Files

Abstract

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.833 Å) is employed to characterize microcrystalline silver $n$-alkanethiolates with various alkyl chain lengths at X-ray free electron laser facilities, resolving long-standing controversies regarding the atomic connectivity and odd–even effects of layer stacking. smSFX provides high-quality crystal structures directly from the powder of the true unknowns, a capability that is particularly useful for systems having notoriously small or defective crystals. We present crystal structures of silver $n$-butanethiolate (C₄), silver $n$-hexanethiolate (C6), and silver $n$-nonanethiolate (C₉). We show that an odd–even effect originates from the orientation of the terminal methyl group and its role in packing efficiency. We also propose a secondary odd–even effect involving multiple mosaic blocks in the crystals containing even-numbered chains, identified by selected-area electron diffraction measurements. We conclude with a discussion of the merits of the synthetic preparation for the preparation of microdiffraction specimens and compare the long-range order in these crystals to that of self-assembled monolayers.

Details

Statistics

from
to
Export
Download Full History