
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gsrn20

Synchrotron Radiation News

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gsrn20

The Karabo SCADA System at the European XFEL

D. Göries, W. Ehsan, G. Flucke, N. Annakkappala, V. Bondar, R. Costa, S.
Esenov, G. Giovanetti, D. Hickin, I. Karpics, A. Klimovskaia, A. Mahmud, A.
Parenti, P. J. S. Prafulla, A. Samadli, H. Santos, A. Silenzi, M. Smith, F. Sohn, M.
Staffel, A. Garcia Tabares, J. Bin Taufik, G. Varghese, C. Youngman & S. Hauf

To cite this article: D. Göries, W. Ehsan, G. Flucke, N. Annakkappala, V. Bondar, R. Costa,
S. Esenov, G. Giovanetti, D. Hickin, I. Karpics, A. Klimovskaia, A. Mahmud, A. Parenti, P. J. S.
Prafulla, A. Samadli, H. Santos, A. Silenzi, M. Smith, F. Sohn, M. Staffel, A. Garcia Tabares, J. Bin
Taufik, G. Varghese, C. Youngman & S. Hauf (04 Jan 2024): The Karabo SCADA System at the
European XFEL, Synchrotron Radiation News, DOI: 10.1080/08940886.2023.2277650

To link to this article: https://doi.org/10.1080/08940886.2023.2277650

© 2023 European XFEL GmbH. Published
with license by Taylor & Francis Group, LLC

Published online: 04 Jan 2024.

Submit your article to this journal

Article views: 127

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gsrn20
https://www.tandfonline.com/loi/gsrn20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08940886.2023.2277650
https://doi.org/10.1080/08940886.2023.2277650
https://www.tandfonline.com/action/authorSubmission?journalCode=gsrn20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gsrn20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08940886.2023.2277650
https://www.tandfonline.com/doi/mlt/10.1080/08940886.2023.2277650
http://crossmark.crossref.org/dialog/?doi=10.1080/08940886.2023.2277650&domain=pdf&date_stamp=04 Jan 2024
http://crossmark.crossref.org/dialog/?doi=10.1080/08940886.2023.2277650&domain=pdf&date_stamp=04 Jan 2024

Synchrotron radiation newS, Vol. 0, No. 0, 2023 1

Technical RepoRT

The Karabo SCADA System at the European XFEL

D. Göries, W. ehsan, G. Flucke, n. annakkappala, V. BonDar, r. costa, s. esenoV,
G. GioVanetti, D. hickin, i. karpics, a. klimoVskaia, a. mahmuD, a. parenti,
p. J. s. praFulla, a. samaDli, h. santos, a. silenzi, m. smith, F. sohn, m. staFFel,
a. Garcia taBares, J. Bin tauFik, G. VarGhese, c. YounGman, anD s. hauF
Controls Group, European XFEL GmbH, Schenefeld, Germany dennis.goeries@xfel.eu

Introduction
The Karabo Control System was developed at the European X-ray

Free Electron Laser (EuXFEL) starting in 2010 and was released as free
and open-source software in June 2023. Karabo is a pluggable, distrib-
uted application management system forming a supervisory control and
data acquisition (SCADA) environment as part of a distributed control
system. Karabo provides integrated control of hardware, monitoring,
and data acquisition and can facilitate online and pipelined data analy-
sis on distributed hardware. Services exist for access control, data log-
ging, configuration management, and failure event recovery.

European XFEL performed a survey in 2009 that looked at other
well-known systems such as Tango [1], EPICS [2], and DOOCS [3] as
possible control solutions for the planned facility. At that time, neither
of these systems anticipated the high data volumes produced at the Eu-
ropean XFEL, and hence the development of Karabo, a control system
tailored to the facility’s control and data acquisition requirements, was
started. The seamless and built-in integration of large data processing is
still a distinguishing feature of Karabo, which also today, the other sys-
tems frequently only offer as an extension.

Control requirements for the European XFEL
The European XFEL is a user research facility that provides high

energy, coherent X-ray pulses with unparalleled brilliance at MHz rates.
The facility employs a unique X-ray beam pulse structure with up to
27,000 photon pulses per second arranged into 10 Hz trains of pulses at
4.5 MHz [4]. European XFEL instruments use state-of-the-art, large-
area 2D imaging detectors capable of recording images of scattered pho-
tons produced by a single XFEL photon pulse at burst imaging rates of
up to 4.5 MHz [5]. The resulting high data rates are a challenge for the
data acquisition services of any SCADA system. Additionally, the high
peak brilliance of the facility caters to “single-shot” experimental meth-
ods, i.e., the X-ray pulse will destroy a given sample, and statistical sig-
nificance is then achieved through many repetitions. For this to be via-
ble, the control and data acquisition system must ensure that data from
many sources readily correlates in time, e.g., through a globally unique
identifier and low latency data and event propagation. Finally, the Euro-

pean XFEL as a so-called user facility: the scientific community submits
proposals for measurements, which, given enough merit and technical
feasibility, are performed during multi-day “beam times” on flexible end
stations supporting multiple experimental methods. The control system
therefore needs to provide a high degree of flexibility to cope with the
dynamic nature of the experimental setups of this operation mode.

Karabo: Fundamental concepts and architecture
Karabo is a from-scratch, in-house development of a control system

that:

• is scalable and can grow alongside the facility,
• has time correlation woven into its fundamental data model,
• can process data rates of tens of GByte per second at latencies of

a few 100ms,
• and caters to dynamic experimental setups that change on differ-

ent time scales,

while being highly reliable and resilient to failure events. In the follow-
ing, we expand on core architectural and technological choices for im-
plementing such a system.

The core entities of the Karabo ecosystem are defined as devices,
which are instances of pluggable software components written in either
Python or C++ (see Figure 1). Devices extend the functionality of the
core framework, and interface to hardware, provide system services like
data logging or configuration management or coordinate other devices.
Multiple devices can run within a single software process called a device
server. The interface of a device is exposed as a self- descriptive “Schema”
and is modifiable at run-time. It includes commands and properties of a
device, as well as attributes of the latter, such as value limits and access
restrictions. Device properties comprise both configurable parameters
and read-only values, which can for instance represent hardware values.

A fundamental property is the so-called state. A fixed subset of
states defined in the framework determines which commands and re-
configurations are currently possible for a given device. Furthermore,
every device can temporarily take exclusive control of other devices,

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow
the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

© 2023 European XFEL GmbH. Published with license by Taylor & Francis Group, LLC

mailto:dennis.goeries@xfel.eu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Vol. 0, No. 0, 2023, Synchrotron radiation newS

Technical RepoRT

such that only it can reconfigure the device and call its commands.
This mechanism is beneficial for software that coordinates other de-
vices, such as a beam feedback system, and wants to ensure that no
other (accidental) inputs can happen.

When a device is instantiated, it broadcasts its unique instance iden-
tifier to the distributed system alongside supplementary information -
the device is now online. Any device instance thus knows of every other
instance at any time, resulting in a dynamic topology without the need
for a central governing database. The instance information informs of
interfaces a device implements, e.g., whether it complies with a stan-
dardized motor or detector interface. Using this, the topology can be
filtered by functional roles, e.g., to determine which devices can par-
ticipate in a scan. Finally, every instance announces its shutdown to all
other instances - it is then offline.

Broker-based communication and asynchronous event-driven
messaging

The distributed components of Karabo communicate by asyn-
chronously exchanging messages via a central message broker (see

Figure 1). A virtual namespace exists on the broker for every Karabo
installation, referred to as a Karabo topic, within which instance
identifiers are unique. To call instance methods throughout the
 distributed system, one can register them as so-called “Slots.” Direct
(unicast) slot calls support error propagation over instance boundar-
ies from one device to another. Broadcast slot calls, i.e., multicast
slots, are used to update the system topology dynamically.

Karabo implements a completely event-driven publish and sub-
scribe signal-slot messaging pattern on top of the distributed broker
messaging. By subscribing to a signal of another instance, a device does
not need to poll for remote updates regularly. Instead, it is automatically
informed about updates when they happen. This includes timing infor-
mation which comprises a timestamp and a unique timing identifier. At
European XFEL, the identifier reflects the train (bunch) frequency and
is thus commonly referred to as the train ID. Outgoing updates result in
a single broker message, even if many devices are subscribed to the
update.

The content of any distributed message is a so-called Karabo Hash.
This hierarchical key/value container supports element-specific attri-

Figure 1: Fundamental architecture sketch of Karabo: a broker-based distributed and extendable system with peer-to-peer connection for high data rates.

https://doi.org/10.1080/08940886.2023.2277650

Synchrotron radiation newS, Vol. 0, No. 0, 2023 3

Technical RepoRT

bute assignment. The keys are strings and the following data types are
supported as values: integers, floating points, strings, the Hash itself,
vectors of all of these, the Schema and a special container for multi-
dimensional arrays.

Originally, Karabo was developed using the Java Messaging Service
(JMS) broker [6] using an implementation of the Open Message Queue,
OpenMQ(C), library. However, the latter is no longer actively sup-
ported. Recent Karabo versions have added support for communication
via the Rabbit MQ broker [7] using the AMQP protocol [8], and through
this can support broker fail-over scenarios. The transition of the Euro-
pean XFEL installations to this technology is foreseen to be completed
by the end of 2024.

Pipelines for large and fast data
Transfer of large data volumes from detectors and data processing

avoids broker-based messaging and uses so-called Karabo pipelines in-
stead. These pipelines are direct TCP connections between output and
input channels. Serialization is optimized to avoid copies of extensive
data arrays. The configurable message patterns are:

• input channels receive a copy of all data or share the data with
other channels to distribute the load,

• an input channel receives data from several outputs, e.g., to col-
lect from shared processing.

There are several ways an output channel reacts in case it sends data
faster than the receiving channel(s) can process it: drop data, enqueue
them, or wait until the input channel is ready. To preview data at a re-
duced rate, the availability of a channel for the subsequent data item can
be artificially delayed [9].

The Karabo GUI: a single extensible operator interface
Karabo provides a single graphical user interface (GUI) for control

tasks (see Figure 2). This Karabo Cockpit is the preferred way to inter-
act with the Karabo ecosystem. It is implemented in Python and uses
the Qt [10] layout manager.

The GUI connects to so-called GuiServer devices over TCP/IP
and then runs under authenticated access levels. Consequently, GUI
clients do not communicate with the distributed system using the
message broker, even if data transfer relies upon Karabo Hash seri-
alization. The portability of the GUI application to different operat-
ing systems benefits from this design. TCP connections additionally
facilitate an increasingly important feature: remote access to the
system, using e.g., SSH tunnelling. Configuration updates are typi-
cally throttled to 2 Hz. Pipeline data is dynamically throttled to
avoid saturating the client-server connection. To achieve this, the
GuiServer will not forward data from a specific pipeline unless a
client confirms that the previous data item has been processed. This
ensures that client applications can view multiple camera screens

Figure 2: A connected Karabo GUI application with docked panels; left: navigation panels (system topology and projects); center: scene panels; right:
configuration panel.

4 Vol. 0, No. 0, 2023, Synchrotron radiation newS

Technical RepoRT

without being overloaded. Once a device is not of interest to the opera-
tor anymore, the client applications unsubscribe from the respective
configuration updates automatically.

The GUI application features multiple panels optimized to perform
different tasks. Distinct features such as projects and scene panels coex-
ist with control system essentials, such as a Configuration Panel to
modify the configuration of online and offline devices, and a system
topology view. Karabo projects contain lists of devices, their associated
configurations, scripting macros, and so-called scenes. Projects are
stored in a non-relational database [11] and can be dynamically created
as operators see fit.

By interactively dragging any device property from the Configura-
tion Panel onto a scene, synoptic views are created, consisting of con-
trollers (widgets) appropriate to the property’s data type, which are
added to a scene-model [12]. Operators generally interact with the con-
trol system through these scenes or the configuration panel.

With the combination of projects and scenes, operators can build
versatile user interfaces without coding, and style them further in SVG
graphics editors, since scenes can be translated into an SVG representa-
tion. Alternatively, the programmatic composition of scene model rep-
resentations is possible, and representations of the scene model can be
embedded into device code. These device-provided scenes can be ac-
cessed by double-clicking on an instance in a topology panel of the
GUI.

Use cases at the European XFEL
In the above, we have mainly considered the core Karabo frame-

work. However, the framework is not responsible for integrating hard-
ware or implementing specific operation procedures, nor defining as-
pects of a scientific control system. As described above, such
functionalities are provided by plug-ins called devices. These are im-
plemented using the three application programming interfaces (APIs)
the framework provides: C++, Python-bound (Bound), and Python-
Middlelayer (MDL). Each API has distinguishing features:

• C++ is beneficial for high-performance applications, or for inte-
grating third-party C or C++ libraries;

• Bound provides high-performance pipelined processing when an
application additionally needs to leverage Python packages such
as SciPy [13] or NumPy [14];

• The Middlelayer API is a natively “Pythonic”, low-boilerplate in-
tegration option that excels in rapid development and iteration
cycles.

European XFEL typically operates on a weekly schedule, with user
experiments lasting 5 to 6 days. Consequently, the hardware setup at the
beamlines changes frequently and results in the need to regularly inter-
face additional hardware and define new procedures in the control sys-
tem. The three APIs described above are widely used to enable this
ever-changing variety of devices ranging from the integration of the
previously mentioned large area detectors, to digitizers and commercial

cameras, as well as programmable logic controllers (PLC) and scien-
tific tabletop instrumentation. Base packages facilitate the implementa-
tion of standard protocols (e.g., SCPI, GenICam) or features (e.g., vir-
tual axes). Originally scoped for procedure definitions, the Middlelayer
API is increasingly used for all purposes, including to interface hard-
ware directly (see Figure 3). A vital part of this API and its defining
aspect are device proxies. These allow a straightforward implementa-
tion of high-level tasks which require the orchestration of other devices.
In the following, we introduce examples of important devices used at
the European XFEL, exemplifying the possibilities of the Karabo
framework.

Data acquisition to HDF5 and event-driven to the InfluxDB time
series database

Karabo keeps historical data about the devices in a topic. Properties
and schemas of devices are stored whenever a device instantiates or any
property or device schema changes. In consequence, the historical evo-
lution of any property can be inspected, and a device configuration can
be restored to any point in time.

Two logging backend systems exist for device data: one based on
custom text files and one that uses an Influx time series database [15].
While a text file is adequate for the needs of small installations, it will
not scale to the operational needs of a larger research facility. The
 Influx-based system addresses these limitations and supports European
XFEL operations as the primary data logging backend since 2020. Each
month, about 10 billion property updates are stored in the database [16]
and retained for at least 3 years. Logging data is mainly accessed from
the Karabo GUI Client and, in the case of Influx, from the Grafana web
interface [17]. Grafana is the primary monitoring tool used by the Data
Operation Center of the European XFEL and thus plays a fundamental
role in daily facility operations.

The Karabo data logging subsystem is implemented as a set of com-
mon high-performance C++ devices for either backend. Multiple in-
stances of so-called data logger devices perform data ingestion. The
Influx-based system sustains an average ingestion rate of about 20
MByte per second [16].

Figure 3: Number of device classes developed for the three Karabo APIs
over time.

Synchrotron radiation newS, Vol. 0, No. 0, 2023 5

Technical RepoRT

A run-based data acquisition system (DAQ) is additionally required
to perform experiments at the European XFEL. Here, a run is consid-
ered a continuous acquisition period of mostly stable experimental pa-
rameters [18]. This system stores broker-transferred information, data
from pipeline connections, such as camera images and digitizer traces,
and images from the bespoke 2D MHz-imaging detectors at the facility
[2]. The system is mainly implemented using the C++ API and can store
data rates of up to 20 GBytes per second into HDF5 files [18, 19]. Ad-
ditionally, the system propagates data into the control system through
its monitoring output channels.

Online detector calibration
In order to make decisions during ongoing experiments, scientists

require near real-time feedback from diagnostics and detectors, includ-
ing the bespoke MHz-imaging capable 2D detectors. Especially for the
latter, but also for detector technologies such as Jungfrau, and ePIX,
calibration of the raw detector data is necessary before decisions based
on this data can be made. An online calibration pipeline, implemented
in the Karabo Bound API, which utilizes GPUs is able to provide cali-
brated online image streams at rates of greater than 3000 megapixel
images per second, exemplifying the throughput of Karabo pipeline
connections. Further details can be found in [20, 21].

Failure recovery through the recovery Portal
The Recovery Portal is a Karabo device that provides an interface to

retrieve device configurations for a given point in time from the Influx
database and apply these configurations to a selection of devices in a
topic. The user interface consists of two scenes: the comparison scene
and the recovery scene.

The comparison scene allows an operator to select a point from the
past and filter for device names or types for which they would like to
view configurations. Past and present configurations of the chosen de-
vices are retrieved and can be compared. The operator can use the re-
sulting overview to determine configuration changes between the two
time points. A more detailed comparison is available via a dialog, such
that individual property changes can be inspected.

Through the recovery scene, the operator can retrieve device con-
figurations from the past and additionally apply configurations to se-
lected devices. This interface exposes the same point-in-time selection
functionality and device name or type filters as for the comparison case.
Once devices or groups of devices are selected for recovery, the portal
applies the past configuration to the device. If a device is not online, the
tool can attempt to instantiate the device first. This latter function is
convenient for restarting the control system after software or facility
maintenance and upgrades or in large-scale failure events such as a
power cut. When the maintenance work is complete, a point-in-time
just before the shutdown is selected, and all devices running then are
restarted and configured as before the intervention. After recovery, a
summary table indicating the success or failures of the batch reconfig-
uring is shown.

Integrating with other control systems – the Karabo DOOCS
interface

The DOOCS (Distributed Objected-Oriented Control System)
framework [3] was developed from 1992 onwards at DESY. DOOCS
was initially used for test stands and was later ported to the HERA pro-
ton storage ring. Currently, it serves as the control system of the FLASH
and European XFEL accelerators and will be used for the future Petra
IV light source. As the accelerator control system, DOOCS monitors
many diagnostics relevant to performing experiments at the European
XFEL. To access this data from within Karabo, a DOOCS interface ex-
ists. The DoocsGate C++ class, based on the DOOCS library, connects
to any DOOCS location and gives access to its properties as Karabo
types. The class is also available in Python using a Boost Python [22]
binding.

Specific Karabo devices give access to the most commonly used
types of DOOCS servers, e.g, those controlling the timing boards and
the X-Ray Gas Monitors (XGM). Additionally, a generic device
called “DoocsMirror” enables instrument staff to seamlessly import
DOOCS devices into the Karabo ecosystem without requiring in-
volvement of experts or the need to write specific code. A list of loca-
tions and properties suffices to map properties from multiple DOOCS
locations to corresponding Karabo properties. Slowly updating prop-
erties are propagated using broker messaging, while fast and large
data types, such as vectors and images, are transferred through Karabo
pipelines. DoocsMirror takes care of proper time information: if a
DOOCS property has a non-zero train ID associated, this ID is re-
tained as update time of the corresponding Karabo property. If
DOOCS does not provide a train ID for a property, the device uses the
unix epoch information supplied by DOOCS to calculate the corre-
sponding train ID.

European XFEL has seven distinct Karabo broker topics desig-
nated for the instruments and an additional three for the photon tun-
nel systems. Connections between DOOCS and Karabo are estab-
lished in a dedicated “DOOCS” Karabo installation, facilitating load/
throughput optimization between the two control systems at a single
tuning point. The device instances from this DOOCS topic are then
replicated to other topics using the ‘DeviceClone’ package. This
package enables the replication of a device instance from one topic
to another by transmitting data from the source topic via a TCP chan-
nel to a server instance in the destination topic. Device clones can
operate in a unidirectional mode, providing access to read-back
properties, or a bidirectional mode, allowing slot calls and value
modifications.

The Karabacon scantool
Experimental data collection at synchrotrons and free electron laser

facilities frequently requires the simultaneous motion of several motors
and actuators and coordinated data acquisition from various sources
(cameras, pixel detectors, and digitizers). Karabacon [23] is a Middle-
layer device to orchestrate such operation and is accessible using:

6 Vol. 0, No. 0, 2023, Synchrotron radiation newS

Technical RepoRT

• a graphical user interface through which devices and parameters
of a scan are defined, the execution is controlled, results are plot-
ted, and a history of scans is tracked (see Figure 4);

• a command line interface (CLI) and macros to integrate scans in
higher-level automation routines.

Karabacon can execute absolute and relative 1D and 2D step scans
combining up to four motors and six data sources. A built-in motor in-
terface enables the safe operation of many classes of Karabo devices,
and a custom motor interface can be configured to support most other
devices. Any scalar or vector device property or output channel can be
a data source. Additionally, continuous fly scans and time scans are
possible.

Extensions to the core system provide additional functionality:

• A scan history summarizes the metadata of previous scans, such
as scan settings, progress, status, and basic DAQ info. The history
feature can return to historic scan settings and relaunch an earlier
scan.

• Other extensions modify scan steps based on user-defined trans-
formations and define data source normalization logic.

• An aligner tool estimates essential plot characteristics (minimum,
maximum, peak, valley, etc.) and moves motors to the corre-
sponding positions.

• Scan templates store predefined scan configurations. The tem-
plates are based on a historical time point, and loading a template
sets all Karabacon parameters accordingly.

• Custom scan patterns are supported by uploading, e.g., NumPy or
CSV files or retrieving external pattern specifications from other
devices.

Karabacon is deployed in all installations at the European XFEL and
used in daily operation as a standard tool for beamline and instrument
commissioning and scientific data collection.

Outlook
Over 13 years of development and 6 years of facility operation,

Karabo has matured into a reliable control system that fits the require-
ments of the European XFEL. In June 2023, it was published as free
and open-source software on GitHub.com and continues to be actively
developed, both at the framework level and the numerous devices. Sig-
nificant feature enhancements are being developed alongside a continu-

Figure 4: Scene panel of the scan tool Karabacon in use during a beam time at the FXE instrument. The motor, data source and trigger selection is on the
top left corner. On the bottom left the scan parameters can be configured and on the right the scanned data can be viewed and replayed.

Synchrotron radiation newS, Vol. 0, No. 0, 2023 7

Technical RepoRT

ous effort to address technical debt and introduce modern foundational
technologies, such as for the broker or transitioning from boost::python
to PyBind11 [24]. A web-based user interface and REST APIs for the
core system will be rolled out and expanded from 2024 onwards. This
enhanced support for web technology will be complemented in 2024 by
a lean authentication interface, which, while mainly aimed at auditing
interactions with the system, will support authorization at the edges,
e.g., the web interface or the GUI server interface. The device server
logs will be moved from rolling text logs to make use of the ELK stack
[25], greatly enhancing log introspection possibilities.

The Pythonic Karabo Middlelayer API is planned to be made avail-
able as a stand-alone Python package to ease implementations on other
operating systems such as Windows or Raspberry Pi. The Middlelayer
API's firm adherence to established Python best practices means that
aside from the low-entry threshold for Python-fluent newcomers to the
Karabo world, foundational large language models such as OpenAIs
GPT series [26] can write Karabo device templates from prompt input
alone, i.e., without additional training. AI-based documentation assis-
tants similarly work well with Karabo’s code base. We plan to expand
on opportunities such integration provides for our development work-
flows in the future.

Conclusion
Karabo is a mature supervisory control and data acquisition system

and the main user interface at the European XFEL to carry out scientific
experiments. The control system has stabilized throughout the commis-
sioning period and early operation, and performance has significantly
increased.

Karabo has been tailored to the data requirements of large-scale re-
search facilities: data can be correlated through a unique timing identi-
fier, and high-performance data logging and acquisition systems exist.
The event-driven nature of the system ensures that data traffic is mini-
mized while significant changes are reliably propagated. The system is
freely available under a mixed MPL 2.0 and GPLv3 license at www.
github.com [27].

Disclosure statement
No potential conflict of interest was reported by the authors. n

References
 1. Tango Controls System, 2023, https://www.tango-controls.org/
 2. Epics Controls System, 2023, https://epics-controls.org/

 3. O. Hensler, and K. Rehlich, in 15th Conference on Charged Particle
 Accelerators, Dec. 1996, pp. 308–315.

 4. M. Altarelli, Nucl. Instrum. Methods Phys. Res, Sect. B 269 (24), 2845
(2011). 10.1016/j.nimb.2011.04.034

 5. M. Kuster et al., Synchrotron Radiat. News 27 (4), 35 (2014). doi:
10.1080/08940886.2014.930809

 6. M. Hapner, Java Message Service API Tutorial and Reference: Messaging
for the J2EE Platform (Addison-Wesley Professional, Boston, MA,
2002).

 7. RabbitMQ, 2023, https://www.rabbitmq.com/amqp-0-9-1-reference.html
 8. S. Vinoski, IEEE Internet Comput. 10 (6), 87 (2006). doi: 10.1109/

MIC.2006.116
 9. S. Hauf et al., J. Synchrotron Radiat. 26 (5), 1448 (2019). doi: 10.1107/

S1600577519006696
 10. The Qt Company, 2023, September https://www.qt.io
 11. W. Meier, in Net. ObjectDays: International Conference on Object- Oriented

and Internet-Based Technologies, Concepts, and Applications for a Net-
worked World (Springer, Berlin, Heidelberg, Oct. 2002), pp. 169–183. doi:
10.1007/3-540-36560-5_13

 12. Pydantic, 2023, September https://pydantic.dev
 13. P. Virtanen et al., Nat. Methods 17 (3), 261 (2020). doi: 10.1038/s41592-

019-0686-2
 14. C. R. Harris et al., Nature 585 (7825), 357 (2020). doi: 10.1038/s41586-

020-2649-2
 15. InfluxData, InfluxDB, , Sep. 2023, https://www.influxdata.com
 16. G. Flucke et al., Karabo Data Logging: InfluxDB Backend and Grafana UI,

2021.
 17. M. Chakraborty, and A. P. Kundan, in Monitoring Cloud-Native Applica-

tions: Lead Agile Operations Confidently Using Open Source Software
(Apress, Berkeley, CA, 2021), pp. 187–240.

 18. European XFEL GmbH, Scientific Data Policy of European X-Ray Free-
Electron Laser Facility GmbH, 2017, https://in.xfel.eu/upex/docs/upex-
scientific-data-policy.pdf

 19. M. Folk et al., in Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, Mar. 2011, pp. 36–47. doi: 10.1145/1966895.1966900

 20. P. Schmidt et al., in Frontiers in Data Science (CRC Press, Boca Raton, FL,
Sep. 2023).

 21. D. Hammer et al., in X-Ray Free-Electron Lasers: Advances in Source De-
velopment and Instrumentation VI, SPIE, Jun. 2023, Vol. 12581, pp. 78–84.
10.1117/12.2669491

 22. B. Schäling, The Boost C++ Libraries (XML Press, Laguna Hills, CA,
2014).

 23. European XFEL GmbH, Karabacon, Sep. 2023, https://rtd.xfel.eu/docs/
scantool/en/latest/

 24. W. Jakob, J. Rhinelander, and D. Moldovan, pybind11 – Seamless operabil-
ity between C++ 11 and Python, 2017, https://github.com/pybind/pybind11

 25. Elastic Stack, 2023, https://www.elastic.co/elastic-stack
 26. OpenAI, 2023, GPT-4 Technical Report, arXiv e-print, doi:10.48550/

arXiv.2303.08774
 27. European XFEL GmbH, Karabo, 2023, https://github.com/European-

XFEL/Karabo

http://www.github.com
http://www.github.com
https://www.tango-controls.org/
https://epics-controls.org/
https://doi.org/10.1016/j.nimb.2011.04.034
https://doi.org/10.1080/08940886.2014.930809
https://www.rabbitmq.com/amqp-0-9-1-reference.html
https://doi.org/10.1109/MIC.2006.116
https://doi.org/10.1109/MIC.2006.116
https://doi.org/10.1107/S1600577519006696
https://doi.org/10.1107/S1600577519006696
https://www.qt.io
https://doi.org/10.1007/3-540-36560-5_13
https://pydantic.dev
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.influxdata.com
https://in.xfel.eu/upex/docs/upex-scientific-data-policy.pdf
https://in.xfel.eu/upex/docs/upex-scientific-data-policy.pdf
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1117/12.2669491
https://rtd.xfel.eu/docs/scantool/en/latest/
https://rtd.xfel.eu/docs/scantool/en/latest/
https://github.com/pybind/pybind11
https://www.elastic.co/elastic-stack
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://github.com/European-XFEL/Karabo
https://github.com/European-XFEL/Karabo

	The Karabo SCADA System at the European XFEL
	Introduction
	Control requirements for the European XFEL
	Karabo: Fundamental concepts and architecture
	Broker-based communication and asynchronous event-driven messaging
	Pipelines for large and fast data
	The Karabo GUI: a single extensible operator interface

	Use cases at the European XFEL
	Data acquisition to HDF5 and event-driven to the InfluxDB time series database
	Online detector calibration
	Failure recovery through the recovery Portal
	Integrating with other control systems the Karabo DOOCS interface
	The Karabacon scantool

	Outlook
	Conclusion
	Disclosure statement
	References

