Files
Abstract
Experiments creating extreme states of matter almost invariably create non-equilibrium states. These are very interesting in their own right but need to be understood even if the ultimate goal is to probe high-pressure or high-temperature equilibrium properties like the equation of state. Here, we report on the capabilities of the newly developed imaginary time correlation function (ITCF) technique to detect and quantify non-equilibrium in pump-probe experiments fielding time resolved x-ray scattering diagnostics. We find a high sensitivity of the ITCF even to a small fraction of non-equilibrium electrons in the Wigner distribution. The behavior of the ITCF technique is such that modern lasers and detectors should be able to trace the non-equilibrium relaxation from tens of femto-seconds to several 10s of picoseconds without the need for a model.