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1. Introduction

With the advent of free electron lasers (FELs) generating intense short pulses of

XUV and X-ray radiation, studies of non-linear photoprocesses in this wavelength

range became feasible [1]. These studies have fundamental importance for our

understanding of the interaction between intense high-frequency fields and quantum

systems. Investigations of atomic ionization by a few photons reveal basic features

of non-linear processes in the short wavelength regime. When the photon energy is

larger than the ionization potential of the singly charged ion, the sequential ionization

is generally the dominant non-linear mechanism involving the outer atomic shells [2, 3].

In the sequential two-photon double ionization (2PDI), which is one of the simplest

non-linear atomic processes in the XUV, the system evolves after emission of the first

electron until the singly charged (intermediate) ion absorbs one more photon from the

same pulse.

The conventional theory of non-linear photoprocesses is developed within the

dipole E1 approximation, as presented in numerous textbooks and reviews (for

example [4, 5, 6, 7]). The dipole approximation is, with very rare exceptions, justified

for the optical and near UV range. Studies of non-linear non-dipole phenomena in

atomic ionization are up to now also restricted to a special case of resonant ionization

in the optical regime, when the photon frequency is in resonance with a discrete

quadrupole E2 transition [8, 9, 10, 11]. The theory of the sequential ionization,

developed so far also within the dipole approximation [12, 13, 14], has been used rather

successfully in explaining the first results obtained in the corresponding experiments

with FELs [15, 16, 17, 18, 19, 20, 21, 22]. The energies of the photons in the above

experiments were not high enough to introduce non-dipole contributions. However, it

is known that already at photon energies of a few hundreds eV and sometimes even

lower, the photoelectron angular distributions in atomic single-photon ionization can be

affected significantly by interference between the electric dipole and electric quadrupole

amplitudes [23, 24, 25]. Going beyond the dipole approximation became a routine

theoretical procedure in the XUV angle-resolved photoelectron spectroscopy (ARPES)

in the gas phase. Similar non-dipole transitions to continuum are involved in linear

and non-linear photoprocesses. Thus, the non-dipole effects will be present also in the

XUV/X-ray non-linear atomic processes, accessible now with FELs. It is the main

goal of the present paper to extend the theory of the sequential 2PDI by incorporating

higher multipoles of the radiation field. In Section 2 we give the theoretical grounds

for treating the non-dipole effects in the sequential 2PDI. In Section 3 the formalism is

specified by taking into account first-order non-dipole corrections in the photoelectron

angular distributions. Section 4 presents numerical examples for the sequential 2PDI of

the neon atom in the photon energy range between 100 and 1100 eV.

Atomic units are used throughout until otherwise indicated.
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2. Basic formalism

We consider the sequential 2PDI of an atom as a two-step process. At the first step, the

atom is singly ionized by the first photon h̄ω1 which produces an ionic state through

emission of the first electron e1,

h̄ω1 + A (α0J0)→ A+ (αiJi) + e1(l1j1) . (1)

The first step leads, in general, to the polarized intermediate ionic state A+(αiJi). At

the second step, the ion is further ionized by the second photon, h̄ω2, with emission of

the second electron e2,

h̄ω2 + A+ (αiJi)→ A++ (αfJf ) + e2(l2j2) . (2)

Here J0, Ji and Jf are total angular momenta of the neutral atom, the intermediate

singly charged ion and the final doubly charged ion, respectively; α0, αi, αf are the sets

of other quantum numbers needed to specify the corresponding state. We will omit the

latter in further expressions for brevity. The emitted electrons are described by their

orbital (l) and total (j) angular momenta.

The derivation for the photoelectron angular distributions proceeds within the

standard statistical tensor formalism [26] and in close similarity to [13]. In this section we

will, where possible, maintain the notations of [13], generalizing it for the full multipole

expansion of radiation in electric and magnetic moments. The statistical tensors

describing the intermediate single-charged ionic state depend on the photoelectron (e1)

emission angles ϑ1 and ϕ1. They can be cast into the form (compare to equation (5)

of [13])

ρkiqi(Ji, J
′
i ;ϑ1, ϕ1) = παω1(2J0 + 1)−

1
2

×
∑

k1q1kγ1qγ1
π1L1π

′
1
L′
1

(kiqi, k1q1 | kγ1qγ1)Bπ1L1,π′
1L

′
1(k1, ki, kγ1)

× ρkγ1qγ1 (π1L1, π
′
1L
′
1)

√
4π

2k1 + 1
Yk1q1(ϑ1, ϕ1) , (3)

where α is the fine-structure constant and Ykq(θ, φ) denotes the spherical harmonic in

the Condon-Shortley phase convention; we use the standard notation for the Clebsch-

Gordon coefficients. The indices π1, π
′
1 take values of 0 or 1 for the electric and

magnetic multipoles, respectively; L1 and L′1 denote the photon h̄ω1 multipolarity.

General expressions for the photon statistical tensors ρkγqγ (πL, π
′L′) in terms of the

Stokes parameters of the radiation were presented, for example, in [27]. The dynamical

coefficients Bπ1L1,π′
1L

′
1(k1, ki, kγ1) in equation (3) depend on the partial multipole

amplitudes T π1L1
J0,Jil1j1J1

≡ 〈αiJil1j1J1 || T̂ π1L1 ||α0J0〉, where J1 = Ji + j1 is the total

angular momentum of the system A+(αiJi) + e1(l1j1):

Bπ1L1,π′
1L

′
1(k1, ki, kγ1) =

3k̂1k̂i

L̂1L̂′1
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×
∑

l1l
′
1
j1j

′
1

J1J
′
1

(−1)ξ1 l̂1l̂
′
1ĵ1ĵ

′
1Ĵ1Ĵ

′
1(l10, l

′
10 | k10)

×

kγ1 J1 J
′
1

J0 L
′
1 L1


j1 l1 1/2

l′1 j
′
1 k1



Ji j1 J1

J ′i j
′
1 J

′
1

ki k1 kγ1


× T π1L1

J0,Jil1j1J1
T
π′
1L

′
1 ∗

J0,J ′
i l

′
1j

′
1J

′
1
, (4)

where ξ1 = J1 + J0 + kγ1 + j′1 +L′1 + 1
2
, the standard notations for the 6j and 9j Wigner

coefficients are used and we abbreviate â ≡
√

2a+ 1. It is implied that the dynamical

coefficients (4) are normalized so that the zero rank tensor (3) is related to the differential

cross section of the first-step photoionization, ρ00(Ji, Ji;ϑ1, ϕ1) = Ĵ−1i dσ1(Ji)/dΩ1.

The angular correlation function between electrons e1 and e2 is the angular

distribution of the second-step photoelectron e2 emitted from the intermediate ion

which polarization is described by the statistical tensors (3). Applying a theory of

photoelectron angular distributions from polarized atoms for arbitrary multipoles of the

radiation field [28], we obtain

W (Jf ;ϑ1, ϕ1, ϑ2, ϕ2) = παω2

×
∑

k2kγ2ki
q2qγ2qi

∑
π2L2π

′
2
L′
2

JiJ
′
i

B̄π2L2,π′
2L

′
2(ki, k2, kγ2) ρkγ2qγ2 (π2L2, π

′
2L
′
2)

× h(Ji, J
′
i) ρkiqi(Ji, J

′
i ;ϑ1, ϕ1) (kiqi, kγ2qγ2 | k2q2)

×
√

4π

2k2 + 1
Yk2q2(ϑ2, ϕ2) . (5)

Here ρkγ2qγ2 (π2L2; π
′
2L
′
2) are statistical tensors of the second photon, while the statistical

tensors of the intermediate ion, ρkiqi(Ji, J
′
i ;ϑ1, ϕ1), are given by equation (3). The

complex matrix h(Ji, J
′
i) describes the depolarization of the intermediate ion in the

time interval between the absorption of the first and the second photon due to the time

evolution of the density matrix of the angular momentum of the electronic shell . In the

present case the key reason for this evolution is the precession of the angular momentum

due to the spin-orbit interaction in the electronic shell. In general, the matrix h(Ji, J
′
i)

can reflect arbitrary coherent properties of the excited fine-structure levels. In this sense

the theory is applicable to both of the main operating modes of X-ray FELs, i.e. to

the self-amplified stimulated emission (SASE) and to the seeding mode. However, it is

extremely difficult to calculate the depolarization factors for real situations taking into

account the microbunching, variations in the FEL pulse shape from shot to shot and the

poorly known longitudinal coherence of the light from FEL. It may be more practical in

certain situations to consider the depolarization factors as unknown fitting parameters

as in studies of photoionization by optical lasers (for example [29, 30]). The particular

cases h(Ji, J
′
i) = δJi,J ′

i
and h(Ji, J

′
i) = 1 describe incoherent excitation of separated fine-

structure levels and excitation of completely overlapping (degenerate) fine-structure

levels (LS-coupling limit), respectively. More details on the matrix h(Ji, J
′
i) in the 2PDI
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process, including intermediate cases of coherence, can be found in [14, 31]. We return

to this point for a particular example in Section 4.

The dynamical coefficients B̄π2L2;π′
2L

′
2(ki, k2, kγ2) in equation (5) are given in

terms of the partial multipole amplitudes of the second step ionization T π2L2
Ji,Jf l2j2J2

≡
〈αfJf , l2j2 : J2 || T̂ π2L2 ||αiJi〉:

B̄π2L2,π′
2L

′
2(ki, k2, kγ2) =

3k̂ik̂γ2
L̂2L̂′2

×
∑

l2l
′
2
j2j

′
2

J2J
′
2

(−1)ξ2 l̂2l̂
′
2ĵ2ĵ

′
2Ĵ2Ĵ

′
2 (l20, l

′
20 | k20)

×

 j2 J2 JfJ ′2 j
′
2 k2


j2 l2 1/2

l′2 j
′
2 k2



Ji L2 J2

J ′i L
′
2 J
′
2

ki kγ2 k2


× T π2L2

Ji,Jf l2j2J2
T
π′
2L

′
2 ∗

J ′
i ,Jf l

′
2j

′
2J

′
2
. (6)

where ξ2 = J2 + Jf + k2 − 1
2

and J2 = Jf + j2 is the total angular momentum of the

system A++(αfJf ) + e2(l2j2). Note the following useful relations

BπL,π′L′
(k, ki, kγ) = (−1)ki+k+kγ+L−L

′
(
Bπ′L′,πL(k, ki, kγ)

)∗
, (7)

B̄πL,π′L′
(ki, k, kγ) = (−1)ki+k+kγ+L−L

′
(
B̄π′L′,πL(ki, k, kγ)

)∗
, (8)

which result from (4) and (6), respectively (the latter for a sharp value of Ji), upon

permutation of primed and not primed quantum numbers.

To obtain the dipole approximation, only terms with π1 = π′1 = π2 = π′2 = 0 and

L1 = L′1 = L2 = L′2 = 1 should be left in expressions (3)-(6). In this case equations

(3)-(6) reduce to equations (5), (6), (12) and (13) of [13], respectively, after assuming

that both photons are linearly polarized in one direction (z axis) and choosing the

coordinate system with the x axis in the reaction plane spanned by the z axis and the

linear momentum of the first electron (ϕ1 = 0).

We concentrate below on the non-coincidence type of experiments, i.e. when only

one of the two photoelectrons is detected. Measurements in the coincidence mode in

sequential 2PDI [16] suffer so far from low statistics caused by the low repetition rate

of present X-ray FEL sources. Integrating the angular correlation function (5) over the

emission angles of the first (e1) or the second (e2) electron, we obtain the photoelectron

angular distribution for the electrons e2 and e1, respectively. After integration, only

terms with k1 = 0 or k2 = 0 survive, respectively. It follows from the property of the

Clebsch-Gordon coefficients in (4) or (6) that the angular distribution of the second

(first) photoelectron is determined by terms with l1 = l′1 (l2 = l′2) and hence, only

contributions from the field multipoles of the same parity remain for the first (second)

ionization step.

The angular distribution of the electron e1, as follows from (5), takes the form

dσ1
dΩ1

= 4π2αω2
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×
∑
kiqi
JiJ

′
i

∑
π2L2
π′
2
L′
2

B̄π2L2,π′
2L

′
2(ki, 0, ki)ρ

∗
kiqi

(π2L2, π
′
2L
′
2)


× (−1)ki k̂−1i h(Ji, J

′
i) ρkiqi(Ji, J

′
i ;ϑ1, ϕ1) . (9)

As was outlined first in [13] and further discussed in [16, 32, 33] within the dipole

approximation, the angular distribution of the electrons produced in the first ionization

step of the 2PDI generally differs from the photoelectron angular distribution for the

same ionization transition in the single-photon ionization. It follows from the fact that

despite the integration over the emission angles, the second electron is still supposed

to be ejected by the second photon. Equation (9) contains information on the second

ionization step in the factor in square brackets. In the particular case of an unpolarized

intermediate ionic state (ki = 0), the angular distribution of the first-step electron e1 is

not affected by the second ionization step.

The angular distribution of the electron e2 is expressed by equation (5) with

substitution of the integral statistical tensor of the intermediate ionic state,

ρkiqi(Ji, J
′
i) = 4π2αĴ−10

×
∑

π1L1π′
1L

′
1

Bπ1L1,π′
1L

′
1(0, ki, ki)ρkiqi(π1L1, π

′
1L
′
1) , (10)

instead of the differential statistical tensor (3). Equation (10) is obtained by integrating

equation (3) over the emission angles of electron e1. Thus, the angular distribution of

electron e2 takes the form

dσ2
dΩ2

= παω2

×
∑
k2q2
kγ2qγ2

∑
kiqi
JiJ

′
i

∑
π2L2
π′
2
L′
2

B̄π2L2,π′
2L

′
2(ki, k2, kγ2)ρkγ2qγ2 (π2L2, π

′
2L
′
2)


× h(Ji, J

′
i) ρkiqi(Ji, J

′
i) (kiqi, kγ2qγ2 | k2q2)

√
4π

2k2 + 1
Yk2q2(ϑ2, ϕ2) . (11)

Now we are in a position to specify the general formalism for particular applications.

3. First-order non-dipole corrections

The first-order non-dipole corrections in equations (4) and (6) are given by the E1-E2

and E1-M1 interference terms. The corresponding spherical components (λ) of the

multipole operators are (in the nonrelativistic long-wave approximation) of the form

T̂E1
λ = Dλ =

√
4π

3

∑
n

rnY1λ(θn, φn) , (12)

T̂E2
λ =

iαω

2
√

3
Qλ =

iαω

2
√

3

√
4π

5

∑
n

r2nY2λ(θn, φn) , (13)
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T̂M1
λ = −iMλ = −iα

2

∑
n

(l̂λ,n + 2ŝλ,n) , (14)

where Dλ, Qλ and Mλ are the components of the atomic electric-dipole, electric-

quadrupole and magnetic-dipole momenta, respectively, rn, θn and φn are spherical

coordinates of the atomic electrons, lλ,n and sλ,n are the components of the orbital and

spin angular momentum of the nth atomic electron, and summation is performed over

all atomic electrons. In accordance with the discussion in the previous section, the E1-

E2 and E1-M1 interference terms contribute only to the first (second) ionization step

when the corresponding photoelectron e1 (e2) is observed, while the other electron is

not detected.

The integral statistical tensor of the intermediate ion (10) takes the form

ρkiqi(Ji, J
′
i) =

4π2αω1

Ĵ0
δkikγ1δqiqγ1 ρkγ1qγ1 (E1, E1) k̂γ1

×
∑
l1j1
J1J

′
1

(−1)χĴ1Ĵ
′
1

kγ1 J1 J
′
1

J0 1 1


 j1 J1 Ji

kγ1 J
′
i J
′
1


×DJ0,Jil1j1J1D

∗
J0,J ′

i l1j1J
′
1

(15)

(χ = J1 + J ′1 + J0 + j1 + Ji + 1), which is not influenced by the first-order non-dipole

corrections. Here DJ0,Jil1j1J1 = 〈αiJil1j1J1 ||D ||α0J0〉 is the partial dipole amplitude.

Equation (15) coincides up to a not relevant normalization factor with the known

expression in the dipole approximation (see equations (2.163), (2.164) of [26]). For

closed-shell atoms (J0 = 0), equation (15) can be further simplified because of fixed

values for J1 = J ′1 = 1.

Substituting (15) into (11) and limiting the summation over the field multipoles to

the E1-E1, E1-E2, E2-E1, E1-M1, and M1-E1 terms, the expression for the angular

distribution of the second electron in the sequential 2PDI within the first-order non-

dipole corrections can be obtained. To specify this expression for the experimental

conditions of measurements with FELs, we imply that both XUV photons, h̄ω1 and h̄ω2,

belong to the same pulse of linearly polarized radiation. We choose the x-axis along

the photon beam propagation direction and the z-axis along its polarization vector.

The following statistical tensors of photons remain nonvanishing in this coordinate

system [27]:

ρ00(E1, E1) =
1√
3

; ρ20(E1, E1) = −
√

2

3
; (16)

ρ1±1(E1,M1) = ∓1

2
; ρ2±1(E1,M1) =

1

2
; (17)

ρ1±1(E1, E2) = ±1

2
; ρ2±1(E1, E2) =

√
5

6
; ρ3±1(E1, E2) = ∓2

3
. (18)

The tensors with interchanged arguments are found from the general relation

ρkq(πL, π
′L′) = (−1)L

′−L+qρ∗k−q(π
′L′, π, L). After straightforward transformations the
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angular distribution (11) of the second-step electrons e2 within the first-order non-dipole

corrections can be cast into the form
dσ2
dΩ2

=
σ2
4π

(
1 + β

(2)
2 P2(cosϑ2) + β

(2)
4 P4(cosϑ2)

+ (δ(2) + γ
(2)
2 cos2 ϑ2 + γ

(2)
4 cos4 ϑ2) sinϑ2 cosϕ2)

)
, (19)

where the superscript ’(2)’ indicates the second electron. The first three terms in

equation (19) correspond to the pure dipole contribution; the last three terms give the

first-order non-dipole corrections and include E1-E2 and E1-M1 interference. The last

term with γ4 is a non-dipole correction specific for the two-photon ionization. Neglecting

polarization of the intermediate ion leads to vanishing β4 and γ4, and reduces equation

(19) to the well-known form [34]

dσ2
dΩ2

=
σ2
4π

(1 + β
(2)
2 P2(cosϑ2) + (δ(2) + γ

(2)
2 cos2 ϑ2) sinϑ2 cosϕ2) (20)

for the photoelectron angular distributions in single-photon ionization within the first-

order non-dipole corrections.

An equation similar to (19) describes the angular distribution of the first electron

e1:

dσ1
dΩ1

=
σ1
4π

(
1 + β

(1)
2 P2(cosϑ1) + β

(1)
4 P4(cosϑ1)

+ (δ(1) + γ
(1)
2 cos2 ϑ1 + γ

(1)
4 cos4 ϑ1) sinϑ1 cosϕ1)

)
. (21)

Note that the first-order nondipole corrections do not contribute to the factor in the

square brackets in equation (9). Expressions for the parameters in equations (19) and

(21) in terms of the dynamical coefficients (4), (6) are given in Appendix.

4. Sequential 2PDI of neon

As an example, we consider 2PDI of the neon atom:

h̄ω1 + Ne (2p6 1S)→ Ne+ (2p5 2P ) + e1; (22)

h̄ω2 + Ne+ (2p5 2P )→ Ne++ (2p4 3P, 1D, 1S) + e2 . (23)

The first step of the process, the atomic single-photon ionization (22), has been studied

extensively over a long time (see references in [35]). These experiments were performed

with synchrotron radiation from storage rings, thus due to the low intensity of the photon

flux the probability of the second-step ionization (23) was negligible. Nevertheless,

pronounced non-dipole effects in single ionization revealed in these experiments [36, 37]

point to potentially strong non-dipole effects in the 2PDI at the corresponding photon

energies. Using the Free-electron LASer in Hamburg (FLASH), the angular distributions

of the individual electrons e1 and e2 in the 2PDI process (22), (23) were measured

in [15, 22] while the angular correlation function between the two electrons was

observed in [16]. The sequential mechanism of the 2PDI in neon was also confirmed

in recoil-ion momentum distribution measurements [38] and by means of angle-resolved
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Figure 1. Non-dipole parameters γ + 3δ and δ of the photoelectron angular

distribution in single-photon 2p ionization of Ne as a function of the photoelectron

energy. Solid curves: present calculation; dotted curves: random phase approximation

(RPA) [40, 41]. Experimental data of [37] for the geometry suppressing the second-

order non-dipole effects.

photoelectron spectroscopy [20]. The energies of the photons from FLASH were tens

of eV in the above experiments and the corresponding theoretical analysis was done in

the framework of the dipole approximation [12, 13, 16, 39]. In the following we extend

the calculations to higher photon energies and account for the first-order non-dipole

corrections.

The electron wave functions to describe the first ionization step (22) were the same

as in the recent multiconfiguration Hartree-Fock (MCHF) calculations [13]. Besides the

2p emission into s and d continua, we added atomic continua with different parity (i.e.

p and f waves of the photoelectron) to obtain the first-order non-dipole corrections.

Since the dominant non-dipole contribution comes from the interference of the E1 and

E2 photoionization amplitudes, we neglect the M1 photoionization amplitudes (which

strictly vanish in the nonrelativistic single-configuration approximation). Our results

for the photoelectron angular distribution in single-photon ionization are in a good

agreement with other calculations [34, 40, 41] and experiment [37] (Figure 1; we denote

the non-dipole parameters in one-photon single ionization without superscript). Note

that, as revealed by Derevianko et al [41], the second-order non-dipole effects start to

noticeably influence the photoelectron angular distribution of the Ne 2p ionization at

the photon energies near to 1 keV.

For the description of the second ionization step (23), we first optimized the

1s, 2s, and 2p orbitals for each term of the residual ion Ne++(2p4). These orbitals

were then frozen in single-configuration 2p4(LfSf )El2 :Lt2St2 calculations of the Ne+
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continuum wave functions, where E and l denote energy and orbital momentum of

the photoelectron, Lt2 and St2 are the total orbital and spin angular momenta of the

system Ne++(2p4 LfSf ) + El2, respectively, LfSf specify the term of the Ne++(2p4)

configuration. The ionic Ne+(2p5) state was described by mixing of configurations with

the same frozen 1s, 2s, 2p orbitals and the pseudo-orbitals 3s̄, 3p̄, 3d̄ optimized on the

ground ionic state in the multiconfiguration 1s22s2(2p5 + 2p43p̄ + 2p33s̄2 + 2p33p̄2 +

2p33d̄2 + 2p33s̄3d̄)2P calculation.

Calculations of the photoelectron angular distributions were performed for both

intermediate fine-structure ionic states Ne+(2p5 2P1/2,
2P3/2) and for the three terms of

the residual doubly charged ion Ne++(2p4 1S, 1D, 3P ). The fine structure levels of the

ion Ne++(2p4 3P0,1,2) and of the intermediate ionic doublet Ne+(2p5 2P1/2,3/2) with energy

splitting of 0.114 eV and 0.097 eV, respectively, are not resolved in current experiments

using FEL radiation. Therefore, all numerical results are summed over these unresolved

fine structure states. Here we assume that the fine structure states of the intermediate

ion are excited incoherently, i.e. h(Ji, J
′
i) = δJiJ ′

i
in equations (9), (11). This choice is

made in accordance with the analysis of the e1 and e2 angular correlations [16, 39] in

the 2PDI process (22), (23) measured with FLASH operating in the SASE mode. This

analysis indicated better agreement of the measurements, although with low statistics,

with the assumption of the incoherent excitation of the Ne+(2p5 2P1/2,3/2) fine structure

states. Accounting for (partial) coherence can modify the angular distribution due to

other values of h(Ji, J
′
i). However, we do not expect for the 2PDI (22), (23), where

the intermediate ion polarization is small and smoothly depends on the photon energy

(see below), significant changes in the behavior of the nondipole parameters in the non-

coincidence experiments.

The three multiplet Ne++(3P, 1D, 1S, ) states are splitted by 3.1 eV and 3.7 eV,

respectively, which can be resolved at photon energies up to ∼600–700 eV with a

photon energy bandwidth of about 0.5% for the FEL pulses in SASE mode [42].

With the installation of seeding schemes in the nearest future [43] or by using

monochromators [44], the energy resolution can be significantly improved.

Our numerical calculations predict that the influence of the second step ionization

on the nondipole parameters of the angular distribution of the first-step photoelectrons

e1 smears out to a large extent after the angular distributions are summed over the

final ionic multiplet states of Ne++(2p4) (i.e. over energies of the unobserved electron

e2). This means that in case of Ne the non-dipole contributions to the first ionization

step are only accessible by very demanding coincidence experiments. For this reason we

concentrate in the present paper on the angular distribution of the photoelectrons e2.

Figure 2 shows the parameters characterizing the angular distribution of the second

electron e2 in the sequential 2PDI (22), (23). The energy dependence of the dipole

parameters β
(2)
2 and β

(2)
4 obtained in [12, 13] is extended here to higher energies (two

lower panels of figure 2). Although the calculations were performed using the general

equations (A.6)-(A.10) from the Appendix, it is instructive for the discussion to simplify

these expressions within the single-configuration approximation and by using term-
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Figure 2. Parameters of the angular distribution of photoelectrons e2 (19) emitted in

sequential 2PDI of the neon 2p-shell for different terms of the residual ion Ne++(2p4)

as a function of the photon energy. Solid curves: 3P -term; dashed curves: 1S-term;

dashed-dotted curves: 1D-term. The dotted curve on the upper panel corresponds to

the 3P -term when the intermediate ionic Ne+(2p5 2P ) state is unpolarized.



Non-dipole effects in sequential two-photon double ionization 12

average radial electron wave functions. Then the non-dipole parameters in equation

(19) are expressed in terms of the single-electron dipole (ds, dd) and quadrupole (qp, qf )

amplitudes for transitions of the 2p electron into s, d and p, f electron states in the

continuum, respectively:

δ(2)(LfSf ) =
(
N
LfSf
2

)−1 (
1−KLfSfA2 0

)
× =

[(√
2ds − dd

) (√
3q∗p −

√
2q∗f

)]
, (24)

γ
(2)
2 (LfSf ) =

(
N
LfSf
2

)−1 [
=
(
6
√

3ddq
∗
p + 2

(
5ds + 2

√
2dd

)
q∗f
)

− KLfSf

A2 0

2
=
(
3
√

3ddq
∗
p + 4(5ds − 7

√
2dd)q

∗
f

)]
, (25)

γ
(2)
4 (LfSf ) = −45

√
2

2

(
N
LfSf
2

)−1
KLfSfA2 0=(ddq

∗
f ) , (26)

β
(2)
2 (LfSf ) =

(
N
LfSf
2

)−1 [√
2 (dsd

∗
d + ddd

∗
s) + |dd|2−

−KLfSfA2 0

(√
2 (dsd

∗
d + ddd

∗
s) +

5

14
|dd|2

)]
, (27)

β
(2)
4 (LfSf ) = −54

35

(
N
LfSf
2

)−1
KLfSfA2 0|dd|2 , (28)

where

N
LfSf
2 = |ds|2 + |dd|2 −KLfSfA2 0

1

10

(
|dd|2 + 10|ds|2

)
, (29)

K1S = 1,K1D = 1/10, K3P = −1/2. The single particle dipole and quadrupole

amplitudes are of the form

dl =
√

3 (10, 10 | l0) eiδl
∫
P2p(r)PEl(r)rdr , (30)

ql =
√

3 (10, 20 | l0)

√
3

5

iαω

2
√

3
eiδl
∫
P2p(r)PEl(r)r

2dr , (31)

respectively, where P2p(r) and PEl(r) are the electron wave functions in the 2p state and

in the continuum of Ne+, δl is the corresponding scattering phase. To obtain (24)-(29)

the reduction formula was used

T π2L2
Li,Lf l2Lt2

= L̂iL̂t2(−1)Lf+l2+Li

L2 Li Lt2

Lf l2 1

RL2,l2 , (32)

where R1,l2 = dl2 and R2,l2 = ql2 . Equations (24)-(29) are given for the sequential 2PDI

via the Ne+(2p5 2P3/2) state and A20 is the integral alignment of this state,

A20 = ρ20(Ji, Ji)/ρ00(Ji, Ji) , (33)

produced in the first ionization step (22). Our results for the integral alignment of the

Ne+(2p2 2P3/2) state are in agreement with the preceding calculations [13, 45]; it is not
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large and its value smoothly changes in the interval between -0.15 and -0.20‡ over the

considered broad energy range.

For ionization via the Ne+(2p5 2P1/2) state, N
LfSf
2 is two times smaller and

the alignment A20 vanishes. After incoherent summation over the fine structure

Ne+(2p5 2P1/2,3/2) levels, equations (24), (25), (27), (29) remain valid with the reduced

values of the coefficients: K1S,av = 2/3, K1D,av = 2/30, K3P,av = −1/3.

It is obvious from equations (24)-(29) that for an unpolarized intermediate state

(A20 = 0), δ(2) and γ
(2)
2 coincide for all LfSf terms of the residual ion Ne++(2p4) and

β
(2)
4 = γ

(2)
4 = 0. Therefore the main difference between the photoelectron (e2) angular

distributions corresponding to different final ionic terms Ne++(2p4 2Sf+1Lf ) is caused by

the alignment of the intermediate ion Ne+(2p5), produced in the first ionization step.

Further deviations arise due to the term dependence of the radial electron wavefunctions,

but with much smaller effects than the alignment of the intermediate ion. Thus in

figure 2 we present for comparison only one curve (in the upper panel) corresponding

to the unpolarized intermediate ion. The parameters γ
(2)
2 and δ(2) are close to the

corresponding single-photon parameters γ and δ (figure 1). This can be understood by

taking into account that the dynamics of the 2p-ionization from Ne(2p6) and Ne+(2p5)

is similar and the aligment of the Ne+(2p5) state is small. Generally, effects caused

by the alignment of the intermediate ion Ne+(2p5) (i.e. the parameters γ
(2)
4 (LfSf ) and

β
(2)
4 (LfSf )) are strongest for ionization to the 1S term of the residual ion Ne++(2p4).

For example the absolute value of γ
(2)
4 for the 1S residual ion state is ten and two times

larger than for the 1D and 3P states, respectively. Note that it is possible to write down

the expression for δ(2) in the product form (24), where dipole and quadrupole amplitudes

are separated in different factors. The dipole factor (
√

2ds − dd) is accidentally close

to zero due to mutual cancellation of the two dipole amplitudes in the broad energy

range. This is a reason for the small values of δ(2) even at energies where the non-dipole

ionization transitions are prominent.

The non-dipole effects violate the axial symmetry with respect to the linear

polarization vector of the photon beam, or, equivalently, result in a forward-backward

asymmetry with respect to the photon propagation vector. The forward-backward

asymmetry is defined as

A(θ) =
W (θ)−W (π − θ)
W (θ) +W (π − θ)

, (34)

where W (θ) is the photoelectron flux emitted into the angle θ given relative to the

direction of the photon propagation in the plane spanned by the direction of the

propagation and the electric field of the linearly polarized photon. The asymmetry

is a convenient quantity to study the non-dipole effects [46], since A(θ) = 0 in the

dipole approximation. Our numerical analysis for neon shows that for θ = 45◦ the

values of the asymmetry are almost maximal in comparison with asymmetries for other

‡ Kleiman and Lohmann [45] use a coordinate system with the z-axis along the radiation beam. The

value of the alignment from [45] is related to the present one as Apresent
20 = −2AKL

20 .



Non-dipole effects in sequential two-photon double ionization 14

Figure 3. Asymmetry (34) for θ = 45◦ as a function of the photon energy for different

final multiplet states of Ne++(2p4). Curves as in figure 2. The inset shows the angular

distribution of the e2 photoelectrons at 1 keV photon energy for the 3P -term of the

ion Ne++(2p4). Axis x is along the linearly polarized photon beam, axis z is along the

electric field of the photon.

values of θ. Figure 3 demonstrates that A(45◦) only weakly depends on the term of

the final ionic state and monotonously increases with the photon energy approaching

20% at the energies around 1 keV. For these values of the asymmetry, the electron flux

ratio W (45◦)/W (135◦) reaches the value of 1.4. For the experimental observation of the

non-dipole contribution it is not necessary to resolve the final multiplets of Ne++(2p4)

to observe the asymmetry (34).

5. Conclusions

We obtained general expressions for the angular distributions of photoelectrons in the

sequential two-photon atomic double ionization by accounting for the full multipole

expansion of the radiation field. The development provides grounds for treating this

non-linear process at photon energies accessible by X-ray free electron lasers, i.e. where

the dipole approximation regularly breaks down. The general formalism is applied to

derive more particular expressions for the photoelectron angular distributions within

the first-order non-dipole corrections. The role of the alignment of the intermediate

ionic state, produced in the first ionization step, is crucial for the appearing of new

dynamical parameters in comparison with one-photon single ionization. Our numerical

calculations for the photon energies up to 1 keV demonstrate that the non-dipole effects

in the sequential two-photon 2p-ionization of neon can be observed with existing FEL

facilities. The influence of longitudinal coherence of the FEL pulses on the non-dipole

effects is an important issue for further studies.
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Appendix

In this Appendix we use the following notations for brevity:

Bk1kikγ1
≡ <BE1,E1(k1, ki, kγ1),

BE
k1kikγ1

≡ <BE1,E2(k1, ki, kγ1), BM
k1kikγ1

≡ <BE1,M1(k1, ki, kγ1),

BE−M
k1kikγ1

≡ BE
k1kikγ1

−BM
k1kikγ1

, BE+M
k1kikγ1

≡ BE
k1kikγ1

+
3√
5
BM
k1kikγ1

and similar for the coefficients B̄kik2kγ2
.

When the sequential 2PDI proceeds via the 2P3/2 state, the angular distribution of

the electron e1 is determined by the parameters

β
(1)
2 = −N−11

√
2

35

[
35B̄000B202 + B̄202

(
7B220 + 2

√
35B222

)]
, (A.1)

β
(1)
4 = N−11

2
√

2√
35
B̄202B422 , (A.2)

δ(1) = N−11

{
−B̄000

[√
6BE−M

101 + 2BE
303

]
+
√

3B̄202

[√
2

5
BE−M

121 −
√

2

3
BE+M

122

− 8
√

2

15
BE

123 −
3
√

7

35
BE−M

321 −
√

42

42
BE+M

322 −
√

2

5
BE

323 −
√

11

11
BE

523

]}
, (A.3)

γ
(1)
2 = N−11

[
10B̄000B

E
303

+ B̄202

(
3
√

21

7
BE−M

321 +
5
√

14

14
BE+M

322 +
√

6BE
323 +

14
√

33

11
BE

523

)]
, (A.4)

γ
(1)
4 = −N−11

21
√

3√
11

B̄202B
E
523 , (A.5)
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where N1 = B̄000+ 2√
5
B̄202B022. The angular distribution of the electron e2 is determined

by the parameters

β
(2)
2 = N−12

[
A20

(
B̄220 +

2√
7
B̄222

)
−
√

2B̄022

]
, (A.6)

β
(2)
4 = −N−12

6√
35
A20B̄242 , (A.7)

δ(2) = N−12

−√6B̄E−M
011 − 2B̄E

033 +A20

−B̄E+M
212 −

√
3

5
B̄E−M

211

+
3√
10
B̄E−M

231 − 1

2
B̄E+M

232 +
8√
35
B̄E

213 +

√
3

5
B̄E

233 +

√
15

14
B̄E

253

 , (A.8)

γ
(2)
2 = N−12

[
10B̄E

033 +A20

√
5

(√
5

2
B̄E+M

232 − 3
√

2

2
B̄E−M

231

−
√

3B̄E
233 −

√
42B̄E

253

)]
, (A.9)

γ
(2)
4 = N−12

3
√

105√
2
A20B̄

E
235 , (A.10)

where N2 = B̄000 −
√

2
5
A20B̄202 and the integral alignment A20 is defined by equation

(33).

For the 2PDI via the 2P1/2 state, β
(1)
4 = γ

(1)
4 = β

(2)
4 = γ

(2)
4 = 0 and all terms with

B̄202 vanish in the expressions for the parameters β
(1)
2 , δ(1), γ

(1)
2 as well as for N1, while

in the expressions for the parameters β
(2)
2 , δ(2), γ

(2)
2 as well as for N2, all terms with A20

vanish.
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[46] Krässig B, Bilheux J-C, Dunford R W, Gemmell D S, Hasegawa S, Kanter E P, Southworth S H,

Young L, LaJohn L A and Pratt R H 2003 Phys. Rev. A 67 022707


