
A FLEXIBLE AND TESTABLE SOFTWARE ARCHITECTURE: APPLYING
PRESENTER FIRST TO A DEVICE SERVER FOR THE DOOCS

ACCELERATOR CONTROL SYSTEM OF THE EUROPEAN XFEL

A. Beckmann, S. Karabekyan, J. Pflüger, European XFEL, Hamburg, Germany

Abstract
Presenter First (PF) uses a variant of Model View

Presenter design pattern to add implementation flexibility
and to improve testability of complex event-driven
applications. It has been introduced in the context of GUI
applications, but can easily be adapted to server
applications. This paper describes how Presenter First
methodology is used to develop a device server for the
Programmable Logic Controls (PLC) of the European
XFEL undulator systems, which are Windows PCs
running PLC software from Beckhoff. The server
implements a ZeroMQ message interface to the PLC
allowing the DOOCS accelerator control system of the
European XFEL to exchange data with the PLC by
sending messages over the network. Our challenge is to
develop a well-tested device server with a flexible
architecture that allows integrating the server into other
accelerator control systems like EPICS.

TECHNICAL BACKGROUND
The European X-Ray Free-Electron Laser (XFEL)

Facility will use three ~200m long undulator systems to
produce laser light by the Self Amplified Spontaneous
Emission (SASE) process [1]. The photon energy can be
varied by a change of the undulator gap. The
corresponding motion control is implemented with
Beckhoff TwinCAT PLC software on Windows PCs.

Figure 1: Integration of undulator control into DOOCS.

Figure 1 shows how undulator control is integrated into
the Distributed Object-Oriented Control System
(DOOCS), which is the accelerator control system of the
European XFEL facility [2]. The DOOCS Server, running
on a Linux host, defines for the undulator system a set of
properties, such as the undulator gap. These properties
can be read or modified by DOOCS client applications
(not shown in the figure) in order to control the undulator
system. The DOOCS Server exchanges the property

values with the Device Server using the ZeroMQ message
transport library [3]. The Device Server runs on a
Windows host together with the PLC of the undulator
system. Both exchange the property values using the
Beckhoff Automation Device Specification (ADS)
protocol.

The reason for having two servers is that ADS is
supported only for Windows platforms and the DOOCS
Server is supported only for Linux platforms. The
message interface between both servers crosses this
platform border. An additional benefit of the message
interface is that it adds flexibility on the machine control
side. Anything may connect to the Device Server,
regardless of the platform it runs on, as long as it is able
to generate appropriate messages. It could for example be
an EPICS Channel Access Server (CAS) with only little
effort to implement the message interface.

DESCRIPTION OF PRESENTER FIRST
So, how does Presenter First help in developing the

Device Server application? Presenter First proposes a
pattern for structuring the code in a specific way, and a
process for developing the application in a specific
sequence [4]. The pattern improves testability of the code
and offers some flexibility regarding the interaction with
the environment. The process saves effort by developing
on the basis of the intended behaviour of the application.

The Pattern
Applications are implemented using a variant of the

Model View Presenter (MVP) pattern, as shown in Fig. 2.

Figure 2: MVP variant used in PF.

The presenter represents the behaviour of the
application that is defined by the functional requirements,
the model manages the application data and logic, and the
view interacts with the environment. Model and view do
not communicate directly with each other because this
would limit flexibility; instead both communicate with the
presenter over clearly defined interfaces. They send
events to the presenter to trigger some behaviour, which

M

P

V

Events Method Calls

view
interface

model
interface

DOOCS
Server

Device
Server

PLC

Linux host Windows host

Control Network

ZeroMQ

ADS

Proceedings of PCaPAC2012, Kolkata, India THCD05

Software and Hardware Technology

ISBN 978-3-95450-124-3

131 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

usually results in method calls back to either model or
view.

The use of interfaces is essential for the testability,
because it decouples the presenter from the model and
view. The presenter depends only on the interfaces and
not on the objects that implement the interfaces. Within
the test environment the model and view can then be
replaced with a mock model and mock view that provide
the same interface but behave as required by the test.

Flexibility comes with the separation of code, which
interacts with the environment, into the view. This part
can be changed without the need to modify either model
or presenter. It just has to implement the view interface.
Currently, the device server uses ZeroMQ to interact with
the network. If this needs to be changed, only the view
requires modifications reducing the effort to do so.

The Process
The development of an application starts with the

presenter. The functional requirements, which define the
application behaviour, are analysed for their impact on the
model and view. The result is the definition of events and
methods for the model and the view interfaces. Once all
requirements have been analysed, the interfaces are
completely defined and implementation of model and
view may now start.

The advantage of this approach is that the application
exactly fulfils the functional requirements: it behaves
exactly as intended. Over-engineering by implementing
functionality that is not required is avoided, which saves
development effort and reduces the complexity of the
code.

DEVICE SERVER DEVELOPMENT
The use of Presenter First is described by taking the

Device Server as an example. The Device Server is a C#
application that runs as a Windows service on the host
with the PLC. Unlike regular applications, a Windows
service is started by the Windows Service Control
Manager (SCM) during boot and stopped during
shutdown.

 Software Architecture
Figure 3 shows the basic software architecture of the

Device Server. It is divided into two large modules: the
Windows Service module and the Control module.

Windows Service contains code that registers the
Device Server with the SCM. Its only purpose is to start
and stop the Control module whenever the Device Server
itself is started or stopped by SCM.

Control contains the instances of model, view and
presenter, which together implement the applications
functionality. Once the Control module is started by the
Windows Service module, the presenter processes events
from either model or view according to the implemented
behaviour. Events from the model are triggered by the
PLC, for example when PLC variable values have been

changed. Events from the view are triggered by the
ZeroMQ interface for example when a message arrives.

Applying Presenter First
As proposed by Presenter First the development starts

with the presenter by analysing the functional
requirements of the Device Server. These are:

1. The service shall activate or deactivate the message
interface, when it is started or stopped by SCM
respectively.

2. The service shall respond to request messages
received at the message interface.

3. The service shall send an update message via
message interface, whenever values of PLC variables
change.

In the following, the analysis is described taking the
second requirement as an example. It starts with a request
message arriving at the ZeroMQ message interface. A
message is in principle a byte array with a certain length.
ZeroMQ does not care about the content; it just tells the
view that a number of bytes have been received. The
parsing of the message content is considered as being part
of the application logic, so that only the model knows
how to do it. Therefore the incoming message needs to be
passed to the model. To do so, the view sends an event to
the presenter that a request message has been received.
The event handler inside the presenter then reads the
message bytes from the view, translates them into a more
convenient to use message object, and passes it to the
model. The model processes the message object and
returns another message object as a response. The
presenter translates the response message object back into
a byte array and passes it to the view. Finally, the view
sends a response message on the ZeroMQ message
interface.

The analysis results in the following interfaces. The
view interface requires:

 an event indicating that a message has been
received,

 methods returning the length and bytes of the
received message,

 a method to set the length and bytes of the response
message

Figure 3: Software architecture of Device Server.

Windows Service

Control

V

P

M

Start, Stop

ZeroMQ PLC

THCD05 Proceedings of PCaPAC2012, Kolkata, India

ISBN 978-3-95450-124-3

132C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software and Hardware Technology

The model interface requires:
 a method to process the received message, returning

a response message
The remaining task is now to implement the events and

methods from these interfaces inside the model and view.

Testing
The Device Server is tested on unit and on system

level. Unit level tests verify the functionality of individual
software units, such as the presenter. System level tests
verify the integration of the complete server into the
environment, which consists of the Windows SCM, the
DOOCS Server and the PLC.

Some parts of the Device Server cannot be tested on
unit level, since they interact with the environment that
cannot be generated during an automated unit test run.
These are:

 the Windows Service module
 the view
 the part of the model that communicates with the

PLC via TwinCAT ADS Communication Library
To reduce the probability of errors in these parts, their

code is as simple as possible, which means that there is
almost no processing inside these parts. This also reduces
the effort to test these parts manually on system level. The
Windows Service module is very simple since it just
passes down start and stop from the SCM to the Control
module. The view is a little bit more complex since it
contains some inevitable processing related to the use of
ZeroMQ. Finally, the ADS library, which is used by the
model to communicate with the PLC, is wrapped with an
ADS interface adapter. Instead of calling methods directly
from the ADS library, the model calls methods from the
interface adapter. Much like the interface between
presenter and model, this decouples the model from the
ADS library and increases its testability. The adapter
itself is very simple, since the interface methods simply
call the corresponding ADS library methods.

The presenter is tested on unit level by replacing model
and view with mocks that implement the same model and
view interfaces. Mocks are specialized test case objects,
which in principle track calls to the interface methods. At
the end of a test, the mocks verify that the methods have
been called the correct number of times. They may also
verify that the correct arguments have been passed, for
example that a method has been called once with an
integer argument equal to 1. For more complex test cases,
mocks can be set up to return values, or even to raise
program exceptions. Tracking method calls with mocks is
known as behavioural verification, in contrast to the
classical state verification, where data values (or state of
data) are checked after some part of the code has been
executed [5]. It is therefore ideally suited to complement
Presenter First with its focus on the behaviour of an
application.

A typical presenter test case creates instances of the
presenter, the mock model and the mock view. The mocks
themselves are taken from the mock object library Moq
[6]. The test case then configures the mocks and starts the

test by triggering one of the events from either the model
or view interface. At the end of the test case the mocks
perform their verification by checking whether methods
have been called the correct number of times and with the
correct arguments.

The model is tested on unit level much like the
presenter by replacing the ADS interface adapter with a
mock adapter. However, test cases start with a call of a
method from the model interface instead of triggering
events. There is a test case for each model interface
method, so that the model is almost completely tested
except for the ADS interface adapter at the boundary that
communicates with the PLC, as mentioned earlier.

Finally, the Device Server is tested on system level. It
is installed as a Windows service on the host with the
PLC. Then, the DOOCS Server and PLC are used to
stimulate the Device Server. Afterwards the state of the
DOOCS Server and PLC are verified manually.

Experience
The use of Presenter First allows testing most of the

functionality already on unit level. This notably reduces
the probability of errors detected on system level. The
code is cleanly structured, which simplifies debugging
and refactoring. The developped Device Server runs
stably over a longer period in a test setup with two
undulators controlled by one DOOCS server.

SUMMARY
Presenter First has been used to develop a well-tested

Device Server for the undulator control system of the
European XFEL facility. The software architecture
provides flexibility regarding integration into the machine
control system.

The Presenter First software architecture increases the
testability of applications with event-based behaviour,
which is important for mission critical software such as
the undulator motion control Device Server. Development
is guided by the behavioural requirements and results in
compact code that does exactly what is required and
nothing else.

Flexibility comes with the separation of interface and
application logic. The interface can be changed without
the need to adapt the application logic.

REFERENCES
[1] M. Altarelli et al. (ed), “The European X-ray free-electron

laser Technical Design Report”, DESY Report 2006-097,
2006.

[2] K. Rehlich et al., “The Accelerator Control Systems at
DESY”, in ICFA Beam Dynamics Newsletter No. 47, pp.
139-166, 2008.

[3] http://www.zeromq.org/
[4] M. Alles, D. Crosby, C. Erickson, B. Harleton, M.

Marsiglia, G. Pattison, C. Stienstra, “Presenter First:
Organizing Complex GUI Applications for Test-Driven
Development,” Agile 2006, Minneapolis, July 2006.

[5] http://martinfowler.com/articles/mocksArentStubs.html
[6] http://code.google.com/p/moq/

Proceedings of PCaPAC2012, Kolkata, India THCD05

Software and Hardware Technology

ISBN 978-3-95450-124-3

133 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s

