
KARABO-GUI: THE MULTI-PURPOSE GRAPHICAL FRONT-END FOR
THE KARABO FRAMEWORK

Burkhard Heisen, Martin Teichmann, Kerstin Weger, John Wiggins,
European XFEL, Hamburg, Germany

Abstract
The Karabo GUI is a generic graphical user interface

(GUI) which is currently developed at the European XFEL
GmbH. It allows the complete management of the Karabo
distributed control and data acquisition system. Remote
applications (devices) can be instantiated, operated and ter-
minated. Devices are listed in a live navigation view and
from the self-description inherent to every device a default
configuration panel is generated. The user may combine
interrelated components into one project. Such a project
includes persisted device configurations, custom control pan-
els and macros. Expert panels can be built by intermixing
static graphical elements with dynamic widgets connected
to parameters of the distributed system. The same panel
can also be used to graphically configure and execute data
analysis workflows. Other features include an embedded
IPython scripting console, logging, notification and alarm
handling. The GUI is user-centric and will restrict display or
editing capability according to the user’s role and the current
device state. The GUI is based on PyQt technology and acts
as a thin network client to a central Karabo GUI-Server.

THE KARABO DISTRIBUTED CONTROL
AND DATA ACQUISITION SYSTEM

Karabo is the control and data acquisition system which
will be used on all beamlines of the European XFEL to
control the equipment, acquire data and process it [1]. It is
a centralized system where all communication is done via a
central broker, except for high-bandwidth data streams which
are transported via dedicated point-to-point connections.

A Karabo system is a collection of devices. Those devices
can serve many purposes, they might be a driver for a partic-
ular hardware, a composite device that controls several other
devices if some coordination between different hardware is
necessary, a data processing device that may be just one of
hundreds of equal ones in a server farm processing data, or a
device saving raw or processed data to disk, not to mention
many service devices which keep Karabo running.

There are many different approaches of a GUI for a control
system. Some use an already existing development enviro-
ment and extend them to the needs of developing GUIs (e.g.
GDA [2], CSS [3]). Others developed stand-alone graphical
editors (e.g. JDDD [4], Taurus [5]). Karabo has one fully
integrated GUI, which is not only a graphical editor but can
be used for all control and data acquisition tasks.

PROJECTS
A typical user of Karabo is not interested in the entirety of

the system, rather a specific task to work on. Those tasks are

often overlapping, as an example a vacuum technician may
want to interact with the same components of an apparatus
a scientist works on.
All information necessary for a task can be bundled into

a project. These are all the devices needed and the config-
uration with which they should be started, or into which
they should be reconfigured to perform the desired tasks.
Graphical visualizations of tasks can be added as scenes to
the project. They are used to show and edit the configuration
of devices and the connections between them. Repetitive
tasks reoccuring for users of a project may be programmed
as macros. If taking some data is the purpose of a project,
the data to be taken can be stored in the project as monitors.
The project itself, however, does not contain the data, which
is written to disk independently.

The projects are generally stored on a central server. This
way everything needed for a task is persisted, and enables
users to use their projects on different computers, and makes
the administration of Karabo installations easier, as projects
can be archived much simpler.
The project is the core concept of the Karabo GUI, and

most of the rest of this paper is a description of its compo-
nents. Figure 1 shows a screenshot of a running Karabo GUI
with all components.

LIVE NAVIGATION AND
CONFIGURATION

A Karabo device is run by a Karabo server, which is
software running on a computer. The device code to be run
is installed as plugins into those servers. The installation
and running of those servers is beyond the scope of Karabo,
but it is typically done with common server administration
software.

In the GUI, such an installation is shown as a tree, for each
computer the available servers are shown, and the available
plugins for each server. A user can thus see the entire Karbo
installation. From the GUI, the devices can be instantiated
from their device class, the code to be run for a device.
Before a device is even instantiated, its parameters are

already known to the device server and communicated to
the GUI. Thus a user can configure a device interactively by
filling out a form which is automatically generated from the
description of the device class. Those configurations can
be stored in the project. As the full live navigation tree of
a Karabo installation can grow large and confusing, those
stored configuration give a good overview of the devices
needed in a particular project.

Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00WEPGF153

User Interfaces and Tools
ISBN 978-3-95450-148-9

1 Co
py

rig
ht

©
20

15
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs
Pr

e-
Pr

es
sR

ele
as

e2
3-

O
ct

-2
01

5
11

:0
0



Figure 1: Screenshot of the GUI. (a) The live Navigation, with computers, servers, device classes and devices. (b)
the Configuration of one device, automatically generated from its self-description, (c) a Scene with several device properties
shown, (d) the Project, (e) the message Logs and (f) Documentation.

GRAPHICAL VISUALIZATION
The properties and commands of devices can be visual-

ized in a graphical scene. This is done by simply dragging
the property from the device’s configuration view into the
central panel of the GUI, where those scenes are shown.
This is possible for both already running devices and device
classes which are known to the system. The latter can be
pre-configured and stored in the project, and their properties
can be part of a scene.
Within the scene, the user can choose the way the data

is shown. Besides variations of ways to show numbers on
dials and other numerial indicators, there are also advanced
widgets. As an example, numerical values can be shown in
a trendline widget, showing the time evolution of a property.
By simply moving the viewed time axis to the past, one
can even retrieve historical data from Karabo’s data logging
service.
Commands to a device are represented as push buttons.

They may show icons depending on the state of the device.
Once a scene has been designed, it is typically switched

from design to production mode, such that the widgets actu-
ally react to user input. This can always be switched back,
so that the design of the scene can be edited again. Scenes
may also be detached from the rest of the GUI. This way a
scene effectively looks like an independent application.
Scenes can also be used to design data processing work-

flows. Devices which produce or consume high-bandwidth

Figure 2: A simple workflow. In this workflow, a Detec-
tor device creates a data stream which is processed by the
Processor device group, whose results are sent to the Store
device. Samples of the data are copied to a Viewer device.

data can be dragged into the scene and are shown as boxes
with plugs representing the input or output data streams.
Those plugs are then connected by “wires”, as seen in Fig. 2.
For high-throughput data applications, when the devices
should run on many computers in parallel, one box in the
scene may also represent a large number of computers each
running the same device. Samples of the data can also be
shown in the GUI for inspection.

Technically, the file format of the scenes follows the SVG
standard with some extensions. This allows the user to copy
and paste graphical elements from an SVG editor into the
scene. While the graphical editing capabilities of the Karabo

WEPGF153Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00

ISBN 978-3-95450-148-9
2Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Pr
e-

Pr
es

sR
ele

as
e2

3-
O

ct
-2

01
5

11
:0

0

User Interfaces and Tools



from karabo import *

class Scan(Macro):
camera = RemoteDevice("camera1")
start = Float(description="Begin")
stop = Float(description="End")
steps = Int()
average_intensity = Float()

@Slot()
def execute(self):

"""Perform a camera scan"""
with getDevice("motor1") as m:

m.targetPosition = self.start
m.move()
waitUntil(lambda:

m.status == "stopped")
self.camera.takeImage()

Figure 3: A macro code example. An excerpt of a scan
macro showing the syntax of the macro language. Macros
are classes with executable slots that perform one task.
They can have arbitrary parameters, which serve as input
or output. Macros may continuously control devices with
RemoteDevice, or temporarily with getDevice.

GUI are limited, this feature allows for the creation of visu-
ally appealing scenes using external SVG editors.

MACROS
While devices in Karabo are also used to automate repeti-

tive tasks, they are often too cumbersome to be used, as they
need to be installed on servers by administrators. This is
where macros come into play: they are basically Karabo de-
vices which can be entered directly into the GUI and started
with a mouse click (they can also be started from the com-
mand line, but that is beyond the scope of this article).
The code is not executed in the GUI, as those are often

running on user machines with an unreliable internet con-
nection. Instead, they are sent to a central macro server and
executed there.

Macros are much more than just a list of commands to be
executed sequentially. They are written as a Python class,
where the methods of the class can be executed by the user.
They essentially behave like devices, so they can also be
configured, and their properties can be made editable in a
scene. A short example is shown in Fig. 3.
Finally, the only difference with a normal device is that

macros should be used for specific tasks which are relevant
in a particular context only. Everything generalizable should
be made into an actual device and maintained by computer
administrators.

LOGGING AND A CONSOLE
Karabo devices can broadcast messages that users may be

interested in within the distributed system. Those are shown
in a logging panel within the GUI, where those messages
can be sorted, searched and filtered.
There are many tasks which can be more easily done on

a command line than graphically. Therefore the GUI has a
console panel in which an IPython session can be started to
control Karabo. The same programmer’s interface as for the
macros is used, so that commands for a macro may be tested
on the command line.

TECHNICAL DETAILS
The GUI is written in Python 3.4, using PyQt4 for the

graphical output. Many of the widgets in the scene use
PyQwt5 and guiqwt. The same code can be run under Win-
dows, MacOS and Linux operating systems. Connection to
a Karabo installation is established via TCP with a dedicated
protocol. This way the GUI can also be used outside of the
protected network of a Karabo installation.
Like the rest of Karabo, the GUI is completely event

driven. The user cannot initiate any blocking operation.
When the GUI sends a user’s request to the network, instead
of waiting for a response the GUI continues to work normally
and will show results of the request when it arrives.

Projects are ZIP files, which contain the the data as XML
files and in case of the macros, as Python source files. This
allows users to inspect and change projects using other tools.

CONCLUSION
The Karabo distributed control system contains a single

graphical user interface which integrates everything to con-
trol and use an installation. The user interacts directly with
the live system. Via the self-description of the running de-
vice a user gets an immediate idea about its capabilities,
allowing for an intuitive use of the system.

REFERENCES
[1] B. C. Heisen, D. Boukhelef, S. Esenov, S. Hauf, I. Kozlova,

L. Maia, A. Parenti, J. Szuba, K. Weger, K. Wrona, C. Young-
man, “Karabo: an Integrated Software Framework Combining
Control, Data Management, and Scientific Computing Tasks”,
ICALEPCS2013, San Francisco, CA, USA 2013

[2] http://www.opengda.org

[3] Jan Hatje, M. Clausen, Ch. Gerke, M. Moeller, H. Rickens,
“Control System Studio (CSS)”, ICALEPCS07, Knoxville, TN,
USA, 2007

[4] E. Sombrowski, A. Petrosyan, K. Rehlich, P. Tege, “JDDD:
a Java DOOCS data display for the XFEL”, ICALEPCS07,
Knoxville, TN, USA 2007

[5] http://www.taurus-scada.org

Proceedings of ICALEPCS2015, Melbourne, Australia - Pre-Press Release 23-Oct-2015 11:00WEPGF153

User Interfaces and Tools
ISBN 978-3-95450-148-9

3 Co
py

rig
ht

©
20

15
CC

-B
Y-

3.
0

an
d

by
th

er
es

pe
ct

iv
ea

ut
ho

rs
Pr

e-
Pr

es
sR

ele
as

e2
3-

O
ct

-2
01

5
11

:0
0


