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A B S T R A C T

This paper reports on comprehensive efforts on uncertainty quantification and global sensitivity analysis for
accelerator cavity design. As a case study object the TESLA shaped superconducting cavities, as produced
for the European X-ray Free Electron Laser (EXFEL), are selected. The choice for these cavities is explained
by the available measurement data that can be leveraged to substantiate the simulation model. Each step of
the manufacturing chain is documented together with the involved uncertainties. Several of these steps are
mimicked on the simulation side, e.g., by introducing a random eigenvalue problem. The uncertainties are then
quantified numerically and in particular the sensitivities give valuable insight into the system behavior. We also
compare these findings to purely statistical studies carried out for the manufactured cavities. More advanced,
adaptive, surrogate modeling techniques are adopted, which are crucial to incorporate a large number of
uncertain parameters. The main contribution is the detailed comparison and fusion of measurement results
for the EXFEL cavities on the one hand and simulation based uncertainty studies on the other hand. After
introducing the quantities of physical interest for accelerator cavities and the Maxwell eigenvalue problem,
the details on the manufacturing of the EXFEL cavities and measurements are reported. This is followed by
uncertainty modeling with quantification studies.

1. Introduction

Accelerator devices require advanced, simulation based, design ap-
proaches due to demanding performance requirements and a con-
siderable level of technical complexity. This is particularly true for
superconducting accelerator cavities, which are a key element of many
modern accelerator facilities. A typical design process involves 2D as
well as 3D numerical solutions of the Maxwell eigenvalue problem,
followed by optimization and uncertainty analysis and quantification
studies. The latter have been conducted within the accelerator commu-
nity from the 1970s, [1–3]. However, these studies have been mainly
based on (local) sensitivity analysis which should be applied with
care to quantify uncertainties in the cavities’ geometry. Indeed, the
eigenmodes and other measures of interest depend strongly on the
shape of the cavity and local measures may not yield reliable results.

∗ Corresponding author at: Institut für Dynamik und Schwingungen, Technische Universität Braunschweig, Braunschweig, Germany.
E-mail address: n.georg@tu-braunschweig.de (N. Georg).

The topic of simulation based uncertainty quantification has seen
tremendous developments in recent years, also in computational elec-
tromagnetics, see e.g., [4]. Nowadays, significant computational re-
sources are available and uncertainty studies, taking into account sys-
tematically large parameter variations at all steps of the design process,
come into reach. In particular, the concept of global sensitivity anal-
ysis [5] has received much attention. The variance-based approach to
global sensitivity analysis, measures the contribution of each parameter
(or parameter combination) to the variance of a system output quantity.
These Sobol sensitivity indices permit not only to analyze the impor-
tance of model input parameters, which in turn is useful in guiding
modeling efforts, but also to identify important combined high-order
parameter variations. Despite their clear interpretation, Sobol coeffi-
cients are not readily extendable to settings with correlated inputs,
which are useful in our case to model several parts of the manufac-
turing and assembly process. Such effects in turn can be quantified
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by Borgonovo indices [6] which represent another approach to global
sensitivity analysis, which has not received much attention in physics
and engineering applications so far. We will apply both methods in
the present study, however, their derivations will only be recalled
in Appendix A. Although the concept of global sensitivity analysis is
quite well-established, the efficient computation of sensitivity indices
for cavity applications is a difficult task, mainly due to the complex-
ity of the underlying eigenvalue problem [7]. This is addressed here
by introducing surrogate models which emulate the relation between
eigenmodes, or other quantities of interest on the model parameter.

In this respect, this paper reports on comprehensive efforts on uncer-
tainty quantification and global sensitivity analysis for the simulation
of TESLA shaped, superconducting, cavities. Such cavities have been
produced in considerable quantity for the European X-ray Free Electron
Laser (EXFEL) and measurement data is available to substantiate the
approach. Each step of the manufacturing chain is documented together
with the involved uncertainties. Some of these steps are mimicked on
the simulation side, e.g., by introducing a random eigenvalue problem.
The uncertainties are then quantified numerically and in particular the
sensitivities give valuable insight into the systems behavior. We also
compare these findings to purely statistical studies carried out during
the manufacturing. However, the simulation of all manufacturing steps
would require the solution of several random inverse problems and is
postponed to future work.

Uncertainty studies in an accelerator physics context have been
reported before, see [8–11]. In this work, we use more advanced, adap-
tive, surrogate modeling techniques, which are crucial to incorporate
a large number of uncertain parameters. The main contribution is the
detailed comparison and fusion of real manufacturing data on the one
hand and simulation based uncertainty studies on the other hand. The
paper also clearly points out important directions of future research,
which would allow to further combine measurements and simulation.

The structure of the paper is given as follows: Section 2 introduces
quantities of physical interest for accelerator cavities and the Maxwell
eigenvalue problem. In Section 3, details on the manufacturing of
the EXFEL cavities and measurements are reported. This is followed
by uncertainty modeling and quantification studies in Section 4 and
concluding remarks.

2. Cavities and Maxwell eigenvalue problem

Accelerating cavities are devices used to accelerate particles to
higher energies. Elliptical cavities are the accepted geometrical shape
for particle velocities close to the speed of light (𝛽 ≈ 1, where 𝛽 is the
ratio of particle velocity to the speed of light in vacuum). The shape of
an elliptical cell is defined by two elliptical arcs connected by a tangent
straight line as shown in Fig. 1. The fundamental mode of the cavity
is the TM010 mode that is typically used as the operating mode of the
cavity.

In order to enhance the accelerating efficiency, multi-cell cavities
are created by connecting several cells together via their irises (see
Fig. 2 for the EXFEL cavity described in more detail in Section 3). In
a multi-cell cavity of 𝑁c cells, there are 𝑁c modes of each type due to
multi-cell coupling. In this work, we are interested in the TESLA cavity
shape [12], which is composed of 𝑁c = 9 cells.

Let 𝛺(𝐘) ⊂ R3 refer to the inner domain of the multi-cell cavity with
boundary 𝜕𝛺(𝐘), where 𝐘 denotes a vector of shape parameters to be
specified. The fields in the source-free, time-harmonic case, are given
by Maxwell’s equations:

∇ × 𝐄 = −𝑗𝜔𝜇0𝐇 ∇ ×𝐇 = 𝑗𝜔𝜖0𝐄
∇ ⋅ 𝜖0𝐄 = 0 ∇ ⋅ 𝜇0𝐇 = 0,

(1)

where 𝐄 and 𝐇 denote the electric and magnetic field strength, 𝜀0 and
𝜇0 are the permittivity and permeability of vacuum, respectively. The
walls are modeled as perfect electric conductor, i.e.,

𝐄 × 𝐧 = 0 𝐇 ⋅ 𝐧 = 0. (2)

Fig. 1. Geometrical shape of an elliptical cell.

Fig. 2. The European XFEL cavity and its parts: 8 dumb-bells (DB) and end-groups
(EGS, EGL).

One derives the Maxwell eigenvalue problem from (1) by eliminating
𝐇. Introduction of the wave number 𝑘 = 2𝜋𝑓

√

𝜇0𝜖0 yields

∇ × (∇ × 𝐄) = 𝑘2𝐄 in 𝛺(𝐘)
𝐄 × 𝐧 = 0 on 𝜕𝛺(𝐘),

(3)

for 𝐄 ≠ 0 and ∇ ⋅ 𝐄 = 0. One should be aware that, although not
explicitly specified, the field 𝐄 and the eigenfrequencies 𝑓 depend on
the shape parameters 𝐘. For each mode, i.e., a solution of (3) in the
passband, there is a phase shift between fields of neighboring cells that
can vary from 0 to 𝜋 radians. The 𝜋-mode, with frequency 𝑓𝜋 , of the
TM010 passband is used in multi-cell cavities for acceleration.

In order to maximize the voltage across the cavity, the length of the
middle-cells 𝐿 is fixed as 𝐿 = 𝛽𝜆∕2, where 𝜆 refers to the wavelength of
the 𝜋-mode, see [13]. Thus as the particle traverses a cell, the direction
of the field reverses such that the particle is exposed to an identically
directed electric field along the whole multi-cell cavity.

The modes in a passband have a small frequency difference. If the
frequencies of the modes in the fundamental passband are very close
to each other, there is a risk of exciting a mode close to 𝑓𝜋 by the RF
generator.

The spread of modes in the first passband is reflected in the cell-to-
cell coupling coefficient, which is defined as [14]

𝑘cc = 2
𝑓𝜋 − 𝑓0
𝑓𝜋 + 𝑓0

, (4)

where 𝑓0 refers to the lowest frequency in the passband. The cell-
to-cell coupling coefficient is dimensionless and a sensitive quantity
in the design phase. A large aperture radius (𝑅ir) typically gives rise
to a stronger cell-to-cell coupling. If the energy of the fundamental
mode is evenly distributed in the cells, the accelerating voltage is max-
imized [15, p. 129]. Furthermore, a uniform field distribution allows
for higher field magnitudes before reaching the surface electromagnetic
(EM) field limit. The field flatness is a central figure of merit that
indicates the uniformity of the field distribution of the fundamental
mode between the cells. In this paper, the field flatness is defined as

 =
min𝑖=1,…,𝑁c |𝐸

(𝑖)
ax,max|

max𝑖=1,…,𝑁c |𝐸
(𝑖)
ax,max|

, (5)
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Fig. 3. Different steps of the TESLA cavity production chain.

where 𝐸(𝑖)
ax,max refers to the maximum axial electric field in cell 𝑖.

The resonant frequencies strongly depend on the geometry parame-
ter in each cell, i.e., the equatorial radii 𝑅(𝑖)

eq, with 𝑖 = 1,… , 𝑁c, and
the iris radii 𝑅(𝑗)

ir , with 𝑗 = 1,… , 𝑁c + 1. In Section 4 we consider
perturbations of the form 𝑅(𝑖)

eq +𝛥𝑅(𝑖)
eq and 𝑅(𝑗)

ir +𝛥𝑅(𝑗)
ir for the equatorial

radii and the iris radii, respectively. Then, the parameter vector is given
as

𝐘 = [𝛥𝑅(1)
eq ,… , 𝛥𝑅(9)

eq , 𝛥𝑅
(1)
ir ,… , 𝛥𝑅(10)

ir ]. (6)

These perturbations change the resonant frequency of the respective
cell(s) and consequently affect the frequency and the field distribution
of the 𝜋-mode in the multi-cell cavity. It has been observed, that for the
𝜋-mode, the change in the field amplitude of each cell is proportional
to the frequency change by a factor of ∝ 1∕𝑘cc [16,17]. Thus, a small
cell-to-cell coupling increases the sensitivity of the field profile with
respect to geometrical perturbations.

3. Cavity manufacturing

The European X-ray Free Electron Laser [18] facility is constructed
to produce X-ray pulses with the properties of laser light and at inten-
sities much brighter than those produced by conventional synchrotron
light sources. The superconducting linear accelerator of the EXFEL has
a length of almost 2.1 km and brings electrons to an energy of up
to 17.5GeV. This is achieved by using a total of 808 superconducting
cavities installed in the three main linac sections and the injector.
The production of 𝑁cav > 808 cavities [19], the largest in the history
of cavity production, was realized by the two companies Research
Instruments GmbH (RI) and Ettore Zanon S.p.A. (EZ). EXFEL uses nine-
cell TESLA cavities built from solid niobium with a nominal 𝑓𝜋 = 1300
MHz. Each cavity (see Fig. 2) consists of 10 main sub-components,
welded together at the equator area. The sub-components consist of 8
dumb-bells (DB) and 2 end-groups (EGL, EGS), referring to short and
long end-groups, respectively. A different shape of the end-groups’ half-
cells provides the desired asymmetry of the Higher Order Mode (HOM)
field distributions and increases the efficiency of their extraction.

Geometric deviations of the inner cavity shape, the cavity length,
and the spectra of frequencies as well as deviations in HOM field
distributions occur due to random inaccuracies during manufacturing.
These uncertainties have a strong impact on the quantities of interest
described in Section 2. Hence, dedicated measures are undertaken
during production to ensure acceptable tolerances according to the
EXFEL cavity specification, in particular to obtain  > 90% and to
keep the deviation of 𝑓𝜋 below 100 kHz. These measures, together with
sources of uncertainty, are summarized in Fig. 3 and described in detail
in the following.

1. Step: Production
In this step 8𝑁cav DBs, consisting of 2 half cells each, 𝑁cav EGSs
and 𝑁cav EGLs are produced.

2. Step: Trimming
The target of this step is to compensate for shape deviations by
trimming the components. It is applied to all components (DB,
EGS and EGL) and allows to obtain the necessary cavity length
and frequencies with required accuracy.

3. Step: Selection and Sorting
The manufacturer selects two end groups and 8 dumb-bells. To
minimize the influence of shape variations for the eight DBs
on the asymmetry of the HOM field distribution, the DBs are
sorted during the cavity assembly: a DB with average frequency
is installed at the last position (position 8), the remaining DBs
are installed in order of decreasing frequency (see Fig. 4).

4. Step: Welding
All components (EGL, DBs, EGS) are welded to each other, which
induces shape deformations. The materials from the different
suppliers exhibit different shrinkages at the welding joint. The
resulting equator diameters may be slightly different depending
on the cavity position during welding, see [20].

5. Step: Chemical treatment
The chemical treatment removes impurities and spikes, see [19,
21]. The homogeneity of the removed material from the cavity
surface depends on many parameters of the process and the
facility. The electrochemical polishing treatment is usually less
homogeneous and more unstable than the equator welding.

6. Step: Tuning
The cavity is tuned, i.e., mechanically stretched or compressed,
according to the procedure described by [22] which adjusts 𝑓𝜋
with an accuracy of ±50 kHz and ensures  > 98% for the field
flatness.

7. Step: Final preparation (for operation)
The procedures applied in this step vary for different manu-
facturers and are shown in detail in FIG. 2 of [19]. Those
procedures include, e.g., final buffered chemical polishing etch-
ing, the integration of the cavities into the Helium tanks, a
pressure test using water under the pressure of 6 bar and the
cool down to 2K.

8. Step: Cavity
All 𝑁cav cavities are operational and the statistics of the funda-
mental mode spectra are measured under 2K. A description of
the measurement procedures is given below.

Quality assurance by mechanical measurements of the inner surface
dimensions becomes impossible after cavity welding and polishing.
Measurement data can only be obtained by ultrasonic or RF measure-
ments. These methods are used for control of equator welding stabili-
ties [20] or homogeneity of the polishing process [21]. In the following
the fundamental mode spectra are discussed for both manufacturers (RI
and EZ) based on RF measurements.

The measurements were carried out at operation temperature, i.e.,
cryogenic tests at 2K were used (Fig. 5). The measurement results are
presented in Table 1. Note, that the 𝜋−mode finally operates at 1.3GHz,
which is ensured by an additional tuning step (not described here). The
results show that the standard deviation of the 𝜋−mode (mode 8) in the
relaxed condition after cool down, is about 50 kHz. This value increases
with decreasing mode number. A similar behavior can be found for the
differences

𝛥𝑓𝑚 = |

|

|

E
[

𝑓RI,𝑚
]

− E
[

𝑓EZ,𝑚
]

|

|

|

of the averaged frequencies for each mode 𝑚 between the two manufac-
turers RI and EZ, which also increases with decreasing mode number,
see Table 1. In particular, the difference of average frequencies is about
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Fig. 4. Eigenfrequencies of dumb-bells and end-groups for an exemplary cavity from
the DESY database [23].

Fig. 5. Distribution of TM010 spectra for different manufacturers of the European XFEL
cavities.
Source: Data from [23].

14 kHz for mode 8 and 1098 kHz for mode 0, respectively. These results
indicate a high deviation of the cell-to-cell coupling coefficient between
the manufacturers with
𝑘cc = (1.854 ± 0.016)% (RI) and
𝑘cc = (1.941 ± 0.021)% (EZ),

which are given in the form of average value plus/minus one standard
deviation as obtained from database, see also Table 3. Preliminary
studies [24] show that only variations of the iris radius can explain
such high deviation in the cell-to-cell coupling coefficient. This will
be analyzed in more detail numerically in Section 4. Finally, the field
flatness distribution for the EXFEL cavities is presented in Fig. 6. It can
be observed that at least 70% of the cavities possess a field flatness of
more than 95%.

4. Uncertainty quantification

A stochastic setting is adopted here to model manufacturing and
measurement uncertainties and assess their influence on the cavity
design, i.e., each component of 𝐘 becomes a random variable

𝐘prod(𝜃) = [𝛥𝑅(1)
eq (𝜃),… , 𝛥𝑅(9)

eq (𝜃), 𝛥𝑅
(1)
ir (𝜃),… , 𝑅(10)

ir (𝜃)] (7)

where 𝜃 denotes a random outcome.
Uncertainty quantification encompasses various methods for uncer-

tainty propagation, Bayesian inverse problems, optimal experimental

Table 1
TM010 spectra for the European XFEL cavities.
Source: Data taken from [23].

Mode Frequency, MHz

Average St Dev

RI EZ RI EZ

0 1275.832 1274.734 0.226 0.268
1 1277.951 1276.926 0.212 0.245
2 1281.194 1280.294 0.186 0.208
3 1285.178 1284.460 0.157 0.168
4 1289.423 1288.921 0.124 0.129
5 1293.442 1293.161 0.089 0.090
6 1296.762 1296.649 0.064 0.066
7 1298.944 1298.946 0.052 0.054
8 1299.702 1299.716 0.050 0.052

Fig. 6. Cavities with different field flatness.
Source: Data taken from [23].

design and robust optimization, among others. The reader is referred
to [25–27] for a detailed background. In this work, uncertainty prop-
agation is of great interest, in particular, propagating distributions of
cell deformation parameters to distributions of quantities of interest,
such as the cell-to-cell coupling coefficient. This can be achieved by
sampling according to the underlying distribution and repetitively solv-
ing the cavity eigenvalue problem. Thereby, surrogate modeling is a
key step to keep the computational workload manageable. The prob-
ability distributions of the cavity geometry parameters are modeled
based on descriptions of the manufacturing process, as described in
Section 3. A more general approach would consist in inferring these
input distributions from measured RF data, which would require the
solution of an inverse cavity eigenvalue problem. Such a study is out
of the scope of the present work and can only be briefly addressed
here, applying significant simplifications. In fact, the present study,
should be considered as a step towards a more complete treatment of
uncertainties in the cavity eigenvalue problem.

To solve Maxwell’s equations we use the variational formulation
of (3). It reads: find 𝑘 and 𝐄 such that

(∇ × 𝐄,∇ × 𝐯) = 𝑘2 (𝐄, 𝐯) , (8)

for all 𝐯 in a suitable function space of square-integrable vector fields
with square-integrable curl, to which also the solution 𝐄 belongs. For
further information on function spaces in the context of Maxwell’s
equations, the reader is referred to [28]. In order to numerically
solve (8) we use a finite-dimensional space such that
(

∇ × 𝐄ℎ,∇ × 𝐯𝑗
)

= 𝑘2ℎ
(

𝐄ℎ, 𝐯𝑗
)

𝑗 = 1,… , 𝑁dof, (9)

with

𝐄ℎ =
𝑁dof
∑

𝑗=1
𝑒𝑗𝐯𝑗 , (10)
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Fig. 7. Black: PDF of beta distributed radius variation with support in
[−0.3mm, 0.3mm]. Blue, dashed: PDF of normal distribution with 𝜇 = 0mm and
𝜎 = 0.2

2
mm. Red, dotted: PDF of uniform distribution with support in [−0.3mm, 0.3mm].

where 𝑁dof denotes the number of degrees of freedom.
In this paper, calculations are carried out with the help of Super-

lans code [29]. Superlans is a 2D-axisymmetric finite-element-based
code used for the calculation of the monopole modes of azimuthally
symmetric geometries. For each simulation, the data describing the
contour of the cavity is created by Matlab [30] and saved in a format
readable by Superlans. Superlans is then called by Matlab to triangulate
the geometry, solve the resulting eigenvalue problem and calculate the
relevant secondary parameters. The results are finally read by Matlab
for the post-processing. The detailed description of the uncertainty
modeling steps, which are the numerical counterpart of the production
chain in Section 3, are as following:

1. Step: Production
We generate �̃�cav = 106 random (‘‘virtual’’) cavities by cre-
ating, in turn, seven independent random mid cells and two
end cells per cavity. In particular, those virtual cavities are ob-
tained by drawing random numbers for the vector 𝐘prod defined
in (7) where we assume independence of the random vari-
ables. Note that this assumption can often be justified for mass-
production processes, in particular, as the individual dumb-
bells are produced independently of each other. Although, the
normal distribution seems to be the right choice, we opt for
beta distribution in the range −0.3mm to 0.3mm. Beta distribu-
tions can be used to approximate normal distributions but have
bounded support [26, Appendix B], which is very important in
numerical studies to avoid non-physical parameter configura-
tions. Fig. 7 represents such an approximation with probability
density function (PDF)

𝜚(𝑦) = 140
(𝑢 − 𝑙)7

{

(𝑦 − 𝑙)3(𝑢 − 𝑦)3, 𝑙 < 𝑦 < 𝑢,
0, else,

where 𝑙 = −0.3mm and 𝑢 = 0.3mm denote the lower and upper
bound, respectively. In this particular case the shape parameters
of the beta distribution were chosen such that a normal distri-
bution with a 2𝜎 interval of −0.2mm to 0.2mm is approximated,
as illustrated in Fig. 7. We note that the large number of virtual
cavities �̃�cav does not lead to prohibitive computational cost, as
surrogate modeling is employed which will be explained later.

2. Step: Trimming
In contrast to real manufacturing, in the simulation approach,
we build cavities out of elementary cells instead of dumb-bells.
In this setting, it is not clear how to explicitly model the trim-
ming, however it is implicitly taken into account by the cavity
length limitation (11) which is considered in the next step.

3. Step: Selection and Sorting
The virtual 9-cell cavity is obtained from the random building
blocks of step 1 as follows: We apply a sorting procedure which

computes for all middle cells the fundamental resonance fre-
quency (by solving a one-cell eigenvalue problem), places the
cell closest to the average frequency at the 8th position and
orders the remaining cells according to decreasing frequency
between positions 2 and 7. Additionally, a total length constraint

𝑁c
∑

𝑖=1
𝛥𝐿(𝑖) < 3mm (11)

is enforced. If the constraint is violated after tuning (step 6),
the corresponding virtual cavity is disregarded. In real manufac-
turing, the constraint is already incorporated by trimming and
compensation effects.

4. Step: Welding
Since we consider cells instead of dumb-bells for the simulation,
the welding is modeled by averaging the iris radii of adjacent
cells. Note that the impact of eccentric deformations by (possi-
ble) miss-alignment of cells has been investigated in [7]. It was
found that this type of deformation has negligible impact on the
fundamental mode spectrum and is hence omitted here.
The steps of selection, sorting and welding influence the prob-
ability distribution. Hence, we introduce a new random vector
𝐘sort(𝜃) where the density is estimated with kernel density tech-
niques. Kernel density estimation is a non-parametric technique
to infer a continuous probability density function from a sample.
Here, we employ an Epanechnikov kernel [31] on the selected
(and sorted) sample {𝐘(𝑚)

sort}
�̃�sel
𝑚=1 of size �̃�sel = 809641, which

complies with the length constraint. The estimated densities are
presented in Fig. 8.

5. Step: Chemical treatment
An appropriate modeling of chemical treatment would require
very fine resolutions or even multi-scale analyses which cannot
be carried out in the present setting, see also [21] for further
information.

6. Step: Tuning
The virtual tuning procedure we apply, considers each cell in-
dividually and is therefore unable to incorporate field flatness
constraints directly. However, we observe that an acceptable
field flatness of at least 96% was obtained for all eigenvalue
problems that are eventually solved. In particular, each cell is
tuned to 1.3GHz by changing its length 𝐿(𝑖). Computationally,
this requires the solution of a non-linear root finding problem
for the objective function

𝑓 (𝑖)
obj

(

𝐿(𝑖)) = 𝑓 (𝑖)
0
(

𝐿(𝑖)) − 1.3GHz,

where 𝑓 (𝑖)
0 denotes the fundamental eigenfrequency of cell 𝑖 (one-

cell eigenvalue problem). The root finding problem is solved
using fzero in Matlab. However, we note that different root
finding schemes, e.g., Newton’s method or bisection, could be
employed as well.
In Fig. 9 the values of the 9-cell cavity accelerating frequency are
depicted for different choices of the length and equatorial radius
of the first cell. Considering the 1.3GHz contour (in black in the
figure), we observe that the tuning process correctly identifies
a length such that a value of 1.3GHz is obtained (the magenta
dots in the figure lie on the contour line as expected).

7. Step: Final preparation (for operation)
Due to insufficient data and involved numerical modeling this
step cannot be carried out in the setting employed in this work.

8. Step: Cavity
The Maxwell eigenvalue problem is solved to obtain the first
nine modes for each virtual cavity and statistics of the spectra
are computed. It shall be noted that, in general, eigenvalue track-
ing [7] should be employed to ensure a consistent matching of
the eigenfrequencies. However, it has been observed that, in this

5
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Fig. 8. Kernel density estimates of the 19 correlated input random variables.

case, the fundamental eigenfrequencies do not cross with respect
to parameter changes for the considered variations. Hence, mode
tracking is not applied here. The flow diagram of simulation
steps is given in Fig. 10.

In order to avoid the tremendous computational cost of repeatedly
solving a large number of eigenvalue problems in step 3 and step 8,
surrogate modeling is employed. In this work a dimension-adaptive
interpolation scheme [32] is used to construct accurate polynomial sur-
rogate models. In particular, the algorithm described in [33, Algorithm
1] is adapted to address the case of multiple quantities of interest.
This algorithm constructs polynomial models adaptively which yields
high computational efficiency. Moreover, we control the associated
approximation errors by cross-validation to be sufficiently small. For
convenience of the reader, we recall the main ideas of the employed
algorithm in Appendix B and refer for details to [33].

The 4-variate polynomial surrogate models employed in step 3
are computed by solving 50 one-cell eigenvalue problems while 500
evaluations of the 9-cell eigenvalue problem are used to construct the
19-variate polynomial surrogate model for step 8. For all surrogate
models, cross-validation indicates an error below 10 kHz for all fun-
damental resonance frequencies which is smaller than the standard
expected deviations.

Now, all statistical quantities of interest can be obtained from
the sample computed in step 8. In particular, we employ unbiased
statistical estimates for expectation and standard deviation, which are
depicted in Fig. 11 and Table 2. In the same way, we estimate expec-
tation and standard deviation of the cell-to-cell coupling coefficient 𝑘cc

E[𝑘cc] ≈ 1.82802, Std[𝑘cc] ≈ 0.01897. (12)

In the following, we employ Sobol indices as sensitivity measure,
despite the fact that they are defined for independent parameters.

Fig. 9. The surface represents the accelerating frequency of the 9-cell cavity for
different values of the changes in the equatorial radius 𝛥𝑅(1)

eq and in the length 𝛥𝐿(1) of
cell 1. The black line is the 1.3GHz contour line. The magenta points are the tuning
values for 𝛥𝐿(1) obtained for a given value of 𝛥𝑅(1)

eq . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

We use the OpenTurns implementation of Saltelli’s algorithm [34] to
estimate Sobol indices of the cell-to-cell coupling coefficient for the
19 input parameters 𝐘. Readers interested in details on this algo-
rithm are referred to Appendix A. The results presented in Fig. 12
(top) are obtained by evaluating 4 ⋅ 107 times the surrogate model. It
can be observed that deviations in the middle cells, in particular of
the respective iris radii, have significantly larger contributions to the
cell-to-cell coupling coefficient. Additionally, we estimate Borgonovo
indices, which represent another global sensitivity index family taking
correlations in the input data into account. To this end, we employ
an approach based on kernel density estimation, see for instance [35]

6
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Fig. 10. The flow diagram of simulations steps.

Fig. 11. Mean values of the frequencies of the first passband with bars indicating
the 3𝜎 deviation intervals. Results are computed with the adaptive Leja sparse grid
algorithm and 500 function evaluations.

Table 2
Mean values and standard deviations of the first
passband in the tuned configuration.

Mode Mean [MHz] Std. dev. [MHz]

0 1276.45 0.15

1 1278.50 0.13

2 1281.64 0.11

3 1285.60 0.08

4 1289.85 0.06

5 1293.84 0.04

6 1297.11 0.02

7 1299.25 0.00

8 1300.00 0.00

and references therein, on the sample {𝐘(𝑚)
sort}

�̃�sel
𝑖=1 and the corresponding

surrogate model evaluations of 𝑘cc. Contrary to Sobol indices which
decompose the output variance with regard to different model input
contributions, in the Borgonovo approach, the dependency between in-
put and output parameters is analyzed, see Appendix A for more details.
Hence, different sensitivity magnitudes can be expected in each case.
However, also in the case of Borgonovo sensitivity analysis, similar
results are obtained. In particular, the variations in the middle cells
can be identified to have a larger impact than the corresponding end-
cell variations. The surprisingly large contribution 𝛥𝑅(8)

eq , in comparison
to the variance-based analysis, can most probably be explained by the

special treatment of cell 8 in the sorting procedure. Since we place the
cell closest to the average frequency at position 8, a large variation of
𝛥𝑅8

eq might implicitly also imply larger variations of the other middle
cells. To confirm this interpretation, we additionally repeated this study
with a different sorting procedure which omits the special treatment of
cell 8. In this case, the sensitivity of 𝛥𝑅(8)

eq was reduced drastically, as
expected.

As in [24], we proceed by making the simplifying assumption, that,
for the rest of the paper, all iris radii deviations 𝛥𝑅(𝑖)

ir , 𝑖 = 1,… , 𝑁c +
1 of a cavity are the same and accordingly drop the index 𝑖. This
allows us to carry out a preliminary inverse analysis, i.e., to compute
geometric variations from the cell-to-cell coupling coefficient. To this
end, we first repeat the computation of sensitivity indices, by rerunning
the full simulation workflow, where we now model the overall iris
radii deviation 𝛥𝑅ir as one beta distributed random variable in the
range of ±0.3nm. The corresponding Sobol indices, computed using
2.2 ⋅ 106 surrogate model evaluations in Saltelli’s algorithm, as well as
the Borgonovo indices, are shown in Fig. 13.

As expected, the cell-to-cell coupling coefficient is heavily influ-
enced by the iris radius while the equatorial radii have significantly
less impact. In particular, the Sobol coefficients indicate that more than
95% of the variance can be attributed to changes in the iris radius 𝛥𝑅ir.

To conduct a preliminary inverse analysis, based on the previous
findings, we neglect the deformations in the equatorial radii in the
following. We note that considering all parameters individually in
an inverse study would be numerically much more challenging, as it
would require approaches which assure that the problem remains well-
posed [36]. Such a study is considered as out of the scope of the present
work. In this case, the task consists in estimating the parameter 𝛥𝑅ir
from measurements of the cell-to-cell coupling coefficient 𝑘cc. Fig. 14
depicts the associated relation which appears to be monotonic and
almost linear in the considered range. We collected measurements of
the fundamental mode spectra for 𝑁cav = 826 cavities from the DESY
Database [23]. Parameter estimation is then carried out by numerically
inverting

𝛥𝑅ir,𝑖 ↦ 𝑘cc,𝑖, 𝑖 = 1,… , 𝑁cav, (13)

where it should be noted that the subscript 𝑖 refers to the cavity
number, while in previous parts of the paper the superscript 𝑖 referred
to the position of a local iris radius variations. This is implemented by
reformulating the root-finding problem as an optimization problem and
applying the scipy implementation of the L-BFGS-B algorithm [37,38],
i.e., a quasi-Newton method. However, we note that this is not a sensi-
tive choice and other root finding schemes, e.g., bisection or Newton’s
method could also be employed. The sample statistics are presented in
Table 3.

7
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Table 3
Sample mean and sample standard deviation of cell-to-cell coupling coefficient for 𝑁cav = 826 cavities as
well as statistics about corresponding estimated iris deformations.

E
[

𝑘cc,𝑖
]

Std
[

𝑘cc,𝑖
]

E
[

𝛥𝑅ir,𝑖
]

Std
[

𝛥𝑅ir,𝑖
]

RI 1.854 0.016 0.087mm 0.057mm
EZ 1.941 0.021 0.400mm 0.073mm
RI+EZ 1.897 0.047 0.243mm 0.170mm

Fig. 12. Sobol indices (top) and Borgonovo indices (bottom) for the cell-to-cell coupling 𝑘cc.

Fig. 13. Sobol indices (top) and Borgonovo indices (bottom) for the cell-to-cell
coupling 𝑘cc, when all iris radii are deformed by the same value of 𝛥𝑅ir.

The XFEL specification requires deviations in the iris radii before
welding to be below 0.2mm with respect to the nominal value. It is
expected that the mean values and deviations of the iris radii change
during the production chain, for example the chemical treatment is
considered to have a significant influence. This offset is estimated by

Fig. 14. Coupling coefficient 𝑘cc with respect to change in iris radius 𝑅ir.

our numerical model to be E[𝛥𝑅ir,𝑖] = 0.243mm, cf. last row of Table 3.
Despite this offset, the standard deviation Std[𝑅ir,𝑖] from both vendors
are still within the limits of the specification (0.17mm < 0.2mm)
after the full production chain. When considering the vendors sepa-
rately, then both production processes, standard deviations 0.057mm
and 0.073mm, operate approximately at a three-sigma level.

5. Conclusion

In this contribution the manufacturing chain of the EXFEL cavity
was summarized and translated into a simulation workflow considering
uncertainties. To analyze the sensitivities of the uncertain parameters,
we propose an efficient adaptive surrogate modeling technique. The
numerical study confirms the expert knowledge that the iris radius is
the most critical parameter for the cell-to-cell coupling coefficient. Fi-
nally, the surrogate model is used to infer the sample mean and sample

8
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standard deviation of the iris radius variations from frequency measure-
ments. For both manufacturers the obtained standard deviations are
within the specification.
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Appendix A. Global sensitivity analysis

Sensitivity analysis is a powerful tool in order to investigate the
model behavior and analyze the effect of changes in the model in-
puts [39]. More explicitly, sensitivity analysis determines the key
drivers for uncertainty in the model output. In the following 𝐘(𝜃) ∈
𝛯 ⊂ R𝑀 denotes the vector of 𝑀 random input variables and (𝐘(𝜃)) ∈
𝛯 ⊂ R represents the model output, named quantity of interest (QoI)
hereafter. Note that in this work the inputs 𝐘 refer to the geomet-
rical parameters specified in (6) while the output  is given by the
cell-to-cell coupling coefficient 𝑘cc.

Computing derivatives of the QoI is a frequently used approach
for sensitivity analysis, however, especially in the case of non-linear
models this approach only provides locally information at the nominal

value where the derivatives are computed. Therefore, global sensitiv-
ity analysis (GSA) methods are developed, that explore the effect of
changes in the whole input space [40].

Standard indices used for GSA are Sobol indices [41], which require
independent input parameters. Contrary to Sobol indices, Borgonovo
indices [6] do not rely on this assumption. Moreover, they are moment
independent quantities. Both indices are explained in more detail in the
next two subsections.

A.1. Sobol indices

Sobol indices belong to the class of variance-based sensitivity anal-
ysis and are based on the idea of decomposing the variance of the
QoI. A detailed description and derivation of the Sobol indices is given
in [40] and a brief summary, following the exposition in [42], is given
hereafter. In a first step, the QoI is decomposed by a so called Hoeffding
decomposition as

(𝐘) = 0 +
𝑀
∑

𝑖=1
𝑖(𝑌𝑖) +

𝑀
∑

𝑖=1

∑

𝑗>𝑖
𝑖,𝑗 (𝑌𝑖, 𝑌𝑗 ) +⋯ (14)

+1,2,…,𝑀 (𝑌1,… , 𝑌𝑀 ),

where

0 = E[], (15)

𝑖(𝑌𝑖) = E𝐘∼ 𝑖[|𝑌𝑖] − E[𝑄], (16)

𝑖,𝑗 (𝑌𝑖, 𝑌𝑗 ) = E𝐘∼ 𝑖,𝑗 [|𝑌𝑖, 𝑌𝑗 ] −𝑖 −𝑗 − E[𝑄]. (17)

Here, E𝐘∼ 𝑖[|𝑌𝑖] denotes the expected value, conditional on the ran-
dom variable 𝑌𝑖. In the presence of independent input random variables
this orthogonal function decomposition can be transformed into a
decomposition of the variance as

V[] =
𝑀
∑

𝑖=1
V[𝑖(𝑌𝑖)] +

𝑀
∑

𝑖=1

∑

𝑗>1
V[𝑖,𝑗 (𝑌𝑖, 𝑌𝑗 )] +⋯ (18)

+ V[1,2,…,𝑀 (𝑌1,… , 𝑌𝑀 )].

Eq. (18) can be interpreted as follows: The first sum in (18) de-
scribes the individual contribution of the input parameter 𝑌𝑖 to the
overall variance V[], while the other terms of the sum contain contri-
butions from combined parameter effects.

Based on this decomposition the first order Sobol indices are defined
as

𝑆𝑖 =
V[𝑖(𝑌𝑖)]
V[]

. (19)

In addition to the first order indices there are total effect indices 𝑆𝑇
𝑖 ,

which describe the contribution of an individual parameter including
higher order (interaction) effects with other parameters to the total
variance. As a consequence, by comparing the total indices with the
first order indices the modeler can detect potential interaction effects
among the input parameters, i.e., if 𝑆𝑇

𝑖 > 𝑆𝑖.
One approach to compute the Sobol indices is a Monte Carlo based

sampling approach introduced in [40] and often referred to as Saltelli’s
algorithm. Basically, two independent samples of the input vector 𝐘 are
generated. Each sample contains 𝑁 realizations of each input variable
and both samples are stored in a 𝑀 ×𝑁 matrix 𝐀 and 𝐁, respectively.
Additionally a matrix 𝐂𝑖 is created, by keeping the 𝑖th row of matrix 𝐀
and replacing all other rows by the entries of matrix 𝐁. The matrix 𝐂𝑖
will be used to approximate the conditional expectation of the QoI, by
fixing the variation in one parameter. The first order Sobol index can
then be approximated by

𝑆𝑖 ≈
1
𝑁

∑𝑁
𝑗=1 (𝐚𝑗 )(𝐜𝑗 ) − EMC

𝐀 []2

VMC
𝐀 []

, (20)

where EMC
𝐀 ,VMC

𝐀 denote the Monte Carlo approximation of the mean
value and variance based on the sample stored in 𝐀, respectively. Also,
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𝐚𝑗 and 𝐜𝑗 denote one column of the respective sample matrix, which
is equal to one independently drawn realization. For further details
and the approximation of the total order indices, the reader is referred
to [40].

A.2. Borgonovo indices

The Sobol indices presented in the last section are global and
quantitative indicators, which do not assume linearity of the model.
However, Sobol indices belong to the class of variance based methods
that ‘‘implicitly assume that this moment (variance) is sufficient to
describe the output variability’’ [43]. In addition, Sobol indices require,
that the input variables are statistically independent.

To overcome these limitations Borgonovo [6] introduced a new
moment-independent importance measure, which analyzes the effect of
each input on the entire output distribution. To this end, the difference
between the unconditional pdf 𝜌 and the conditional pdf 𝜌|𝑌𝑖 is
computed by the shift function

𝑠(𝑌𝑖) = ∫𝛯

|𝜌(𝑞) − 𝜌|𝑌𝑖 (𝑞)| d𝑞. (21)

The unconditional pdf 𝜌 represents the output distribution, when all
input parameters are allowed to vary and the conditional pdf 𝜌|𝑌𝑖
represents the case when the uncertainty in one input is eliminated by
fixing it to one value.

Taking the expectation of the shift function w.r.t. 𝑌𝑖 and multiplying
by a normalization constant yields the Borgonovo sensitivity indices

𝛿𝑖 =
1
2
E𝑌𝑖 [𝑠(𝑌𝑖)]

= 1
2 ∫𝛯

𝜌𝑌𝑖 (𝑦𝑖)
[

∫𝛯

|𝜌(𝑞) − 𝜌|𝑌𝑖=𝑦𝑖 (𝑞)| d𝑞
]

d𝑦𝑖. (22)

In fact it is shown in [35] that the Borgonovo sensitivity indices are
a special case of a global sensitivity analysis framework based on
a 𝑓 -divergence dissimilarity measure between the unconditional and
conditional distribution of .

In [6] several properties of the Borgonovo indices are proven. First
of all, the indices are normalized and bounded such that 0 ≤ 𝛿𝑖 ≤ 1. If
 is independent on 𝑌𝑖 then 𝛿𝑖 = 0. Since no independence of the input
variables is required, the Borgonovo indices can also be applied in the
presence of dependent inputs.

Following [35], the Borgonovo indices can be computed by refor-
mulating (22) in terms of marginal and joint probability densities as

𝛿𝑖 =
1
2 ∫𝛯×𝛯

|𝜌(𝑞)𝜌𝑌𝑖 (𝑦𝑖) − 𝜌,𝑌𝑖=𝑦𝑖 (𝑞, 𝑦𝑖)| d𝑞 d𝑦𝑖. (23)

In this work the joint and marginal densities are estimated via
kernel-density estimators based on the given data sample with auto-
mated band width selection. The integral in (23) is then estimated via
a Monte Carlo approach, where 𝑦(𝑗)𝑖 , 𝑞(𝑗) denote a sample point of the
corresponding input–output distribution:

𝛿𝑖 ≈
1
2
1
𝑛

𝑛
∑

𝑗=1
|𝜌(𝑞(𝑗))𝜌𝑌𝑖 (𝑦

(𝑗)
𝑖 ) − 𝜌,𝑌𝑖 (𝑞

(𝑗), 𝑦(𝑗)𝑖 )|. (24)

The indices computed by (24) are verified via a second approach,
which approximates (22) by a histogram-based approach and a good
agreement of the two approaches is observed. See [6] for further
information on the histogram-based approach.

Appendix B. Surrogate modeling

As discussed in Section 4, the proposed uncertainty quantification
study requires the repeated solution of the parameterized eigenvalue
problem (3) for different inputs 𝐘. In order to achieve a high accu-
racy, a large number of random (virtual) cavities �̃�cav is desirable.
However, in this case, the computational cost of repeatedly solving (3)

with the finite element method would become prohibitive. Hence, we
employ surrogate modeling to keep the computational effort feasible.
The main idea of polynomial surrogate modeling is to approximate
the mapping from input parameters 𝐲 ∈ 𝛯 ⊂ R𝑀 , which might, for
example, represent a realization of the random vector given in (6), to an
output quantity , which, e.g., might refer to 𝑓1, … , 𝑓9 (fundamental
mode spectrum) or 𝑘cc, using global polynomial approximations. In this
case spectral convergence can be expected [26]. In particular, we use
approximations of the form

(𝐲) ≈
𝑁
∑

𝑖=0
𝑐𝑖𝛹𝑖(𝐲) =∶ 𝑁 (𝐲), (25)

where 𝛹𝑖 are global multivariate polynomials and 𝑐𝑖 denote the asso-
ciated coefficients. In this work, we rely on the stochastic collocation
method [44] to compute the approximation (25). In particular, we use
the algorithm proposed in [32], with minor modifications to address
the case of multiple quantities of interest. In the following, we recall
the main ideas but refer to [32,45] for the specific details.

The method is based on Leja nodes [46] which are nested interpo-
lation nodes defined by an optimization problem, s.t. for example the
uni-variate nodes {𝑦(𝑖)1 }𝑖 are given recursively by

𝑦(𝐼)1 = argmax
𝑦1

𝐼−1
∏

𝑖=0
|𝑦1 − 𝑦(𝑖)1 |. (26)

Since Leja nodes allow, by construction, for a nested and granular
refinement, they are well suited for adaptive approximations in the
multivariate case [32,47]. Note that there are also generalizations of
(26), i.e., weighted Leja nodes tailored to the probability density of the
input [32,48]. However, those are not considered here, as we aim for
high uniform accuracy.

Corresponding multivariate nodes {𝐲(𝑖)}𝑖 could be obtained by a
tensor-product construction of univariate nodes, i.e.,

{𝑦(𝑖)1 }𝑖 × {𝑦(𝑖)2 }𝑖 ×⋯ × {𝑦(𝑖)𝑀}𝑖. (27)

Stochastic collocation then consists in evaluating the FE model for
all 𝐲(𝑖) and enforcing the corresponding collocation conditions for the
surrogate model, i.e.,

(𝐲(𝑖))
!
= 𝑁 (𝐲(𝑖)) ∀𝐲(𝑖). (28)

For a larger number of parameters (e.g., 𝑀 > 4) the computational cost
associated to the tensor grid (27) would become prohibitive. Hence, the
employed algorithm constructs a sparse-grid, cf. [49], which utilizes
only a subset of (27) and neglects points which do not significantly
contribute to the accuracy of the approximation. To this end, the
adaptive selection of admissible nodes for refinement is based on the
respective point-wise error 𝜖 = | −𝑁 | if a scalar output quantity is
considered. The node associated to the largest error is then chosen to
refine the approximation. If several quantities of interest (1),(2),…
shall be approximated simultaneously based on the same set of nodes,
we replace 𝜖 by

𝜖 = max{𝑤1|(1) −(1)
𝑁 |, 𝑤2|(2) −(2)

𝑁 |,…}, (29)

where 𝑤 = [𝑤1, 𝑤2,…] denotes a vector of weights. The adaptive
selection of interpolation nodes based on 𝜖 is terminated when a
given computational budget is reached. For details on the definition
of admissible nodes based on downward-closed multi-index sets and
the employed multivariate hierarchical Lagrange polynomials, we refer
to [32,45].

First, the surrogate modeling technique is applied to construct the
4-variate polynomial surrogate models for step 3 of Section 4. In par-
ticular, using a computational budget of 50 FE model evaluations, we
construct approximations of the fundamental eigenfrequency 𝑓 of cell 𝑖
w.r.t. the variations in both adjacent iris radii 𝛥𝑅(𝑖)

ir , 𝛥𝑅
(𝑖+1)
ir , the equator

radii 𝛥𝑅(𝑖)
eq and the length 𝛥𝐿(𝑖). The accuracy of the approximations

can then be quantified by cross-validation in terms of the empirical 𝐿∞
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norm. In particular, for a set of random parameter realizations {𝐲cv}𝑁cv
𝑖=1 ,

we compute

𝐸cv = max
𝐲∈{𝐲cv}𝑁cv

𝑖=1

|

|

|

(𝐲) −𝑁 (𝐲)||
|

. (30)

For the end-cells as well as the middle-cells, the error 𝐸cv, computed
with a uniformly distributed sample of size 𝑁cv = 1000, is below 5 kHz.

Next, we compute the 19-variate surrogate models employed in step
8 using 500 FE model evaluations. In this case, we consider the 19-
dimensional input vector (6) and 10 output quantities 𝑓1,… , 𝑓9, 𝑘cc
with weight vector 𝑤 = [1,… , 1, 0]. Cross-validation for the sample
{𝐘(𝑚)

sort}
1000
𝑚=1 , see Section 4, indicates an error below 10 kHz for all fun-

damental eigenfrequencies and of less than 5 ⋅ 10−4 for the cell-to-cell
coupling coefficient 𝑘cc.

The estimates for expectation as well as standard deviation for each
output quantity (𝑖) are then obtained from the respective surrogate
models (𝑖)

𝑁 as

E[𝑄(𝑖)] ≈ 1
�̃�sel

�̃�sel
∑

𝑚=1
(𝑖)
𝑁
(

𝐘(𝑚)
sort

)

∶= EMC[𝑄(𝑖)], (31)

Std[𝑄(𝑖)]2 ≈

∑�̃�sel
𝑚=1

(

(𝑖)
𝑁
(

𝐘(𝑚)
sort

)

− EMC[𝑄(𝑖)]
)2

�̃�sel − 1
. (32)
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