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computations
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We have developed a strong-coupling perturbation scheme for a general doped Hubbard model
aroundaparticle-hole-symmetric reference system,which is free from the fermionic signproblem.Our
approach is based on the lattice determinantal Quantum Monte Carlo (QMC) method in both
continuousanddiscrete timeversions for largeperiodic clusters in a fermionic bath.Byconsidering the
first-order perturbation in the shift of the chemical potential and the second-neighbor hopping, we are
able to obtain an accurate electronic spectral function for a range of parameters that correspond to
optimally doped cuprate systems at temperatures of up to T = 0.1t, which are challenging to access
using straightforward lattice QMC calculations. We also discuss the formation of the pseudogap and
the nodal-antinodal dichotomy for a doped Hubbard systemwith the interaction parameterU equal to
the bandwidth and the optimal value of the next-nearest-neighbor hopping parameter t0 for high-
temperature superconducting cuprates.

Search for a numerically exact solution of the t � t0 � U Hubbardmodel in
thermodynamic limit at arbitrary interaction strength, long-range hoppings
and doping δ or, equivalently, chemical potential μ at low temperature
T = 1/β is tremendously difficult.Modern computational approaches, based
on the lattice determinantal QuantumMonte Carlo (QMC) methods have
seen incredible progress in the half-filled case without t01, but face an
unacceptable fermionic sign problem for a general case related to cuprate
high-temperature superconductivity (HTSC) problem, which is the main
factor restricting the accuracy of QMC calculations for interacting
fermions2–5. A very important and largely unresolved problem is related to
the next-nearest-neighbor hopping t0 in the Hubbard model and its role in
the tendency towards superconductivity6–12. There are two recent successful
attempts to resolve this long-standing problem using zero-temperature
variational QMC scheme for realistic HTSC systems13 in combination with
the DMRG scheme for the t � t0 � U Hubbard model for a large ribbon
geometry14.

On the other hand, the new class of diagrammatic Monte Carlo
scheme15 is claimed to have a “sign blessing” property which helps to reduce
the effects of high-order diagrams. The state-of-the-art diagrammatic
Monte Carlo scheme in the connected determinant mode (C-DET)16 based
on efficientContinuousTimeQuantumMonteCarlo(CT-QMC) scheme in
the weak coupling technique(CT-INT)17 gives unprecedented accuracy for

the dopedHubbardmodel18,19. It becomes possible to study the formation of
the pseudogap already at the beginning of a strong coupling case with U/
t = 618. Nevertheless, exponential convergence of the C-DET scheme for
weak interactions20,21, turns to a divergence at largeU values due to poles in
the complexU-plane19. Thismeans that calculations for interactions close to
the bandwidthU/t ≈ 8 and temperatureT/t ≈ 0.1 are still within a prohibited
area in the phase diagram19.

There is a recent interesting attempt to use a dynamical variational
QMC scheme for the doped Hubbard model22,23 which gives a very rea-
sonable description of the spectral function. The existence of the pseudogap
can be explained in the simple model of electron fractionalization and
appearing of “dark” fermion which is supported by 2 × 2 cluster Dynamical
Mean Field Theory (C-DMFT)10,24. Moreover, the experimental RIXS
spectrum25 of doped cuprate materials can be interpreted in such a theo-
retical model of the pseudogap formation. Also, the general spectral func-
tion of doped Hubbard model can be obtained in such 4 × 4 dynamical
cluster approximation26,27 the detailed k-dependent spectral function is
beyond the scope of such small cluster DMFT. The larger cluster in the
C-DMFT scheme for the doped case has an unacceptable fermionic sign
problem within the QMC scheme. Recently, the importance of vertex cor-
rections for pseudogap physics was discussed in the parquet formalism for
dual fermions for large lattice model28.
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In this paper,wediscuss adifferent route to tackle the “signproblem” in
the determinantal lattice QMC scheme and design a strong-coupling per-
turbative solution for a generalHubbardmodel. The starting point is related
to the “reference system” idea29 which is basically quite simple and
straightforward. The conventional choice of the noninteracting Hamilto-
nian as the reference system for the perturbation30 is justified by Wick’s
theorem which allows to calculate exactly any many-particle Green’s
functions: they are all expressed in terms of single-particle Green’s func-
tions. The choice of single-site approximation like dynamical mean-field
theory31 as the reference system leads to the dual fermion technique29,32.
Actually, the reference system can be arbitrary assuming that we can cal-
culate its Green’s functions of arbitrary order. Of course, in practice this is
hardly doable.

At the same time, sometimes even taking into account the simplest,
first-order diagram, seems to be quite successful. In the conventional weak-
coupling expansion it is equivalent to the famous Hartree-Fock
approximation33 which is able to catch a lot of important many-body
physics including e.g. superconductivity within the BCS model. It can be
shown34–36 that the unrestricted Hartree-Fock trial wave function is optimal
within a very broad class of variational ground-state wave functions for
different physical systems. It is worthwhile to mention here the very suc-
cessful Peierls-Feynman-Bogoliubov variational principle37–39 which can be
formulated in the path-integral scheme. In this case, a good variational
estimate of the system’s free energy F with the HamiltonianH1 is achieved
on an optimal reference system with the Hamiltonian H0, namely
F1 ≤ F0 þ hH1 � H0i0. One can hope therefore that even first-order cor-
rections to the properly chosen reference systemwill already give a rich and
adequate enough physical picture. At least, this is definitely an assumption
worth checking.

Here our reference system corresponds to the half-filled (μ = 0) particle-
hole symmetric (t0 ¼ 0) case (Fig. 1) where lattice Monte Carlo has no sign
problem and the numerically exact solution for any practical value of U is
possible within a broad range of temperatures40. Then we apply the lattice
dual fermion perturbation theory29,32,41 to find the first-order perturbative
corrections in μ and t0. To this aim, it is sufficient to calculate the two-particle
Green’s function, or, equivalently, four-leg vertex, which can be done accu-
rately enough within the continuous time Quantum Monte Carlo. This
approach can be considered as a far-going generalization of theHartree-Fock
approximation to the case of a dynamical effective interaction. Our reference
system already has the main correlation effects in the lattice and shows
characteristic “four-peak” structure with high-energy Hubbard bands
around ±U/2 and antiferromagnetic Slater bands close to the insulating gap
(which can be seen in the density of states in Fig. 1, left panel). After the dual
fermion perturbation scheme the correlated metallic states with the DMFT-
like “three peak” structure appear together with a pseudogap-like feature at a
high temperature (the density of states in Fig. 1, right panel). The results for
the strong-coupling case (U =W = 8t) with practically interesting values of
the chemical potential andnext-nearest-neighborhoppings corresponding to
cuprate superconductors have shown formation of a pseudogap and nodal-
antinodal dichotomy (that is, well-defined quasiparticles in the nodal part of
the Fermi surface and strong quasiparticle damping for the antinodal part)
which makes this approximation a perspective for practical applications.

Results
Spectral function
We have calculated the Green’s function for the doped two-dimensional
Hubbard model for a periodic 8 × 8 system with U/t= 8, t0=t ¼ �0:3 and
μ =− 2.0 in units of t for β= 10 (in units 1/t) using a CT-INT version of the

Fig. 1 | Overview of reference system approach.
a Schematic representation of a half-filled reference
system for the doped square lattice. Calculated
density of states (DOS) in presented scheme for
undoped system with μ = 0, t0 ¼ 0 (b) and DOS for
doped case with μ =− 2, t0=t ¼ �0:3 (c).
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CT-QMC scheme17. Note that for the non-interacting Green’s function, we
used the infinite-lattice limit with periodic boundary conditions for the cal-
culated 8 × 8 system (see Section METHODS). This scheme reduces the
cluster-size dependence for the bare Green’s function: in particular, the local
one does not depend at all on the choice of the “simulation box”. On the other
hand, itmayunderestimate the effect ofU-interactions, since it appearsonly in
the calculated cluster. Thismay explain a small gap in the half-filled reference
system compared to a standard lattice determinantal QMC scheme42.

The results for the first-order dual-fermion perturbation from the half-
filled system indicate the formation of correlated pseudogap electronic
structure. Figure 2 shows the color map of the spectral function along the
irreducible path (Γ−X−M−Γ) in the square Brillouin zone. For analytical
continuation, the newly developed scheme43 was used.

Several characteristic features of the correlated metallic phase in gen-
eric cuprate systems can be detected: formation of an extended pseudogap
region around the X-point towards the M-point, a shadow anti-
ferromagnetic band at energy −2t near the M-point, a strongly renorma-
lizedmetallic band near the nodal point around ΓM/2. Overall, the spectral
function for U =W clearly shows strong correlation features of the elec-
tronic structure far beyond a simple renormalized-band paradigm.

In order to see more clearly the pseudogap and nodal-antinodal
dichotomyweplot the energy dependence of two spectral functions at theX-
and ΓM/2-points in the Brillouin zone (Fig. 3).While at theX = (π, 0)-point
there is a reasonably deep pseudogap formation already at β = 10, the nodal
spectral function at (π/2, π/2) has correlated metallic behavior. A more
unusual feature of the strong-coupling spectral function in Fig. 2 is related to
a “shark mouth” pseudogap dip starting at X in the direction ofM until the
half way.One can see from the energy dependence of the spectral function in
the direction of X−M (Fig. 4, middle panel) that the pseudogap splitting of
the sharp quasiparticle peak at zero for theXM/4 point is even larger than at
the X-point. The same feature was observed for a self-energy in the dia-
grammatic Monte Carlo (C-DET) investigation of the doped Hubbard
model at U/t = 618. We would like to point out that all these effects are not
simply an artifact of the analytical continuation with the MaxEnt scheme
andcanbedetectedby inspectionof the original complexMatsubaraGreen’s
function from DF-QMC calculations (Fig. 5). If we compare the X = (π, 0)
and XM/4 = (π, π/4) points then both quasiparticle peaks located almost at
the Fermi energy (the real part ofG(k,ωn) is close to zero, but the pseudogap
or upturn of the imaginary part of G(k,ωn) for the first Matsubara fre-
quencies are more pronounced at the (π, π/4)-point. We have also checked
this characteristic feature for the Hirsch-Fye QMC scheme44 and different
MaxEnt implementations. The general structure of this spectral function is
similar to recent results of dynamical variational Monte Carlo schemes22,23.

Fermi surface
We plot a broadened Fermi surface using the momentum-dependent
spectral function for the first Matsubara frequency (Fig. 6). Comparison
with the non-interacting tight-binding Fermi surface for the same doping
shows a large region of the pseudogap around theX-point and formation of
Fermi arcs near the nodal point. Moreover, one can understand that the
pseudogap ismore pronounced a bit away from theX-point towards theM-
point, where the non-interacting Fermi surface crosses the Brillouin zone.
We also compare the Fermi surface plot for smaller values of U/t = 5.6,
whichwas investigated in the diagrammaticMonte Carlo technique45,46; this
value is related to a plaquette degenerate point12.While the Fermi surface for
smallU/t = 5.6 agreeswell with the results of the diagrammaticMonteCarlo
approach46 and resembles the tight-binding one with only large broadening

Fig. 2 | Electronic structure of doped curates model. Spectral function −1/
πℑG(k, ω) for dual fermion QMC (CT-INT) for (8 × 8) lattice with U/t = 8,
t0=t ¼ �0:3, μ =− 2.0, and β = 10.
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Fig. 3 | Nodal-antinodal dichotomy. Spectral function −1/πℑG(k, ω) for two dif-
ferent k-points corresponds to anti-nodal and nodal k-points dual fermion QMC
(CT-INT) for (8 × 8) lattice with U/t = 8t0=t ¼ �0:3, μ =− 2.0 and β = 10.

Fig. 4 | Energy-momentumelectronic dispersion. Spectral function� 1
π=Gðk;ωÞ for three different k-directions in the Brillouin Zone, Γ− X (a),X−M (b) and (Γ−M) (c)

dual fermion QMC (CT-INT) for (8 × 8) lattice with U/t = 8, t0=t ¼ �0:3, μ =− 2.0 and β = 10.
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around the X-point, the U/t = 8 results show already a formation of the
pseudogap and Fermi arcs, that is, a nodal-antinodal dichotomy.

Discussion
We developed, for Hubbard-like correlated lattice models, the first-order
strong-coupling dual fermion expansion in the shift of the chemical
potential (doping) and in the second-neighbor hoppings (t0). The starting
reference point corresponds to the half-filled particle-hole symmetric sys-
temwhich can be calculated numerically exactly, without the fermionic sign
problem. For a physically interesting parameter range of cuprate-like sys-
tems (around 10% doping and t0=t ¼ �0:30 we can obtain a reasonable
Green’s function for a periodic 8 × 8 lattice for the temperatureT = 0.1t. The
formation of the pseudogap around the antinodal X-point and the nodal-
antinodal dichotomy are clearly seen in the present approach.

We would like to point out a few main reasons why such a “super-
perturbation” scheme works: first of all, the reference system already con-
tains the main correlation effects which result in the four-peak structure of
the density of states for the half-filled lattice Monte-Carlo calculations42;
second, the first-order strong-coupling perturbation relies on the lattice
four-point vertex γ1234 (Eq. (7)) which is obtained numerically exactly and
has all the information about the spin and charge susceptibilities of the
lattice; and third, if the dual perturbation Green’s function ~G

0
12 (Eq. (6)) is

relatively small, results will be reasonable. The complicated question of
convergence for such a dual-fermion perturbation can be checked
numerically by calculating the second-order contribution in eΣ12. For this
term, one needs to calculate in the lattice QMC a six-point vertex γ(6) which
will be also a direction of future developments. In principle, one can also

discuss an instability towards antiferromagnetism or d-wave super-
conductivity, introducing symmetry-breaking fields8, which we also plan to
investigate.

It is worthwhile to mention that for the starting reference system, we
can choose not only the half-filled case, but any doped case where the sign
problem is mild, so we can use a QMC calculation to expand this
numerically exact solution to “Terra incognita” regions where the sign
problem is unacceptable for direct QMC calculations. Recently, the new
interesting class of a “sign-free”47 or “mild-sign”48,49 latticemodels related to
the spin-fermions problems or themagic-angle twisted bilayer graphene for
integer feeling were discovered. One can use such new “reference systems”
together with the proposed dual-fermion QMC scheme for general non-
integer doping or more complicated interacting lattice systems.

Methods
We start with the general version of the cluster dual fermion scheme32,50 for
t � t0 � U square lattice Hubbard model. The general strategy of the dual
fermion approach as a strong coupling theory is related to formally exact
expansion around an arbitrary reference system29.

Hamiltonian
The simplestmodel describing interacting fermions on a lattice is the single-
band Hubbard model, defined by the Hamiltonian

Ĥα ¼ �
X
i;j;σ

tαijc
y
iσcjσ þ

X
i

U ni" �
1
2

� �
ni# �

1
2

� �
ð1Þ

Fig. 6 | Correlation effects on the Fermi surface. Fermi surface of the square-lattice
Hubbard model or k-dependent spectral function at the first Matsubara frequency
� 1

πGðk;ω0Þ for dual fermion QMC (CT-INT) with t0=t ¼ �0:3, β = 10 andU/t = 8,

μ =− 2.0 (a) U/t = 5.6, μ =− 0.9 (b). The non-interacting Fermi surface with the
same doping is shown for comparisson as a white contour.

Fig. 5 | Results of dual-fermionCT-QMCscheme.Green’s functionG(k, ωn) on theMatsubara axes for all 16 non-equivalent k-points in the BrillouinZone for 8 × 8 system,
real part (a) and imaginary part (b) for dual fermion QMC (CT-INT) with U/t = 8, t0=t ¼ �0:3, μ =− 2.0 and β = 10.
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where tij is the hopping matrix elements including the chemical potential μ
in the diagonal elements.

tαij ¼

t if i and j are nearest neighbours ;

αt0 if i and j are next nearest neighbours ;

αμ if i ¼ j;

0 otherwise;

8>>><
>>>:

ð2Þ

where niσ ¼ cyiσciσ . We introduce a “scailing” parameter α = (0, 1), which
defined a reference systemH0 for α = 0 which corresponds to the half-filled
Hubbardmodel (μ0 = 0)with only nearest neighbors hoppings (t00 ¼ 0) and
final system H1 for α = 1 for given μ and t0. Notes, that long-range hoping
parameters can be trivially included similar to t0.

Real space scheme
For the super-perturbation in the lattice Monte-Carlo scheme, we use a
general dual-fermion expansion around arbitrary reference system within
the path-integral formalism29,32 similar to a strong coupling expansion51. In
this case our N ×N lattice and corresponding reference systems represent
N ×N-part whichwe cut from infinite lattice and periodize the bareGreen’s
function Gα (see Supplementary Note 1). The general lattice action for
discretiseN ×N × L space-time lattice (for CT-INT scheme imaginary time
space τ is continuous in the [0, β) interval) with Hamiltonian Eq. (1) reads

Sα½c�; c� ¼ �
X
1;2

c�1 ðGαÞ�1
12 c2 þ

1
4

X
1234

U1234c
�
1c

�
2c4c3: ð3Þ

In order to keep the notation simple, it is useful to introduce the combined
index ∣1i � ∣i; τ; σi (i being the site index suppressed above) while
assuming summation over repeated indices. For a bare antisymmetric
interaction vertex we use the more general four-indices form U1234.

To calculate thebarepropagators ðGαÞ12 we start fromtheN ×N cluster
from infinite lattice and then force translation symmetry and periodic
boundary condition. This procedure is easy to realize in the k-space, by
doing first a double Fourier transform of the bare Green’s function for non-
periodic N ×N cluster Gα

k;k0 and then keep only periodic part, Gα
kδk;k0 .

A perturbationmatrix corresponds to a difference of one-electron part
of the action from Eq. (3):

~t ¼ G�1
0 � G�1

1 : ð4Þ

The transformed dual action29,32 in a paramagnetic state reads

~S½d�; d� ¼ �
X
12 νσ

d�1νσ ð~G
0
νÞ

�1

12 d2νσ þ
1
4

X
1234

γ1234d
�
1d

�
2d4d3; ð5Þ

where the bare dual Green’s function has the following matrix form:

~G
0
12 ¼ ~t�1 � ĝ

h i�1

12
ð6Þ

with g being an exact Green’s matrix of the interacting reference system.
We used the following definition of the connected four-point vertex:

γ1234 ¼ hc1c2c�3c�4i0 � hc1c�4i0hc2c�3i0 þ hc1c�3i0hc2c�4i0 ð7Þ

The first order dual self-energy is given by the diagram shown in Fig. 7

~Σ
ð1Þ
12 ¼

X
s�QMC

X
3;4

γd1324ðsÞ~G
0
43 ð8Þ

Here the density vertex reads

γd1234 ¼ γ""""1234 þ γ""##1234 ð9Þ

and the final Green’s function for original fermions reads32:

G12 ¼ g þ ~Σ
� ��1 �~t
h i�1

12
ð10Þ

Within the determinant DQMCwith Ising-fields {s} or inside the CT-
INT with a stochastic sampling of interaction order expansion {s} for the
two-particle correlators, we can use the Wick-theorem:

γ1234ðsÞ � hc1c2c�3c�4is ¼ hc1c�4is hc2c�3is � hc1c�3is hc2c�4is ð11Þ

For a small system of 2 × 2 cluster we can calculate the matrix of
Green’s function from Eq. (10) directly in the real space formalism and
check convergence of dual perturbations. In this case, we do not need any
additional periodization since 2 × 2 cluster is “self-periodic”. Since there is
almost no sign problem in theDQMCmethod for the doped 2 × 2 cluster in
the bath, we can compare the first-order dual-fermion perturbation with
numerical exact DQMC results. All three non-equivalent Green’s functions
for 2 × 2 system are shown in Fig. 8 using first-order DF-correction within
Hirsch-Fye QMC formalism. For small perturbation Δμ =− 0.3 and Δt0 ¼
0 a comparison with exact DQMC results (point on Fig. 8) is perfect. For a
large perturbation Δμ =− 1.5 and Δt0 ¼ 0:15 one can already see a small
difference from the exactDQMCGreen’s function.Nevertheless, the results
of DF-QMC with only first-order corrections for the dual self-energy are
very satisfactory. Note that for square lattice one need to compare the
perturbation in Δμ with 4Δt0, also dispersion of t0 tight-binding contribu-
tions and a relative sign of these terms made such a simple estimation
questionable.

K space scheme
For large systems (N ≥ 4) it is much faster to calculate the dual self-
energy in the K-space within the QMCMarkov chain. The dual action

Fig. 7 | Graphical representation of dual fermion perturbation. Feynman diagram
for the first order dual fermion perturbation for the self-energy ~Σ12: a line represents
the non-local bare dual Green’s function ~G43 and a box is the two-particle ver-
tex γ1324.
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Fig. 9 | K space dual fermion CT-QMC results.Matsubara Green’s functions
Re G(k, ωn) (left) and Im G(k, ωn) (right) for dual fermion CT-INT QMC (Dual) in
comparison with exact CT-INT results (Reference) for all 6 nonequivalent k-points

on (4 × 4) lattice with U/t = 5.6, t0=t ¼ �0:3 and μ/t =− 0.9 and different inverse
temperature: β = 5 (a, b), β = 10 (c, d), β = 10 (e, f).

Fig. 8 | Real space dual fermion QMC results. Three non-equivalent real-space
components of the Green’s functions for 2 × 2 system as a function of imaginary
time for U = 5.56, β = 5 and μ =− 0.3, t0=t ¼ 0 (a) and μ =− 1.3, t0=t ¼ �0:15 (b)

with DF-QMC (full lines) and exact DQMC (points). Note that in Hirsch-Fay
DQMC we use definition with positive local Green’s function.
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in K-space reads

~S½d�; d� ¼ �
X
k νσ

d�kνσ ~G
�1
0kν dkνσ þ

1
4

X
1234

γ1234d
�
1d

�
2d4d3: ð12Þ

Using the short notation k≡ (k, νn) and νn = (2n+ 1)π/β, with n 2 Z, the
dual Green’s function is equal to

~G
0
k ¼ ~t�1

k � ĝk

� ��1
: ð13Þ

Since the bare dual Green’s functionwas calculated in the independent
QMC run for the reference system, it is fully translationally invariant ~G

0
43 �

~G
0ð3� 4Þ and we used the Fourier transform to calculate the K-space dual

Green’s function ~G
0
k. Within the QMC Markov chain the lattice auxiliary

Green’s function is not translationally invariant therefore gs12 ¼ �hc1c�2is
andweuse double Fourier transform to calculate gskk0 . To take into account a
“disconnected part” of the vertex in equation Eq. (7) we just subtract exact
Green’s function from the first QMC run of the reference system as follows:

~gs12 ¼ gs12 � g12 ð14Þ

In the K-space scheme due to the periodicity of the reference system, these
subtractions have the following form

~gskk0 ¼ gskk0 � gkδkk0 ð15Þ

For the representation of the vertex γd1234 in Eq. (9) within the QMC
stepwe take into account that indices (3, 4) are “diagonal” inK-space due to
multiplication by translationally invariant dual Green’s function ~G

0
34 which

transformsas ~G
0
kδkk0 and indices (1, 2) become translationally invariant after

QMC-summation, which finally leads us to the following equation for the
spin-up components of the first order dual self-energy ~Σk

~Σ
ð1Þ
k ¼ �1

ðβNkÞ2ZQMC

X
s�QMC

X
k0

~g""kk ~g
""
k0k0 � ~g""kk0~g

""
k0k þ ~g""kk ~g

##
k0k0

h i
s
~G
0
k0

ð16Þ
HereNk =N2 is number of k-popints for theN ×N lattice and one factor of
1

βNk
comes from the double Fourier transform of ~gk0k0 . Additional normal-

ization factor 1
βNk

comes from the momentum k0 sum for the N ×N lattice
and summation over the Matsubara frequencies, namely 1

β

P
ν0 ð:::Þ. For

paramagnetic calculations, we average over two spin projections.
Corresponding lattice Green’s function reads:

Gk ¼ gk þ ~Σk

� ��1 �~tk
h i�1

: ð17Þ

Finally, we note, that if we neglect the dual self-energy, ~Σk ¼ 0, this
approximation is equivalent to so-called cluster-perturbation theory (CPT)
for N ×N lattice52.

As the test for convergence of the present scheme as a function of
temperature, we present results for the 4 × 4 system in Fig. 9 using the
CT-INT method. This system is also quite small, plus the external fer-
mionic bath results in a mild sign problem, which made an exact QMC
test still possible. The interacting U, hopping t0 and μ parameters cor-
respond to anomalous point with the strongest pseudogap effects45. For
all six non-equivalent k points the dual-fermion QMC scheme can
reproduce the strong temperature dependence of the self-energy for
lattice models. The strongest deviation for the lowest temperature
Green’s function appears to be at (π, 0) point with dispersion located
close to the Fermi level. One can use this information in order to discuss
possible instability in the electronic spectrum within first-order pertur-
bation. For larger system 8 × 8 there is already unacceptably strong sign
problem. We still can check convergence of the DF-QMC results as
function of lattice size. In Fig. 10 we compare results of 8 × 8 and
10 × 10 systems forMatsubara Green’s function at threemain k points in
the Brillouin zone, which shows a very good convergence with respect to
the lattice size. Note that for large 10 × 10 system we can do the CT-INT
Monte Carlo calculations only for relatively high temperature T = 0.2t.
The overall numerical complexity scales with average order expansionM
and system size N as OðN2M2 logðMÞÞ. For the 8 × 8 system at β = 10 the
average expansion order M ~ 700. Each CT-QMC simulation at this
regime requires around 50,000 CPU hours to achieve acceptable sto-
chastic error. The tests for different system sizes (see Supplementary
Notes 2 and 3) show reasonable convergence of the first-order DF-QMC
approximation for reasonably small perturbations.

Data availability
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