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Abstract

Attosecond X-ray pulses are the key to studying electron dynamics at their nat-
ural time scale involving specific electronic states. They are promising to build
the conceptual bridge between physical and chemical photo-reaction processes.
Free-electron lasers have demonstrated their capability of generating intense
attosecond X-ray pulses. However, harnessing them for time-resolving experi-
ments and investigations of nonlinear X-ray absorption mechanisms remains a
cutting-edge challenge. We have characterised X-ray pulses with durations of
down to 700 attoseconds and peak powers up to 200GW at ∼1 keV photon
energy via angular streaking at the SQS instrument of the European XFEL.
As direct application, we present results of nonlinear X-ray–matter interaction
via state-specific spectroscopy on a transient system. Using the derived spectral
and temporal information of each pulse, we deliberately steer the probability
for formation of double-core vacancies in neon gas atoms through excitation or
ionisation of the second inner-shell electron after K-shell ionisation. Our results
advance the field of attosecond science with highly intense and fully characterised
X-ray pulses to the site-specific investigation of electronic motion in transient
media.
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1 Introduction

Attosecond physics based on high harmonic generation (HHG) of an optical laser has
been developed from an experimental novelty to a Nobel prize-winning area of funda-
mental research [1, 2]. It has been extended to measurements of electron tunnelling
in atoms [3], timing the photoemission from metal surfaces and bulk material [4] as
well as to investigating their excited states in the form of plasmons [5]. Nevertheless,
many desirable investigations have been hampered by the relatively low flux at higher
photon energies achievable with HHG from longer driving laser wavelengths. Their
limited energy tunability and challenging access to the X-ray regime [6, 7] are further
constraints that can now be overcome by short-wavelength (X-ray) free-electron lasers
(XFELs) [8].

Over the past decade, significant progress has been made in the compression of
FEL pulses over the whole X-ray energy range [9, 10]. These advancements have been
driven by various methodologies including non-linear compression [11], fresh slice tech-
niques [12], emittance spoilers [13], and enhanced SASE methods [14]. Particularly
noteworthy are the latest achievements in the vicinity of attosecond pulse durations
within FELs, showcasing remarkable attosecond pump and probe capabilities [15, 16],
as well as the generation of high peak power attosecond pulses [17]. The shortening of
pulse durations from the femtosecond level to the attosecond scale represents a break-
through in ultrafast FEL science due to their capability of producing highly intense
X-ray pulses precisely tunable in photon energy, and thus to element-specifically
address electrons in nonlinearly populated states [18].

These advancements offer efficient access to tracking energy-level rearrangement
dynamics in atoms, molecules, and condensed matter, allowing the exploration of
ultrafast processes in the dynamical origins of chemistry. Attosecond X-ray pulses
create the opportunity for a direct observation of these charge redistribution dynamics
in transient states such as electronic configuration changes in molecules [16, 19] and
liquid water [20]. Moreover, the precise temporal characterization of single FEL pulses
is an important prerequisite for the interpretation of experimental results from high-
intensity coherent X-ray diffraction and imaging measurements [21, 22]. Entering the
attosecond regime with full element specificity [14, 15, 23] and high pulse energies
is, consequently, not merely an incremental step towards advanced time and spatial
resolution, but rather the opening to a new scientific field with rich opportunities for
understanding nature’s dynamics literally at their core.

However, the underlying stochastic nature of the XFEL pulse generation by self-
amplification of spontaneous emission (SASE) [24] limits the possible control of the
X-ray pulses’ time–energy structure. Despite several attempts to predict pulse charac-
teristics using standard accelerator and photon diagnostics alongside machine learning
(ML) approaches [25–27], accurate delivery of the time and energy structure especially
with highly manipulated bunches for the production of attosecond pulses remains elu-
sive. High-repetition-rate SASE XFELs [28] can mitigate this limitation by covering a
broad pulse structure distribution, combined with a non-invasive pulse-by-pulse diag-
nostics and near-online analysis method based on ’angular streaking’ [15, 29, 30]. In
this scheme, illustrated in Figure 1, the total set of stochastic pulse shapes can be
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sorted by an evaluation algorithm for suitable temporal structures. In recent experi-
ments, angular streaking was already used to determine an overall regime of attosecond
pulse durations for specific FEL operation modes, without using the varying single-
shot X-ray pulse structure as a parameter for further physical analyses [16, 19, 20].
For a complete picture, the described intricate nature of SASE FEL machines requires
shot-by-shot diagnostics to ensure an accurate understanding of the pulse-shape-based
effects on the sample.

Here, we report on the generation and characterisation of isolated attosecond
pulses of up to 200GW peak power at 990 eV photon energy and a duration as low
as ∼700± 150 as at the SASE-based European XFEL. For the characterisation of the
single-shot angular streaking data, we utilised a well-established iterative approach [15]
as well as a recently developed machine-learning (ML) technique [31], which allows
for similar reconstruction quality using less computation time and bearing the poten-
tial for online pulse characterisation. Moreover, we present time-delayed pump/probe
sequences of double-peak attosecond pulses with various delays, as well as system-
atically varying pulse duration distributions for two different operation modes. Due
to the high intensity of these XFEL pulses, ionic or excited states of matter can
be created efficiently, and the emerging dynamics can be interrogated via the very
same pulse with fully determined characteristics [32–37]. We show this capability by
simultaneously measuring attosecond X-ray pulse shapes and the duration-dependent
formation of double-core-hole states in gaseous neon. Thus, we combine attosecond
single-shot photoelectron spectroscopy of extremely short-lived transient species with
state-specific resonant X-ray excitation, paving the way to further time-resolved stud-
ies of more complex quantum systems, e.g. organic molecules, where coupled electronic
and nuclear dynamics can be disentangled.

2 Intense Attosecond X-ray Pulses

In this experiment, we used isolated attosecond X-ray pulses (hν = 990 eV) with a
peak power of up to 200GW, characterised directly in time on a single-shot basis. In
this dataset, approximately 20% of the shots were found to be shorter than 1 fs and
approx. 3% below 750 as, with the shortest pulses in the order of 700 as (Figure 2).
In this work, all durations are given in terms of the temporal distance between the
first and last points where the temporal power profile reaches a value of half of the
maximum (full width at half maximum / FWHM).

To generate attosecond SASE pulses at the European XFEL, we used a combi-
nation of increasing the FEL gain and reducing the length of the lasing window of
the electron bunches in the accelerator. We achieved this with the chirp-dispersion
method [38], using a non-standard approach for controlling the dispersion, with the
additional benefit of increasing the peak current. The nonlinear electron bunch com-
pression settings were later relaxed to a more conventional level to produce slightly
longer pulses for comparison (FEL Setting B in Figure 2). A more detailed description
of this innovative attosecond pulse generation mechanism can be found in the SI and
will be also presented elsewhere (Serkez, S. et al., in preparation).
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Fig. 1 Schematic overview of the angular streaking experiment. A train of XFEL pulses is over-
lapped with circularly polarised mid-infrared streaking laser pulses. The resulting phase-dependent
electron energy shift is measured in a photoelectron spectrometer array. Three examples of simulated
photoelectron spectra in the polarisation plane, a) a short (with respect to the optical cycle of the
streaking laser) single pulse: shifted, here, to the right, b) an unstreaked shot (no shift), c) a double-
peak pulse. The latter demonstrates best the capabilities of the method, as two rings appear in the
angle-dependent photoelectron spectrum. With a suitable reconstruction algorithm, arbitrary XFEL
pulse shapes can be reconstructed. The dashed white arrow indicates the X-ray polarisation, which
imprints the angular distribution of photoelectrons through the transition’s differential cross section.

Furthermore, in order to demonstrate the principal time-resolving capabilities,
double-peak attosecond pulses, both at hν = 990 eV, with individual single-peak pow-
ers close to 50 GW have been identified (Figure 3). Knowledge about the pulse
structure allows sorting on peak power (as shown in section 4) as well as further
analysis methods such as stochastic delay scans. As European XFEL is the first high
repetition-rate XFEL in the world with >1000 shots per second, this ’post-sorting’
yields the promise to get access to X-ray pump/X-ray probe methodology with highly
intense pulses and attosecond time resolution. Figure 3 illustrates exemplary pulse
structures in this regard. Together with the high photon energy from the XFEL,
these pulses ultimately will allow for the required intensities that enable time-resolved
insights into ultrafast nonlinear electronic processes.

3 SASE pulse characterisation

The measurement has been conducted at the SQS instrument of European XFEL,
using the above-described highly compressed fresh-slice operation mode for generat-
ing X-ray pulses with durations entering the attosecond regime [12]. The temporal
characteristics of the pulses can usually only be inferred indirectly in the SQS branch
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Fig. 2 Distribution of pulse FWHM duration for two evaluated machine operation modes, tuned
for shortest possible pulses (Setting A) and longer pulses (Setting B). Insets: Example single pulse
temporal shapes from the respective datasets.

of the beamline from destructive, i.e. photon-absorbing, measurements of the X-
ray pulse spectra via a VLS-grating spectrometer [39] or indirect methods such as
cross-correlation measurements [40, 41].

For fully characterizing the time–energy distribution of these pulses, we employ
angular streaking, the only currently available direct and non-invasive method for
characterizing the temporal and spectral X-ray structures of subsequent FEL pulses,
i.e. the number of SASE peaks, the single-peak durations, and the SASE-pulse spectral
chirp for each single shot (Figure 3). This knowledge can be used to find optimised FEL
settings for targeted X-ray pulse characteristics, such as the shortest possible pulses,
double-peak pulses with defined delay, or two-colour operation modes, as, for example,
demonstrated in [42]. As the streaking technique in a low-density gas target is only
negligibly influencing the X-rays with an absorption fraction on the sub-percent level,
these same pulses can be used in a subsequent experiment, which can now capitalise
on the fully determined X-ray characteristics via pulse tagging.

For this technique, a circularly polarised optical laser pulse is temporally and
spatially overlapped with the X-ray FEL pulse in a region filled with neon gas at
a partial pressure of approximately 10−7 hPa. The neon atoms are core-ionised by
the XFEL pulse. The outgoing photoelectrons interact with the circularly polarised
4.75 µm mid-infrared (MIR) pulse, changing their momentum and leading to an energy
and angular redistribution of the electrons depending on the electric field amplitude
and phase of the streaking laser during the temporal window. The resulting angular
and spectral distribution is detected by an array of 16 electron time-of-flight (eTOF)
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spectrometers, positioned in a plane perpendicular to the joint propagation direction
of the MIR laser beam and the FEL around the interaction point (Figure 1) [15].

In the present scheme, the retardation for all spectrometers can be set individually
and was initially optimised to best resolve X-ray-ionised 1s photoelectrons. For neon
and at an X-ray photon energy of 990 eV, these settings led to a photoelectron kinetic
energy of ∼120 eV [43], allowing to robustly reconstruct the X-ray pulse shape with
the applied angular-streaking technique. The maximum energy shift induced by the
streaking laser is on the order of 15 eV. The spectral and temporal characteristics of
individual pulses have been reconstructed using a post-experiment iterative retrieval
code similar to the one published by Hartmann et al. [15].

This algorithm, described in more detail in subsection 3.1, is also adaptable to
non-uniform configurations of eTOFs. For faster and more efficient online-feedback
during future experiments, we established an ML-based evaluation pipeline (see sub-
section 3.2), implemented into the data read-out stream at the SQS instrument.
Though the ML pipeline was running simultaneously during the measurement, pro-
viding single-shot X-ray pulse information at the full XFEL repetition rate, for the
analysis presented in the following we relied on the iterative algorithm for a robust
derivation of the pulse duration.

For the nonlinear dynamics measurement, we used the adaptability of our detector
and the flexibility of the retrieval code to set the energy windows of 4 eTOF spectrom-
eters to values outside the neon 1s electron acceptance window, deliberately dispensing
with these eTOF spectrometers for the pulse characterisation. The acceptance energy
of these 4 eTOF spectrometers was tuned instead to the expected energy of Auger elec-
trons (recently also called Auger-Meitner electrons) emerging from so-called double
core-hole (DCH) states [36] at much higher kinetic energies between 835 eV to 880 eV,
while the other spectrometers remained at lower retardation voltages to ideally resolve
the 1s photoelectrons for the X-ray pulse reconstruction of the corresponding shot.
These combined single-shot measurements not only uncover the nonlinear dependency
between X-ray pulse duration and DCH generation probability described in section 4,
but further verify the attosecond X-ray pulse shape reconstruction due to its direct
correlation with the DCH dynamics.

3.1 Iterative pulse reconstruction

To retrieve the temporal and spectral properties of the X-ray pulses via angular
streaking, an algorithm called “PACMAN” [15] evaluates the photoelectron momen-
tum distributions obtained by the eTOF spectrometers. In this algorithm, a simple
semi-classical streaking simulation is run for a set of single-peak FEL pulses arranged
on a time–energy grid, called basis. In every iteration, the best-fitting basis entry is
subtracted incoherently from the data and an according intensity value is added to
the resulting spectrogram at the point in time and photon energy corresponding to
this entry. Repeating this process until the measurement is “consumed” results in a
full spectrogram.
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3.2 Machine-learning-based algorithm for online feedback

The main limitation of the iterative pulse reconstruction algorithm is the analysis
speed, which currently does not allow for real-time feedback. The potential for using
ML-based ultrafast diagnostic tools is vast. Li et al. [26] linked XFEL electron and
photon beam properties to create an ML-based diagnostic tool; Alaa El-Din et al. [27]
used ML to predict attosecond two-colour pulses; Brunner et al. [44] utilised ML to
map from streaking traces to near-infrared pulses and electron wavepackets; Meng
et al. [45] applied ML to learn the mapping from photon spectrograms to attosec-
ond pulses using the all-optical method. In a recent article [31], we have shown that
ML, particularly convolutional neural networks, in conjunction with angular streaking
holds the potential for online XFEL pulse characterisation and, therefore, online diag-
nostics. We used these findings to implement an ML-based method that works during
experimental campaigns and matches the quality of the iterative pulse reconstruction
approach while only taking a fraction of its computation time.

We derived the desired pulse characteristics, such as the XFEL temporal pulse
structure, from the detector images using the iterative reconstruction algorithm
(cf. subsection 3.1) for generating labels from real-world experimental data, which we
used for training the models in a supervised manner. A key challenge for model train-
ing is the limitation of labelled experimental data. We opted for a train–validation data
split of 90%–10%, resulting in 65056 samples for training and 7232 samples for vali-
dation. Additionally, we held back 88 test samples to show the model’s performance,
which can later be used as prediction examples. Figure 4 shows three of the 88 test
samples. By utilizing a dropout-based uncertainty technique [46], we can ensure valid-
ity of the model’s prediction, which, in addition to further details on the ML pipeline,
is detailed in the supplementary information. The ML predictions resemble the results
of the iterative algorithm. The combination of angular streaking and ML evaluation,
as shown here, is the first step towards closed-loop experimentation at XFELs [47].

4 Single-shot spectroscopy of transient states in
neon

In the following, we use the attosecond temporal information about individual SASE
pulses in a simultaneous measurement of an X-ray triggered process, leading to a
better understanding of the ensuing nonlinear reaction dynamics. We sort individual
X-ray shots according to their FWHM, revealing a clear peak-power dependence of the
relaxation process in highly excited Ne ions. For this, we tune separate TOF detectors
in the spectrometer setup to two different observation regions with respect to well-
resolved electron energies: One set is kept at the previous energy at around 120 eV,
given by direct photoionisation from the Ne 1s shell by a 990 eV X-ray pulse, which is
used for the pulse reconstruction. The other, smaller set of TOF detectors is tuned to
resolve higher electron energies, mainly between 760 eV and 920 eV, stemming from
various Auger processes in the sample after illumination with intense X-ray pulses.

For a broad variety of relatively light elements with atomic numbers Z < 30, the
Auger decay after K-shell ionization or excitation is the predominant relaxation mech-
anism, occurring typically within a few femtoseconds. Studying core-ionised systems
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Fig. 3 a)–c) Three examples of reconstructed double-pulse structures. The colour-coded background
represents the reconstructed spectrograms (full spectro-temporal information). Overlaid, the tempo-
ral shape of the FEL pulses is shown in white. The latter is normalised to the pulse energy to obtain
an absolute power figure. The pulse energy is measured independently by the SQS X-ray gas monitor
(XGMD). Right of the spectrograms, their projection onto the spectral axis is shown in red, repre-
senting an X-ray photon energy spectrum.

before the energy is transferred to the secondary Auger electron, promises insights into
the localised non-equilibrium Coulombic environment of a transient system, preceding
and thus governing any kind of X-ray-induced structural dynamics.

As shown in earlier studies of gaseous atomic neon, highly intense pulses of XFELs
allow for sequential double photoionisation, where a core-ionised state is created by
a first photon and this short-lived intermediate state is further core-ionised or core-
excited by a second photon. In the photon picture, for such a process to occur, it is
necessary that the absorption of the second photon precede the Auger decay of the
single-core-hole state, which has a lifetime of 2.4 fs [48]. This second photon needs to
overcome a significantly increased binding energy for the second K-shell electron in
the transient neon 1s−1 system, which amounts to ∼1000 eV [36]. In this case, the
core shell of the atom is left empty, termed a double-core hole. If the second K-shell
electron is not promoted to the continuum but excited into one of the Rydberg states
of the transient system, it becomes possible to spectroscopically map out the electronic
structure of this very short-lived ionic system and observe rich information via the
multitude of DCH Auger decay channels [49].

In Figure 5 a), we present spectra of the resonant DCH decay in neon with high
statistical robustness a) in a single FEL shot (blue solid line) in comparison to an
average over 63329 shots (blue dotted line). For both cases in a) no streaking field was
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monitor (XGMD). e) Correlation histogram of derived FWHM durations for both methods over all
88 evaluated shots, with red line indicating perfect agreement. The Pearson correlation coefficient for
this sample is 0.83.

present. These unperturbed electron spectra were measured for every second X-ray
shot during our experiment, allowing comparison with synchrotron spectra and pho-
ton energy calibration. The comparison clearly demonstrates that the highly intense
attosecond pulses efficiently enable statistically robust spectroscopy of nonlinear pro-
cesses for core-ionised neon atoms within single FEL shots. This allows for restrictive
shot selection while retaining an adequate signal-to-noise ratio, despite challenging
experimental conditions that prohibit long data acquisition times, which are generally
not available at XFEL facilities.

In panel b) we show corresponding measurements on the streaked DCH signals,
which were taken simultaneously with the X-ray pulse reconstruction spectra from
the streaked 1s photolines for every other shot compared to a). The average spectrum
shown in a) is depicted in b) with the dotted blue line as well, for a better compari-
son of streaked spectra to the unstreaked spectrum. To preserve the energy resolution
of the main DCH contributions, we have chosen the streaking phase in this represen-
tation such that the spectra are maximally shifted to higher energies under the given
conditions, allowing to minimise the effect of spectral broadening of the Auger peaks
by the streaking laser kick. The streaked spectra are depicted by coloured lines and
indicate subsequently higher peak powers of the X-ray pulses, growing from yellow to
black. The total FEL pulse energy is selected in a narrow window of 250µJ± 10 µJ,
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keeping the total number of photons approximately constant. This demonstrates the
clear peak power and thus pulse duration dependence of the nonlinear DCH signal
increase [50].

Integrating the DCH peak signals within the blue shaded areas results in the
signal yields plotted as triangular shapes in panel c). Both curves are normalized to
their respective first data points, to enable the comparison with the integrated single-
core hole (SCH) yields from the “normal” Auger decay (circles) on the same scale.
Several considerations need to be taken into account for the interpretation of the
displayed FWHM dependence in Figure 5 c). Under the given conditions, the total
number of photons will predominantly determine the amount of SCH-Auger electrons,
i.e. the single-photon-absorption processes scale linearly with the absolute intensity.
Since the next step for creating a DCH requires a second photon in a direct sequence
before the Auger relaxation can happen, it scales quadratically with the number of
photons under the assumption that target depletion is negligible. For the data shown
in Figure 5 c) we kept the pulse energy and thus the number of photons practically
constant. However, by reducing the pulse duration, the peak power is increased, which
leaves the amount of SCH unchanged, but still increases the DCH yield. This is true
until the pulse duration becomes shorter than the Auger lifetime. At this point, the
FWHM dependence for the DCH formation should vanish for the fluence of the given
experimental conditions, since all DCH events stem from an excitation process that
is faster than the core-hole lifetime. In panel c), the DCH signals show the expected
dependence on the FWHM of the reconstructed intensity profiles and thus on the
peak power of single X-ray shots, while the SCH yields stay mostly flat over the whole
FWHM range. This highlights the ability to employ attosecond-scale knowledge about
individual SASE XFEL pulses to uncover otherwise hidden time-dependent nonlinear
effects, based on the measurement of shot-to-shot X-ray pulse shape variations within
a single FEL operation mode.

We compare our experimental findings with the results of a theoretical description
of the DCH generation process based on a rate equation approach. The SCH and DCH
Auger yields were simulated by solving a set of coupled rate equations using calculated
atomic cross section and Auger decay lifetimes [51, 52].

Details about the employed theoretical methods and the rate equation calcula-
tions can be found in the SI. More sophisticated simulations based on full quantum
mechanical descriptions reveal nonlinear dependencies on even higher ionisation states
in neon. Further investigations of specific reaction pathways and their impact on the
timescale of electron dynamics and on the lifetime of excited electronic states will be
conducted in the future in order to answer such questions quantitatively.

5 Summary and Outlook

Enabled by the high intensity of the employed attosecond pulses at 990 eV, we thus
have shown new paths to nonlinear spectroscopy of highly transient states of matter
with X-rays. The state-specific exploration of electron dynamics via coherent attosec-
ond X-ray pulses is a promising perspective towards exploring the physical origins of
reaction processes together with the subsequent chemical evolution and ultimately a
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system’s functionality. Here, we have demonstrated the generation and measurement
of isolated attosecond pulses of up to 200GW peak power with durations of only
about 700 as, opening up the potential for high-repetition rate XFELs to enable stud-
ies of nonlinear phenomena in transient media. While the technique presented here
allows for studying details of electronic motion and redistribution, it can also read-
ily map out their translation into nuclear dynamics. This method may be used in the
future to directly follow electron rearrangement after excitation of specific elements
in complex molecules, with the goal to sense and control the evolution of dynamical
chemistry with atomic precision and to understand radiation damage mechanisms on
a more fundamental level. Intriguing prospects of tracking electron migration in larger
molecules such as peptides and amino acids and understanding the mechanisms of
functionality-altering energy deposition and subsequent molecular restructuring are
opened up. Combining the presented modes with the future possibilities of X-ray
polarisation control at FELs will even allow studying the static and time-dependent
asymmetric structures of such systems and their chiral dynamics.
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