ sinhðky;myÞ:

The item Zcc
m ðk; γÞ can be found from the solution of the

problem in the half of the domain with magnetic boundary
condition at the symmetry plane Hz;mð0Þ ¼ 0. If the last
layer, j ¼ N, is infinitely thick with finite conductivity then
we have open boundary condition. The field should not
diverge at infinity and it results in Cm;N

þ ¼ 0; Dm;N
þ ¼ 0.

Hence we are looking for the solution of the following
system

0
BBB@
M11þM12 M13−M14 0 0

M21þM22 M23−M24 −1 0

M31þM32 M33−M34 0 0

M41þM42 M43−M44 0 −1

1
CCCA
0
BBB@

Cm;0
þ =ðCm;0

− −Cm;0
þ Þ

Dm;0
þ =ðCm;0

− −Cm;0
þ Þ

Cm;N
− =ðCm;0

− −Cm;0
þ Þ

Dm;N
− =ðCm;0

− −Cm;0
þ Þ

1
CCCA

¼

0
BBB@
−M12

−M22

−M32

−M42

1
CCCA: ð13Þ

After numerical solution of Eq. (13) the item Zcc
m ðk; γÞ can

be found as

Zcc
m ðk; γÞ ¼ −

2ikZ0

πðγ2 − 1Þk0y;m
Cm;0
þ

ðCm;0
− − Cm;0

þ Þ ;

k0y;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x;m þ k2

γ2β2

s
:

The item Zss
m ðk; γÞ can be found from the solution of

another problem in the half of the domain with electric
boundary condition at the symmetry plane Ez;mð0Þ ¼ 0. We
are looking for the solution of the following system

IMPEDANCES OF ANISOTROPIC ROUND AND … PHYS. REV. ACCEL. BEAMS 21, 064601 (2018)

064601-5



0
BBB@
M11−M12 M13þM14 0 0

M21−M22 M23þM24 −1 0

M31−M32 M33þM34 0 0

M41−M42 M43þM44 0 −1

1
CCCA
0
BBB@

Cm;0
þ =ðCm;0

− þCm;0
þ Þ

Dm;0
þ =ðCm;0

− þCm;0
þ Þ

Cm;N
− =ðCm;0

− þCm;0
þ Þ

Dm;N
− =ðCm;0

− þCm;0
þ Þ

1
CCCA

¼

0
BBB@
−M12

−M22

−M32

−M42

1
CCCA: ð14Þ

After numerical solution of Eq. (14) the item Zss
m ðk; γÞ can

be found as

Zss
m ðk; γÞ ¼ −

2ikZ0

πðγ2 − 1Þk0y;m
Cm;0
þ

ðCm;0
− þ Cm;0

þ Þ :

If the last layer, j ¼ N, is closed with perfectly con-
ducting material at y ¼ aN then we use a modified matrix in
the same way as described above for the round geometry.
We will not consider here a rectangular structure without
symmetry. In general, matrix M is a composition of
matrices for all layers. It can be found and treated in the
same way as described in [5] for an isotropic case.

IV. FINITE-DIFFERENCE METHOD
FOR FULL ANISOTROPY

In this section we describe a finite-difference method to
treat the round and the rectangular structures with arbitrary
anisotropic materials. We start with the round case. At the
beginning we have to decide which equations to use. The
system (3) contains 8 first-order equations for 6 unknown
field components. It can be reduced to only 2 second-order
equations. For example we can use Eq. (7) for longitudinal
components of electric and magnetic fields. However for
relativistic beam in vacuum these equations degenerate: the
coefficients in highest derivatives go to infinity. We would
like to have a pair of equations which are nonsingular and
give the field components even in a perfectly conducting
vacuum pipe. The relativistic charge in the limit v ¼ c in
perfectly conducting pipe does not have the longitudinal
field components. Hence the equations should be ones for
the transverse field components. A possible choice could be
to write equations for the radial components of electric and
magnetic fields. However for higher order modes, m > 0,
these equations have singular coefficients as well.
We suggest to solve the well-posed problem for trans-

verse components of magnetic field only,

∂
∂r

1

rϵz

∂
∂r ½H

s
φ;mr� þ bφðrÞ½Hs

φ;mr� þ
m

r2ϵrμz

∂
∂r ½μrHr;mr�

−
∂
∂r

�
m

r2ϵzμr
½μrHr;mr�

�
¼ −bφðrÞ½H0

φ;mr�; ð15Þ

∂
∂r

1

rμz

∂
∂r ½μrHr;mr� þ brðrÞ½μrHr;mr�

þmϵφ
r2ϵz

∂
∂r ½H

s
φ;mr� −

∂
∂r

�
mμφ
r2μz

½Hs
φ;mr�

�

¼ ∂
∂r

�
mμφ
rμz

H0
φ;m

�
;

bφðrÞ ¼
ω2μφ
r

−
k2

rϵrβ2
−

m2μφ
r3ϵrμz

;

brðrÞ ¼
ω2ϵφ
r

−
k2

rμrβ2
−

m2ϵφ
r3μrϵz

: ð16Þ

In order to remove the discontinuity of the azimuthal
component in the charge location r0 we present the
azimuthal component of the magnetic field in the form

Hφ;m ¼ Hs
φ;m þH0

φ;m; H0
φ;m ¼ ð1þ δm0ÞH0

φ;

H0
φ ¼ θðr − r0Þ

2πr
;

where θðrÞ is Heaviside function and H0
φ presents a

monopole harmonic of the self field of relativistic charge
in free space. Let us note that Hs

φ;m has the meaning of the
scattered field only for the lowest monopole mode, m ¼ 0,
and the relativistic charge. Another choice could be to take
H0

φ;m as a true m-harmonic of the self-field but this
introduces additional terms into the right-hand side of
Eqs. (15), (16) without any clear improvement of the
accuracy of the numerical solution.
We introduce one dimensional mesh with shifted

positions of the transverse magnetic filed components as
shown in Fig. 3. The mesh in material is not equidistant
in general. It is chosen to sample the wave length in the
material properly and depends on the wave number
k ¼ ω=c. We use the standard second order approximations
of the derivatives [17] and the finite-difference scheme
reads

FIG. 3. One dimensional mesh and positions of the transverse
magnetic field components.
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1

riþ0.5 − ri−0.5

�
aφðriþ0.5Þ

hφ;iþ1 − hφ;i
riþ1 − ri

− aφðri−0.5Þ
hφ;i − hφ;i−1
ri − ri−1

�
þ bφðriÞhφ;i

þ cφðriÞ
hr;iþ0.5 − hr;i−0.5
riþ0.5 − ri−0.5

−
dφðriþ0.5Þhr;iþ0.5 − dφðri−0.5Þhr;i−0.5

riþ0.5 − ri−0.5
¼ fφðriÞ;

1

ri − ri−1

�
arðriÞ

hr;iþ0.5 − hr;i−0.5
riþ0.5 − ri−0.5

− arðri−1Þ
hr;i−0.5 − hr;i−1.5
ri−0.5 − ri−1.5

�
þ brðri−0.5Þhr;i−0.5

þ crðri−0.5Þ
hφ;i − hφ;i−1
ri − ri−1

−
drðriÞhφ;i − drðri−1Þhφ;i−1

ri − ri−1
¼ frðri−0.5Þ; ð17Þ

where we have introduced the discrete field components hφ;i ¼ Hs
φ;mðriÞri; hr;iþ0.5 ¼ μrðriþ0.5ÞHr;mðriþ0.5Þriþ0.5 and the

following notation

aφðriþ0.5Þ ¼
1

riþ0.5ϵzðriþ0.5Þ
; cφðriÞ ¼

m
r2i ϵrðriÞμzðriÞ

;

dφðriþ0.5Þ ¼
m

r2iþ0.5ϵzðriþ0.5Þμrðriþ0.5Þ
; fφðriÞ ¼ −brðriÞ½H0

φ;mðriÞri�

arðriÞ ¼
1

riμzðriÞ
; crðri−0.5Þ ¼

m
r2i−0.5ϵφðri−0.5Þϵzðri−0.5Þ

;

drðriÞ ¼
m

r2i μφðriÞμzðriÞ
; frðri−0.5Þ ¼

drðriÞ½H0
φ;mðriÞri� − drðri−1Þ½H0

φ;mðri−1Þri−1�
ri − ri−1

:

At the axis of axially symmetric geometry we have magnetic boundary condition

½Hφ;rr�jr¼0 ¼ 0;
∂
∂r ½μrHr;mr�jr¼0 ¼ 0;

and the equations for i ¼ 1 can be written in the form

1

r1.5− r0.5

�
aφðr1.5Þ

hφ;2−hφ;1
r2− r1

−aφðr0.5Þ
hφ;1
r1

�
þbφðr1Þhφ;1þ cφðr1Þ

hr;1.5−hr;0.5
r1.5− r0.5

−
dφðr1.5Þhr;1.5−dφðr0.5Þhr;0.5

r1.5− r0.5
¼ fφðr1Þ;

1

r1

�
arðr1Þ

hr;1.5−hr;0.5
r1.5− r0.5

�
þbrðr0.5Þhr;0.5þ crðr0.5Þ

hφ;1
r1

−
drðr1Þhφ;1

r1
¼ frðr0.5Þ;

If the exterior boundary is perfectly conducting at rNþ0.5 ¼ b then we have electric boundary condition for the magnetic
field

½μrHr;mr�jr¼b ¼ 0;
∂
∂r ½Hφ;mr�jr¼b ¼ 0;

and the equations for i ¼ N can be written in form (17) with hφ;Nþ1 ¼ hφ;N; hr;Nþ0.5 ¼ 0. Hence we have to solve a linear
system

Mh ¼ f ; h ¼ ðhφ;1; hφ;2;…; hφ;N; hr;0.5; hr;1.5;…; hr;Nþ0.5Þt; ð18Þ

where the matrix M has dimensions 2N × 2N and the seven band structure shown in Fig. 4 on the left side.
In order to use a direct method of solution of linear system (18) we introduce the permutation matrix Pσ defined by

permutation of indices

σi ¼
�
2N þ 1 − i

2
; i even;

N þ 1 − i−1
2
; i odd:

ð19Þ
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It converts the sparse seven band matrix M in pentadiag-
onal form PσMPT

σ shown in Fig. 4 on the right side. The
new system allows for a direct solution with complexity
OðNÞ [18], meaning that the solution time is proportional to
the number of mesh points.
If the last layer is infinitely thick then we need an

open boundary condition to truncate the matrix at r ¼ b. If

the last material has only uniaxial anisotropy like one
considered in Sec. III then we can easily write such a
condition. Indeed from the definition of the modified
Bessel functions of the second type, the open
boundary condition in the round geometry reads [see
Eq. (9)]

∂
∂rEz;m þKϵ

m

r
Ez;m ¼ 0; Kϵ

m ¼
�
mþ rνϵr

Km−1ðνϵrrÞ
KmðνϵrrÞ

�
;

∂
∂rHz;m þKμ

m

r
Hz;m ¼ 0; Kμ

m ¼
�
mþ rνμr

Km−1ðνμrrÞ
KmðνμrrÞ

�
:

ð20Þ

Combining Eq. (20) with Maxwells equations (3) we can
derive the open boundary conditions for the transverse
components of the magnetic field:

ϵr
ϵz

�
Kϵ

m −
m2

Kμ
m

� ∂
∂r ½Hφ;mr� þ rν2r ½Hφ;mr� þ

m
r

�
r2

ν2r
Kμ

m
−
ϵr
ϵz

�
Kϵ

m −
m2

Kμ
m

��
½μrHr;mr� ¼ 0;

μr
μz

�
Kμ

m −
m2

Kϵ
m

� ∂
∂r ½μrHr;mr� þ rν2r ½μrHr;mr� þ

m
r

�
r2

ν2r
Kϵ

m
−
μr
μz

�
Kμ

m −
m2

Kϵ
m

��
½Hφ;mr� ¼ 0:

We approximate these boundary condition on the one dimensional mesh with second order by finite differences [17]. The
final matrix will have the same structure as in previous situation with the perfectly conducting boundary (see Fig. 4).
After numerical solution of the linear system (18) the longitudinal electric field component and the impedance can be

found as

Ez;mðr0Þ ¼ −
i

ωϵzðr0Þr0

� ∂
∂r ½Hφ;mr�jr¼r0 −mHrðr0Þ

�
; ZmðkÞ ¼

Ez;mðr0Þ
Imðν0rr0Þ2

−
GKmðν0rr0Þ
Imðν0rr0Þ

; G ¼ ikZ0

2πðγ2 − 1Þ :

In the case of rectangular geometry we again consider only the case with symmetry plane at y ¼ 0. In this case we have to
solve two problems in half of the computational domain. The first problem for Zcc has a magnetic boundary condition at the
symmetry plane (Hz;mð0Þ ¼ 0) and we approximate it in the same way as it was done at the axis for round geometry.
The second problem for Zss has an electric boundary condition (Ez;m ¼ 0) at the symmetry plane and we approximate it in
the same way as it was done for round geometry at PEC boundary.
If the last layer of the rectangular geometry is infinitely thick and has only uniaxial anisotropy then the open boundary

condition for the longitudinal field components reads

∂
∂yEz;m þ kϵy;mEz;m ¼ 0;

∂
∂yHz;m þ kμy;mHz;m ¼ 0;

Combining them with Maxwell’s equations (4) we can derive the open boundary conditions for the transverse components
of the magnetic field in the rectangular case:

ϵy
ϵz

�
kϵy;m −

k2x;m
kμy;m

� ∂
∂yHx þ ν2yHx − kx;m

�
ν2y
kμy;m

−
ϵy
ϵz

�
kϵy;m −

k2x;m
kμy;m

��
Hy;m ¼ 0;

μy
μz

�
kμy;m −

k2x;m
kϵy;m

� ∂
∂yHy þ ν2yHy − kx;m

�
ν2y
kϵy;m

−
μy
μz

�
kμy;m −

k2x;m
kϵy;m

��
Hx;m ¼ 0:

FIG. 4. Reduction of seven band matrix to pentadiagonal form.
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The longitudinal electric field component and the imped-
ance in the rectangular case can be found as

Ez;mðy0Þ ¼ −
i

ωϵzðy0Þ
� ∂
∂yHx;m

���
y¼y0

þ kx;mHy;mðy0Þ
�
;

Zcc
m ðkÞ ¼ Ez;mðy0Þ

coshðk0y;my0Þ2
−

2G
k0y;m coshðk0y;my0Þ

e−k
0
y;m ;

Zss
m ðkÞ ¼

Ez;mðy0Þ
sinhðk0y;my0Þ2

−
2G

k0y;m sinhðk0y;my0Þ
e−k

0
y;m ;

where Hx;m;Hy;m are solutions of the corresponding
problem with magnetic or electric boundary condition at
the symmetry plane.

V. COMBINATION OF FIELD MATCHING
AND FINITE-DIFFERENCE METHODS
FOR ANISOTROPIC WAVEGUIDES

The finite-difference method of the previous section
allows treating the full anisotropy but it could also be time-
consuming as it requires a mesh in the whole domain. In
this section we suggest a combination of the field matching
technique and of the finite-difference method.
Again we will start with a round geometry. In order to

describe the method, let us consider example shown in
Fig. 5: the first and the third layers allow solutions in
analytical form, Eq. (9), the middle layer is anisotropic
and could be treated only with finite-difference method.
Let us denote the coefficients in the first layer as
Cm;1
I ; Cm;1

K ;Dm;1
I ; Dm;1

K and the coefficients in the third layer
as Cm;3

I ; Cm;3
K ;Dm;3

I ; Dm;3
K . In order to use the matrix

approach of Sec. III we need to find matrix MFD
13 ,

converting the first set of coefficients in the second one:

0
BBB@

Cm;3
I

Cm;3
K

Dm;3
I

Dm;3
K

1
CCCA ¼ MFD

13

0
BBB@

Cm;1
I

Cm;1
K

Dm;1
I

Dm;1
K

1
CCCA:

The matrixM13 can be found as a product of several simple
complex matrices of size 4 × 4:

M13 ¼ MF2C
2 MF2F

2 MFD
12 M

F2F
1 MC2F

1 ; ð21Þ

where MCF
1 is the matrix introduced already at Sec. III. It

converts the coefficients Cm;1
I ; Cm;1

K ;Dm;1
I ; Dm;1

K in the mag-
netic field components (and their derivatives)
Hr;mða−1 Þ;Hφ;mða−1 Þ; ∂∂r½Hφ;mr�jr¼a−

1
; ∂∂r½μrHr;mr�jr¼a−

1
. Here

the notation r ¼ a−1 means a one-sided limit from below.
The matrices MF2F

1 converts the one-sided limits of
the fields components from below Hr;mða−1 Þ; Hφ;mða−1 Þ;
∂
∂r ½Hφ;mr�jr¼a−

1
; ∂
∂r ½μrHr;mr�jr¼a−

1
into one-sided limits

of the fields components from above Hr;mðaþ1 Þ;

Hφ;mðaþ1 Þ; ∂
∂r ½Hφ;mr�jr¼aþ

1
; ∂
∂r ½μrHr;mr�jr¼aþ

1
. The matrix

MF2F
2 makes the same at r ¼ a2. Finally matrix MF2C

2

converts the field components Hr;mðaþ2 Þ; Hφ;mðaþ2 Þ;
∂
∂r ½Hφ;mr�jr¼aþ

2
; ∂
∂r ½μrHr;mr�jr¼aþ

2
into the coefficients

Cm;3
I ; Cm;3

K ;Dm;3
I ; Dm;3

K . All these matrices can be found
easily in the analytical form with a help of any computer
program for symbolic calculations. Only the matrix
MFD

12 converting Hr;mðaþ1 Þ; Hφ;mðaþ1 Þ; ∂
∂r ½Hφ;mr�jr¼aþ

1
;

∂
∂r ½μrHr;mr�jr¼aþ

1
into Hr;mða−2 Þ; Hφ;mða−2 Þ; ∂

∂r ½Hφ;mr�jr¼a−
2
;

∂
∂r ½μrHr;mr�jr¼a−

2
requires application of the finite-difference

scheme of Sec. IV.
For the combined method we use the one-dimensional

mesh shown in Fig. 5. In order to obtain the second-order
approximation of the boundary conditions we use the
fictive nodes outside of the layer. The equations are
discretized in the same way as in Sec. IV for i ¼
1;…; N (see. Eq. (17) and we can write the undetermined
matrix equation

Mh ¼ f ;

h ¼ ðhφ;0; hφ;1;…; hφ;Nþ1; hr;−0.5; hr;0.5;…; hr;Nþ0.5Þt;
ð22Þ

where M is a nonsquare matrix of size 2N × ð2N þ 4Þ. In
order to reduce the number of the unknowns to 2N we will
use the boundary conditions at r ¼ a1 and exclude
hφ;0; hφ;1; hr;−0.5; hr;0.5.
Let us write a general form of the boundary conditions at

r ¼ a1

Hr;mðaþ1 Þ ¼ Br;Hφ;mðaþ1 Þ ¼ Bφ;

∂
∂r ½Hφ;mr�

���
r¼aþ

1

¼ Dφ;
∂
∂r ½μrHr;mr�

���
r¼aþ

1

¼ Dr: ð23Þ

It is easy to write the second order approximation of the
first three equations (23) and obtain the expressions for
hφ;0; hφ;1; hr;0.5:

hr;0.5 ¼ Br; hφ;0 ¼ Bφ − ðr0.5 − r0ÞDφ;

hφ;1 ¼ Bφ þ ðr1 − r0.5ÞDφ:

FIG. 5. One dimensional mesh of combined method and
positions of the transverse magnetic field components.
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In order to find hr;−0.5 we use the second order approximation of the fourth boundary condition and Eq. (23) for i ¼ 1. After
a simple algebra we obtain:

hr;−0.5 ¼ −
MNþ1;1hφ;1 þMNþ1;2hφ;2 þMNþ1;Nþ4hr;0.5 þMNþ1;Nþ5Drðr1.5 − r−0.5Þ

MNþ1;Nþ3 þMNþ1;Nþ5

;

where Mi;j are elements of matrix M in Eq. (22). Through excluding of hφ;0; hφ;1; hr;−0.5; hr;0.5 from system Eq. (22) we
obtain a matrix equation with reduced matrix Mr of size 2N × 2N:

Mrhr ¼ f r; hr ¼ ðhφ;2; hφ;3;…; hφ;Nþ1; hr;1.5; hr;2.5;…; hr;Nþ0.5Þt;
f r ¼ ðfr1; fr2; f3; fN; fr0.5; fr1.5; fr2.5…; fN−0.5Þt; Mr

i;j ¼ Mi;jþ2; i ¼ 1;…; 2N; j ¼ 1;…; N;

Mr
i;j ¼ Mi;jþ4; i ¼ 1;…; 2N; j ¼ N þ 1;…; 2N; ð24Þ

where

fr1 ¼ f1 − ðM1;1hφ;0 þM1;2hφ;1 þM1;Nþ4hr;0.5Þ; fr2 ¼ f2 −M2;2hφ;1;

fr0.5 ¼ f0.5 − ðMNþ1;1hφ;0 þMNþ1;2hφ;1 þMNþ1;Nþ3hr;−0.5 þMNþ1;Nþ4hr;0.5Þ;
fr1.5 ¼ f1.5 − ðMNþ2;2hφ;1 þMNþ2;Nþ4hr;0.5Þ:

The matrix Mr of system (24) has the form shown in Fig. 6 and it can be reduced with the permutations (19) to the upper
triangular matrix shown on the right. Hence the system requires only OðNÞ operations to solve it.
In order to find matrix MFD

12 we need to solve the same equations but with 4 different sets of boundary conditions at
r ¼ a1. The boundary conditions at r ¼ a1 for the first problem read

Hr;mðaþ1 Þ ¼ 1; Hφ;mðaþ1 Þ ¼ 0;
∂
∂r ½Hφ;mr�

���
r¼aþ

1

¼ 0;
∂
∂r ½μrHr;mr�

���
r¼aþ

1

¼ 0:

The field components

Hr;mða−2 Þ ¼ ðhr;Nþ0.5 þ hr;N−0.5Þ=2; Hφ;mða−2 Þ ¼ hφ;N;

∂
∂r ½Hφ;mr�

���
r¼a−

2

¼ hr;Nþ1 − hr;N−1

rNþ1 − rN−1
;

∂
∂r ½μrHr;mr�

���
r¼a−

2

¼ hr;Nþ0.5 − hr;N−0.5

rNþ0.5 − rN−0.5

will give the elements of the first column of matrix MFD
12 . The second column can be found from the solution of the same

equations but with another boundary condition at r ¼ a1:

Hr;mðaþ1 Þ ¼ 0; Hφ;mðaþ1 Þ ¼ 1;
∂
∂r ½Hφ;mr�

���
r¼aþ

1

¼ 0;
∂
∂r ½μrHr;mr�

���
r¼aþ

1

¼ 0:

Analogously we will find the third and the fourth columns of this matrix.

As can be seen from the above description we need to
solve the problem 4 times in the anisotropic layer only. If
the layer is thin then the suggested method is faster than the
finite-difference method of the previous section where the
whole domain has to be discretized to sample the electro-
magnetic field everywhere. At the rectangular geometry the
algorithm is exactly the same with corresponding equations
for the rectangular case.

VI. NUMERICAL EXAMPLES

Recently, experimental demonstration of energy modu-
lations in dielectric pipes was observed at the PITZ facility
[19]. The experiment was performed with a dielectric pipe

FIG. 6. Reduction of seven band matrix of combined method to
upper triangular form.
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with an isotropic dielectric layer of permittivity ϵ ¼ 4.41ϵ0.
The layer starts at radius a0 ¼ 0.45 mm and is closed with
PEC at a1 ¼ 0.55 mm. We take this dielectric pipe as our
first example and calculate the steady-state wake of a
relativistic Gaussian bunch with rms length σz ¼ 25 μm. In
Fig. 7 we show the longitudinal and the transverse wake
potentials near the pipe axis. The longitudinal wake
potential for the charge distribution λðsÞ is defined as

WkðsÞ ¼
Z

s

−∞
wkðs0Þλðs − s0Þds0:

The transverse wake potential is defined analogously and
W⊥ðsÞ means here the dipole component of the transverse
wake normalized by offset [16].
The gray dashed line shows the results obtained with

field matching method as described in Sec. III. The solid
line is obtained with time-domain code ECHO2D [13]. In
order to obtain the steady-state wake in time-domain we
have subtracted the wake for pipe of length 10 cm from the
wake of pipe of length 11 cm. The agreement of the curves
from two different methods confirms the correctness of the
results. In Fig. 8 the longitudinal wake potential and the

real part of the longitudinal impedance are shown. The
solid black lines show the results for the isotropic case and
the dashed grey line presents the result for the anisotropic
case when we have changed only the permittivity in radial
direction, ϵr ¼ 6ϵ0. We see a clear shift in the modal
frequencies for the anisotropic case. It cannot be treated
with the field matching only. Here we have used methods
described in Secs. IV, V. The wave number k was sampled
from 1 m−1 to 105 m−1 with step 0.2. In Table I the impact
of anisotropy along different coordinate axes on the lowest
resonance frequencies in longitudinal and transverse
(dipole) impedances is shown. The anisotropy in the beam
direction (along z-axis) makes the largest frequency shift in
the lowest frequency of the longitudinal impedance. For the
transverse (dipole) impedance, the frequency shift is
approximately the same for all anisotropy axes.
The execution times for all methods are shown in

Table II. Let us note that in this example we have used
a small conductivity κ ¼ 1 S=m to resolve the real part of
the impedance.
For the same aperture size the cylindrical geometry

allows to obtain the highest accelerating gradients.
Due to technological difficulties in preparing cylindrical

FIG. 7. The longitudinal and the transverse wake potentials near the pipe axis as obtained by time-domain code ECHO2D (solid black
line) and by frequency-domain code ECHO1D (grey dashed line).

FIG. 8. The longitudinal wake and the real part of the longitudinal impedance for dielectric pipe at PITZ. The solid black lines show
the results for isotropic case and the dashed grey line presents the result for anisotropic case.
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structures with stringent requirements to tolerances the
rectangular structures are considered as well. As a next
example we consider a Gaussian relativistic electron bunch
with parameters of the Argonne wakefield accelerator in the
sapphire-based rectangular accelerating structure [1,3]. The
rectangular structure has width 2w ¼ 11 mm, the aniso-
tropic layer starts at a0 ¼ 1.5 mm and is closed by PEC at
a1 ¼ 2.39 mm. The permittivities along main axes are:
ϵx ¼ ϵz ¼ 9.4ϵ0, ϵy ¼ 11.5ϵ0. It corresponds to a frequency
of 25.0 GHz of the accelerating mode of the structure. For
comparison a waveguide with isotropic dielectric filling
with ϵ ¼ 10.45ϵ0 corresponds to the base frequency of
24.23 GHz. The electron bunch with energy 15 MeV,
charge 100 nC and bunch length σz ¼ 1.5 mm is consid-
ered. The dependence of the longitudinal electric field
component Ez at the symmetry axis produced by the bunch
on the distance s ¼ vt − z behind it is shown in Fig. 9. The
solid line corresponds to anisotropic sapphire, the dashed
line corresponds to isotropic filling. The wave number k
was sampled from 1 m−1 to 20e4 m−1 with step 0.2 and we
have calculated 5 the lowest odd Fourier harmonics in

Eq. (6). At this example we used a small conductivity
κ ¼ 0.05 S=m to resolve the real part of the impedance.
The data in Fig. 9 agree with the results published in [3]. A
frequency shift with a little influence on the wake field
amplitudes can be seen. In Table III the impact of
anisotropy along different coordinate axes on the lowest
resonance frequencies in longitudinal and transverse
(dipole) impedances is shown. As with the round pipe,
the anisotropy in the beam direction makes the largest
frequency shift in the lowest frequency of the longitudinal
impedance. For the transverse (dipole) impedance the
maximal frequency shift is due to y-anisotropy (the normal
direction to the dielectric layers).
The execution times of different methods discussed in

this paper for the rectangular example are shown in
Table II. It can be seen again that for the same accuracy
the combined method requires less computational time as
compared to a fully finite-difference one.

TABLE I. Impact of round pipe anisotropy on the lowest resonance frequencies in longitudinal and transverse impedances.

ϵr=ϵ0 ϵφ=ϵ0 ϵz=ϵ0 fk [GHz] fdip [GHz]

Isotropic 4.41 4.41 4.41 290.5 269.2
r-anisotropy 6 4.41 4.41 279.8ð−3.7%Þ 257.9ð−4.2%Þ
φ-anisotropy 4.41 6 4.41 290.5 258.2ð−4.1%Þ
z-anisotropy 4.41 4.41 6 269.7ð−7.2%Þ 258.1ð−4.1%Þ
Isotropic 4.94 4.94 4.94 278.7ð−4.1%Þ 257.9ð−4.2%Þ

TABLE II. Execution time in seconds for different methods.

Method Round Rectangular

Field Matching (Sec. III) 31 5
Finite-Difference (Sec. IV) 170 110
Combined (Sec. V) 86 60

FIG. 9. The longitudinal electric field component and the real part of the longitudinal impedance for anisotropic (solid black line) and
isotropic (dashed gray line) rectangular structures.

TABLE III. Impact of rectangular pipe anisotropy on the lowest
resonance frequencies in longitudinal and transverse (dipole)
impedances.

ϵy=ϵ0 ϵx=ϵ0 ϵz=ϵ0 fk [GHz] fdip [GHz]

Isotropic 9.4 9.4 9.4 25.36 16.41
y-anisotropy 11.5 9.4 9.4 25.00ð−1.4%Þ 15.99ð−2.6%Þ
x-anisotropy 9.4 11.5 9.4 24.67ð−2.7%Þ 16.22ð−1.2%Þ
z-anisotropy 9.4 9.4 11.5 23.86ð−5.9%Þ 16.15ð−1.6%Þ
Isotropic 10.45 10.45 10.45 24.23ð−4.5%Þ 16.03ð−2.3%Þ
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VII. CONCLUSION

In this paper we have considered the calculation of
coupling impedances generated by a point charge passing
through an anisotropic vacuum chamber of round or
rectangular cross-section. The field matching and finite-
difference techniques for the anisotropic waveguides are
developed. Additionally a method that mixes field match-
ing and finite-differences is described. Open boundary
conditions are formulated for the case when the last layer
has an uniaxial anisotropy in the beam direction.
The described methods are implemented in frequency-

domain code ECHO1D and are cross-checked on several
numerical examples. We have shown a comparison of the
results with those obtained by completely different algo-
rithm of time-domain code ECHO2D. Additionally we have
reproduced the results of other authors published in [3].
Impact of the anisotropy along different coordinate axes on
the resonance frequencies shifts for round and rectangular
dielectric pipe examples is computed and analyzed.
The code ECHO1D is available on the web [14], for further

advanced studies by the community.
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