Files

Abstract

Modern diagnostic and detector related data acquisition and processing hardware are increasingly being implemented with Field Programmable Gate Array (FPGA) technology. The level of flexibility allows for simpler hardware solutions together with the ability to implement functions during the firmware programming phase. The technology is also becoming more relevant in data processing, allowing for reduction and filtering to be done at the hardware level together with implementation of low-latency feedback systems. However, this flexibility and possibilities require a significant amount of design, programming, simulation and testing work usually done by FPGA experts. A high-level FPGA programming framework is currently under development at the European XFEL in collaboration with the Oxford University within the EU CRISP project. This framework allows for people unfamiliar with FPGA programming to develop and simulate complete algorithms and programs within the MathWorks Simulink graphical tool with real FPGA precision. Modules within the framework allow for simple code reuse by compiling them into libraries, which can be deployed to other boards or FPGAs.

Details

PDF

Statistics

from
to
Export
Download Full History