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Introduction
The Karabo Control System was developed at the European X-ray 

Free Electron Laser (EuXFEL) starting in 2010 and was released as free 
and open-source software in June 2023. Karabo is a pluggable, distrib-
uted application management system forming a supervisory control and 
data acquisition (SCADA) environment as part of a distributed control 
system. Karabo provides integrated control of hardware, monitoring, 
and data acquisition and can facilitate online and pipelined data analy-
sis on distributed hardware. Services exist for access control, data log-
ging, configuration management, and failure event recovery.

European XFEL performed a survey in 2009 that looked at other 
well-known systems such as Tango [1], EPICS [2], and DOOCS [3] as 
possible control solutions for the planned facility. At that time, neither 
of these systems anticipated the high data volumes produced at the Eu-
ropean XFEL, and hence the development of Karabo, a control system 
tailored to the facility’s control and data acquisition requirements, was 
started. The seamless and built-in integration of large data processing is 
still a distinguishing feature of Karabo, which also today, the other sys-
tems frequently only offer as an extension.

Control requirements for the European XFEL
The European XFEL is a user research facility that provides high 

energy, coherent X-ray pulses with unparalleled brilliance at MHz rates. 
The facility employs a unique X-ray beam pulse structure with up to 
27,000 photon pulses per second arranged into 10 Hz trains of pulses at 
4.5 MHz [4]. European XFEL instruments use state-of-the-art, large-
area 2D imaging detectors capable of recording images of scattered pho-
tons produced by a single XFEL photon pulse at burst imaging rates of 
up to 4.5 MHz [5]. The resulting high data rates are a challenge for the 
data acquisition services of any SCADA system. Additionally, the high 
peak brilliance of the facility caters to “single-shot” experimental meth-
ods, i.e., the X-ray pulse will destroy a given sample, and statistical sig-
nificance is then achieved through many repetitions. For this to be via-
ble, the control and data acquisition system must ensure that data from 
many sources readily correlates in time, e.g., through a globally unique 
identifier and low latency data and event propagation. Finally, the Euro-

pean XFEL as a so-called user facility: the scientific community submits 
proposals for measurements, which, given enough merit and technical 
feasibility, are performed during multi-day “beam times” on flexible end 
stations supporting multiple experimental methods. The control system 
therefore needs to provide a high degree of flexibility to cope with the 
dynamic nature of the experimental setups of this operation mode.

Karabo: Fundamental concepts and architecture
Karabo is a from-scratch, in-house development of a control system 

that:

• is scalable and can grow alongside the facility,
• has time correlation woven into its fundamental data model,
• can process data rates of tens of GByte per second at latencies of 

a few 100ms,
• and caters to dynamic experimental setups that change on differ-

ent time scales, 

while being highly reliable and resilient to failure events. In the follow-
ing, we expand on core architectural and technological choices for im-
plementing such a system.

The core entities of the Karabo ecosystem are defined as devices, 
which are instances of pluggable software components written in either 
Python or C++ (see Figure 1). Devices extend the functionality of the 
core framework, and interface to hardware, provide system services like 
data logging or configuration management or coordinate other devices. 
Multiple devices can run within a single software process called a device 
server. The interface of a device is exposed as a self- descriptive “Schema” 
and is modifiable at run-time. It includes commands and properties of a 
device, as well as attributes of the latter, such as value limits and access 
restrictions. Device properties comprise both configurable parameters 
and read-only values, which can for instance represent hardware values.

A fundamental property is the so-called state. A fixed subset of 
states defined in the framework determines which commands and re-
configurations are currently possible for a given device. Furthermore, 
every device can temporarily take exclusive control of other devices, 
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such that only it can reconfigure the device and call its commands. 
This mechanism is beneficial for software that coordinates other de-
vices, such as a beam feedback system, and wants to ensure that no 
other (accidental) inputs can happen.

When a device is instantiated, it broadcasts its unique instance iden-
tifier to the distributed system alongside supplementary information - 
the device is now online. Any device instance thus knows of every other 
instance at any time, resulting in a dynamic topology without the need 
for a central governing database. The instance information informs of 
interfaces a device implements, e.g., whether it complies with a stan-
dardized motor or detector interface. Using this, the topology can be 
filtered by functional roles, e.g., to determine which devices can par-
ticipate in a scan. Finally, every instance announces its shutdown to all 
other instances - it is then offline.

Broker-based communication and asynchronous event-driven 
messaging

The distributed components of Karabo communicate by asyn-
chronously exchanging messages via a central message broker (see 

Figure 1). A virtual namespace exists on the broker for every Karabo 
installation, referred to as a Karabo topic, within which instance 
identifiers are unique. To call instance methods throughout the 
 distributed system, one can register them as so-called “Slots.” Direct 
(unicast) slot calls support error propagation over instance boundar-
ies from one device to another. Broadcast slot calls, i.e., multicast 
slots, are used to update the system topology dynamically.

Karabo implements a completely event-driven publish and sub-
scribe signal-slot messaging pattern on top of the distributed broker 
messaging. By subscribing to a signal of another instance, a device does 
not need to poll for remote updates regularly. Instead, it is automatically 
informed about updates when they happen. This includes timing infor-
mation which comprises a timestamp and a unique timing identifier. At 
European XFEL, the identifier reflects the train (bunch) frequency and 
is thus commonly referred to as the train ID. Outgoing updates result in 
a single broker message, even if many devices are subscribed to the 
update.

The content of any distributed message is a so-called Karabo Hash. 
This hierarchical key/value container supports element-specific attri-

Figure 1: Fundamental architecture sketch of Karabo: a broker-based distributed and extendable system with peer-to-peer connection for high data rates.
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bute assignment. The keys are strings and the following data types are 
supported as values: integers, floating points, strings, the Hash itself, 
vectors of all of these, the Schema and a special container for multi-
dimensional arrays.

Originally, Karabo was developed using the Java Messaging Service 
(JMS) broker [6] using an implementation of the Open Message Queue, 
OpenMQ(C), library. However, the latter is no longer actively sup-
ported. Recent Karabo versions have added support for communication 
via the Rabbit MQ broker [7] using the AMQP protocol [8], and through 
this can support broker fail-over scenarios. The transition of the Euro-
pean XFEL installations to this technology is foreseen to be completed 
by the end of 2024.

Pipelines for large and fast data
Transfer of large data volumes from detectors and data processing 

avoids broker-based messaging and uses so-called Karabo pipelines in-
stead. These pipelines are direct TCP connections between output and 
input channels. Serialization is optimized to avoid copies of extensive 
data arrays. The configurable message patterns are:

• input channels receive a copy of all data or share the data with 
other channels to distribute the load,

• an input channel receives data from several outputs, e.g., to col-
lect from shared processing.

There are several ways an output channel reacts in case it sends data 
faster than the receiving channel(s) can process it: drop data, enqueue 
them, or wait until the input channel is ready. To preview data at a re-
duced rate, the availability of a channel for the subsequent data item can 
be artificially delayed [9].

The Karabo GUI: a single extensible operator interface
Karabo provides a single graphical user interface (GUI) for control 

tasks (see Figure 2). This Karabo Cockpit is the preferred way to inter-
act with the Karabo ecosystem. It is implemented in Python and uses 
the Qt [10] layout manager.

The GUI connects to so-called GuiServer devices over TCP/IP 
and then runs under authenticated access levels. Consequently, GUI 
clients do not communicate with the distributed system using the 
message broker, even if data transfer relies upon Karabo Hash seri-
alization. The portability of the GUI application to different operat-
ing systems benefits from this design. TCP connections additionally 
facilitate an increasingly important feature: remote access to the 
system, using e.g., SSH tunnelling. Configuration updates are typi-
cally throttled to 2 Hz. Pipeline data is dynamically throttled to 
avoid saturating the client-server connection. To achieve this, the 
GuiServer will not forward data from a specific pipeline unless a 
client confirms that the previous data item has been processed. This 
ensures that client applications can view multiple camera screens 

Figure 2: A connected Karabo GUI application with docked panels; left: navigation panels (system topology and projects); center: scene panels; right: 
configuration panel.
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without being overloaded. Once a device is not of interest to the opera-
tor anymore, the client applications unsubscribe from the  respective 
configuration updates automatically.

The GUI application features multiple panels optimized to perform 
different tasks. Distinct features such as projects and scene panels coex-
ist with control system essentials, such as a Configuration Panel to 
modify the configuration of online and offline devices, and a system 
topology view. Karabo projects contain lists of devices, their associated 
configurations, scripting macros, and so-called scenes. Projects are 
stored in a non-relational database [11] and can be dynamically created 
as operators see fit.

By interactively dragging any device property from the Configura-
tion Panel onto a scene, synoptic views are created, consisting of con-
trollers (widgets) appropriate to the property’s data type, which are 
added to a scene-model [12]. Operators generally interact with the con-
trol system through these scenes or the configuration panel.

With the combination of projects and scenes, operators can build 
versatile user interfaces without coding, and style them further in SVG 
graphics editors, since scenes can be translated into an SVG representa-
tion. Alternatively, the programmatic composition of scene model rep-
resentations is possible, and representations of the scene model can be 
embedded into device code. These device-provided scenes can be ac-
cessed by double-clicking on an instance in a topology panel of the 
GUI.

Use cases at the European XFEL
In the above, we have mainly considered the core Karabo frame-

work. However, the framework is not responsible for integrating hard-
ware or implementing specific operation procedures, nor defining as-
pects of a scientific control system. As described above, such 
functionalities are provided by plug-ins called devices. These are im-
plemented using the three application programming interfaces (APIs) 
the framework provides: C++, Python-bound (Bound), and Python-
Middlelayer (MDL). Each API has distinguishing features:

• C++ is beneficial for high-performance applications, or for inte-
grating third-party C or C++ libraries;

• Bound provides high-performance pipelined processing when an 
application additionally needs to leverage Python packages such 
as SciPy [13] or NumPy [14];

• The Middlelayer API is a natively “Pythonic”, low-boilerplate in-
tegration option that excels in rapid development and iteration 
cycles.

European XFEL typically operates on a weekly schedule, with user 
experiments lasting 5 to 6 days. Consequently, the hardware setup at the 
beamlines changes frequently and results in the need to regularly inter-
face additional hardware and define new procedures in the control sys-
tem. The three APIs described above are widely used to enable this 
ever-changing variety of devices ranging from the integration of the 
previously mentioned large area detectors, to digitizers and commercial 

cameras, as well as programmable logic controllers (PLC) and scien-
tific tabletop instrumentation. Base packages facilitate the implementa-
tion of standard protocols (e.g., SCPI, GenICam) or features (e.g., vir-
tual axes). Originally scoped for procedure definitions, the Middlelayer 
API is increasingly used for all purposes, including to interface hard-
ware directly (see Figure 3). A vital part of this API and its defining 
aspect are device proxies. These allow a straightforward implementa-
tion of high-level tasks which require the orchestration of other devices. 
In the following, we introduce examples of important devices used at 
the European XFEL, exemplifying the possibilities of the Karabo 
framework.

Data acquisition to HDF5 and event-driven to the InfluxDB time 
series database

Karabo keeps historical data about the devices in a topic. Properties 
and schemas of devices are stored whenever a device instantiates or any 
property or device schema changes. In consequence, the historical evo-
lution of any property can be inspected, and a device configuration can 
be restored to any point in time.

Two logging backend systems exist for device data: one based on 
custom text files and one that uses an Influx time series database [15]. 
While a text file is adequate for the needs of small installations, it will 
not scale to the operational needs of a larger research facility. The 
 Influx-based system addresses these limitations and supports European 
XFEL operations as the primary data logging backend since 2020. Each 
month, about 10 billion property updates are stored in the database [16] 
and retained for at least 3 years. Logging data is mainly accessed from 
the Karabo GUI Client and, in the case of Influx, from the Grafana web 
interface [17]. Grafana is the primary monitoring tool used by the Data 
Operation Center of the European XFEL and thus plays a fundamental 
role in daily facility operations.

The Karabo data logging subsystem is implemented as a set of com-
mon high-performance C++ devices for either backend. Multiple in-
stances of so-called data logger devices perform data ingestion. The 
Influx-based system sustains an average ingestion rate of about 20 
MByte per second [16].

Figure 3: Number of device classes developed for the three Karabo APIs 
over time.
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A run-based data acquisition system (DAQ) is additionally required 
to perform experiments at the European XFEL. Here, a run is consid-
ered a continuous acquisition period of mostly stable experimental pa-
rameters [18]. This system stores broker-transferred information, data 
from pipeline connections, such as camera images and digitizer traces, 
and images from the bespoke 2D MHz-imaging detectors at the facility 
[2]. The system is mainly implemented using the C++ API and can store 
data rates of up to 20 GBytes per second into HDF5 files [18, 19]. Ad-
ditionally, the system propagates data into the control system through 
its monitoring output channels.

Online detector calibration
In order to make decisions during ongoing experiments, scientists 

require near real-time feedback from diagnostics and detectors, includ-
ing the bespoke MHz-imaging capable 2D detectors. Especially for the 
latter, but also for detector technologies such as Jungfrau, and ePIX, 
calibration of the raw detector data is necessary before decisions based 
on this data can be made. An online calibration pipeline, implemented 
in the Karabo Bound API, which utilizes GPUs is able to provide cali-
brated online image streams at rates of greater than 3000 megapixel 
images per second, exemplifying the throughput of Karabo pipeline 
connections. Further details can be found in [20, 21].

Failure recovery through the recovery Portal
The Recovery Portal is a Karabo device that provides an interface to 

retrieve device configurations for a given point in time from the Influx 
database and apply these configurations to a selection of devices in a 
topic. The user interface consists of two scenes: the comparison scene 
and the recovery scene.

The comparison scene allows an operator to select a point from the 
past and filter for device names or types for which they would like to 
view configurations. Past and present configurations of the chosen de-
vices are retrieved and can be compared. The operator can use the re-
sulting overview to determine configuration changes between the two 
time points. A more detailed comparison is available via a dialog, such 
that individual property changes can be inspected.

Through the recovery scene, the operator can retrieve device con-
figurations from the past and additionally apply configurations to se-
lected devices. This interface exposes the same point-in-time selection 
functionality and device name or type filters as for the comparison case. 
Once devices or groups of devices are selected for recovery, the portal 
applies the past configuration to the device. If a device is not online, the 
tool can attempt to instantiate the device first. This latter function is 
convenient for restarting the control system after software or facility 
maintenance and upgrades or in large-scale failure events such as a 
power cut. When the maintenance work is complete, a point-in-time 
just before the shutdown is selected, and all devices running then are 
restarted and configured as before the intervention. After recovery, a 
summary table indicating the success or failures of the batch reconfig-
uring is shown.

Integrating with other control systems – the Karabo DOOCS 
interface

The DOOCS (Distributed Objected-Oriented Control System) 
framework [3] was developed from 1992 onwards at DESY. DOOCS 
was initially used for test stands and was later ported to the HERA pro-
ton storage ring. Currently, it serves as the control system of the FLASH 
and European XFEL accelerators and will be used for the future Petra 
IV light source. As the accelerator control system, DOOCS monitors 
many diagnostics relevant to performing experiments at the European 
XFEL. To access this data from within Karabo, a DOOCS interface ex-
ists. The DoocsGate C++ class, based on the DOOCS library, connects 
to any DOOCS location and gives access to its properties as Karabo 
types. The class is also available in Python using a Boost Python [22] 
binding.

Specific Karabo devices give access to the most commonly used 
types of DOOCS servers, e.g, those controlling the timing boards and 
the X-Ray Gas Monitors (XGM). Additionally, a generic device 
called “DoocsMirror” enables instrument staff to seamlessly import 
DOOCS devices into the Karabo ecosystem without requiring in-
volvement of experts or the need to write specific code. A list of loca-
tions and properties suffices to map properties from multiple DOOCS 
locations to corresponding Karabo properties. Slowly updating prop-
erties are propagated using broker messaging, while fast and large 
data types, such as vectors and images, are transferred through Karabo 
pipelines. DoocsMirror takes care of proper time information: if a 
DOOCS property has a non-zero train ID associated, this ID is re-
tained as update time of the corresponding Karabo property. If 
DOOCS does not provide a train ID for a property, the device uses the 
unix epoch information supplied by DOOCS to calculate the corre-
sponding train ID.

European XFEL has seven distinct Karabo broker topics desig-
nated for the instruments and an additional three for the photon tun-
nel systems. Connections between DOOCS and Karabo are estab-
lished in a dedicated “DOOCS” Karabo installation, facilitating load/
throughput optimization between the two control systems at a single 
tuning point. The device instances from this DOOCS topic are then 
replicated to other topics using the ‘DeviceClone’ package. This 
package enables the replication of a device instance from one topic 
to another by transmitting data from the source topic via a TCP chan-
nel to a server instance in the destination topic. Device clones can 
operate in a unidirectional mode, providing access to read-back 
properties, or a bidirectional mode, allowing slot calls and value 
modifications.

The Karabacon scantool
Experimental data collection at synchrotrons and free electron laser 

facilities frequently requires the simultaneous motion of several motors 
and actuators and coordinated data acquisition from various sources 
(cameras, pixel detectors, and digitizers). Karabacon [23] is a Middle-
layer device to orchestrate such operation and is accessible using:
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• a graphical user interface through which devices and parameters 
of a scan are defined, the execution is controlled, results are plot-
ted, and a history of scans is tracked (see Figure 4);

• a command line interface (CLI) and macros to integrate scans in 
higher-level automation routines.

Karabacon can execute absolute and relative 1D and 2D step scans 
combining up to four motors and six data sources. A built-in motor in-
terface enables the safe operation of many classes of Karabo devices, 
and a custom motor interface can be configured to support most other 
devices. Any scalar or vector device property or output channel can be 
a data source. Additionally, continuous fly scans and time scans are 
possible.

Extensions to the core system provide additional functionality:

• A scan history summarizes the metadata of previous scans, such 
as scan settings, progress, status, and basic DAQ info. The history 
feature can return to historic scan settings and relaunch an earlier 
scan.

• Other extensions modify scan steps based on user-defined trans-
formations and define data source normalization logic.

• An aligner tool estimates essential plot characteristics (minimum, 
maximum, peak, valley, etc.) and moves motors to the corre-
sponding positions.

• Scan templates store predefined scan configurations. The tem-
plates are based on a historical time point, and loading a template 
sets all Karabacon parameters accordingly.

• Custom scan patterns are supported by uploading, e.g., NumPy or 
CSV files or retrieving external pattern specifications from other 
devices.

Karabacon is deployed in all installations at the European XFEL and 
used in daily operation as a standard tool for beamline and instrument 
commissioning and scientific data collection.

Outlook
Over 13 years of development and 6 years of facility operation, 

Karabo has matured into a reliable control system that fits the require-
ments of the European XFEL. In June 2023, it was published as free 
and open-source software on GitHub.com and continues to be actively 
developed, both at the framework level and the numerous devices. Sig-
nificant feature enhancements are being developed alongside a continu-

Figure 4: Scene panel of the scan tool Karabacon in use during a beam time at the FXE instrument. The motor, data source and trigger selection is on the 
top left corner. On the bottom left the scan parameters can be configured and on the right the scanned data can be viewed and replayed.
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ous effort to address technical debt and introduce modern foundational 
technologies, such as for the broker or transitioning from boost::python 
to PyBind11 [24]. A web-based user interface and REST APIs for the 
core system will be rolled out and expanded from 2024 onwards. This 
enhanced support for web technology will be complemented in 2024 by 
a lean authentication interface, which, while mainly aimed at auditing 
interactions with the system, will support authorization at the edges, 
e.g., the web interface or the GUI server interface. The device server 
logs will be moved from rolling text logs to make use of the ELK stack 
[25], greatly enhancing log introspection possibilities.

The Pythonic Karabo Middlelayer API is planned to be made avail-
able as a stand-alone Python package to ease implementations on other 
operating systems such as Windows or Raspberry Pi. The Middlelayer 
API's firm adherence to established Python best practices means that 
aside from the low-entry threshold for Python-fluent newcomers to the 
Karabo world, foundational large language models such as OpenAIs 
GPT series [26] can write Karabo device templates from prompt input 
alone, i.e., without additional training. AI-based documentation assis-
tants similarly work well with Karabo’s code base. We plan to expand 
on opportunities such integration provides for our development work-
flows in the future.

Conclusion
Karabo is a mature supervisory control and data acquisition system 

and the main user interface at the European XFEL to carry out scientific 
experiments. The control system has stabilized throughout the commis-
sioning period and early operation, and performance has significantly 
increased.

Karabo has been tailored to the data requirements of large-scale re-
search facilities: data can be correlated through a unique timing identi-
fier, and high-performance data logging and acquisition systems exist. 
The event-driven nature of the system ensures that data traffic is mini-
mized while significant changes are reliably propagated. The system is 
freely available under a mixed MPL 2.0 and GPLv3 license at www.
github.com [27].

Disclosure statement
No potential conflict of interest was reported by the authors. n
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