
AUTOMATED VERIFICATION ENVIRONMENT FOR TWINCAT PLC

PROGRAMS

A. Beckmann, European XFEL, Hamburg, Germany

Abstract
The European XFEL will have three undulator systems

SASE1, SASE2, and SASE3 to produce extremely

brilliant, ultra-short pulses of x-rays with wavelengths

down to 0.1 nm. The undulator gap is adjustable in order

to vary photon beam energy. The corresponding motion

control is implemented with industrial PCs running

Beckhoff TwinCAT Programmable Logic Controllers

(PLCs). So far, the functionality of the PLC programs has

been verified on system level with the final hardware.

This is a time-consuming manual task, but may also

damage the hardware in case of severe program failures.

To improve the verification process of PLC programs, a

test environment with simulated hardware has been set

up. It uses a virtual machine to run the PLC program

together with a verification program that simulates the

behaviour of the hardware. Test execution and result

checking is automated with the help of scripts, which

communicate with the verification program to stimulate

the PLC program. Thus, functional verification of PLC

programs is reduced to running a set of scripts, without

the need to connect to real hardware and without manual

effort.

BACKGROUND

In automation, PLC programs are used to control

devices with actuators based on feedback from sensors.

The PLC runs a loop: first sensor values are applied to the

program inputs, next the PLC program is executed to

calculate the output based on the values from the input,

and finally the program output is applied to the actuators.

PLCs also provide network access to internal memory and

variables in order to modify the behaviour of the program

and to read out state information. The PLC is supported

by a Numeric Control (NC) to control the positioning of

movable axes.

The control of the European XFEL undulator systems is

implemented using Beckhoff TwinCAT, which offers real-

time PLC/NC on Windows based PCs. The PLC/NC is

connected to the sensors and actuators of the undulator

device via an EtherCAT field bus.

Access from the network side is provided by the

Automation Device Specification (ADS) protocol. The

protocol is disclosed to the public, but only the .NET

library is officially supported by Beckhoff. This basically

limits the development of software using the ADS

protocol to the Windows platform.

PLC PROGRAM VERIFICATION

The functional verification of the PLC program is an

important step within the development process in order to

ensure proper operation. In the past, the program was

verified in the field by installing it on the device and

testing manually. The disadvantages are obvious: due to

the high effort only the functionality of the modified part

of the program is tested, and failures may lead to severe

damages of the hardware device.

To improve the verification process, an automated

verification environment has been developed. It allows

running a set of tests using a single script. Each test is

self-checking, i.e. it decides itself whether a test has

passed or failed. If all tests are run and they all pass, then

the functionality of the PLC program is said to be fully

verified.

Instead of connecting to a real hardware device, the

inputs and outputs of the PLC program under verification

(PUV) are connected to a Simulation PLC, which

simulates the behaviour of the hardware device. Thus,

verification can be done in an office environment, and in

addition, the risk of hardware damages during verification

is eliminated.

Verification Environment Architecture

Testcases are implemented on top of a verification

environment, as shown in Fig. 1. The environment is built

from verification components (VC) that abstracts the

details of communication with the PLC subsystem from

the testcases.

Figure 1: Verification Environment Architecture.

Each VC covers a specific interface of the PUV, which

is either a software interface or a physical interface. A

software interface is a set of internal variables, and the

VC can access them directly via ADS. A physical

interface is a collection of I/O signals, and the VC can

PLC Subsystem

Environment

Testcase Testcase

PUV
Simulation

PLC

Verification

Component

Verification

Component

Verification

Component

Testcase A

I/O

MOPPC082 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

288C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration

drive them by accessing the Simulation PLC via ADS. A

PUV has usually one software interface and several

physical interfaces, each for a specific subset of the I/Os.

Towards the testcases, verification components provide

a logical interface at a higher level of abstraction, which

is called transaction level. A transaction is a single

transfer of high-level data, for example the information to

move a motor to a new position. Within the VC, the

transaction is translated into a sequence of accesses to the

PUV in order to move the motor to the new position. The

use of transactions facilitates the development of

testcases, since they allow defining scenarios on a higher

level of abstraction without the need to know the exact

details of driving individual PUV interfaces.

A testcase defines a scenario as a sequence of

transactions, which are sent to the VCs instantiated inside

the environment. At the end, results are verified against

expected values using assertions. A testcase passes only,

if all assertions are true. The self-checking of results

within the testcase is important, since it allows running

the test automatically with a final pass/fail decision.

PLC Verification Library

The creation of verification environments and testcases

is facilitated by using common structures, which are

bundled into a PLC Verification Library (PVL). It is

implemented as a Python package named pvl, containing

subpackages core, util, and vc to further divide the code,

as shown in Fig. 2.

Figure 2: PVL Package Hierarchy.

The core subpackage contains the ADS

communication class, some exception classes used

internally, a set of base classes to build testcases and

environments, and the test suite class.

The ADS communication class Ads provides methods

to read and write PLC variables of different type either by

name or by address. It is a facade to the TwinCAT ADS

library from Beckhoff to provide a simplified interface to

the PLC for the verification environment and its

components. Exceptions raised inside the ADS library are

catched and rethrown as new PVL exceptions.

A project specific verification environment is a class

derived from the TestEnvBase class. In the constructor, it

instantiates the verification components required to

interface to the PLCs. It may override a setup() and

teardown() method, derived from TestEnvBase, to

perform some initialisation and clean-up before and after

a testcase. TestEnvBase also contains a reference to the

ADS communication class, which is used by the VCs to

exchange data with the PLCs.

The project specific testcases are classes derived from

the TestBase class. Within the testcase class, the scenario

is implemented by overwriting the run() method of the

base class. This method is called from PVL to execute the

testcase. run() takes one argument to pass in the

environment, so that it can be accessed from within the

scenario. The TestBase class provides methods to make

assertions, which are used in the run() method to verify

results from the scenario. A failed assertion immediately

stops the execution of the scenario and marks the testcase

as failed.

The TestSuite class handles the execution of a set of

test cases. It instantiates the ADS communication class,

the project verification environment, and all testcases. At

the beginning, it opens an ADS connection to the PLCs,

then for each testcase, it calls the setup() method of the

environment, then the run() method of the testcase, and

afterwards the teardown() method of the environment. At

the end, it closes the ADS connection to the PLCs, and

generates a report about the testcase results.

The util subpackage contains some methods to collect

names of files, and to check the current working

directory. They are used only by the main simulation

script to find out the file locations of testcases and the

verification environment, and whether the script is started

from the right directory. This is important, since the script

relies on a specific directory layout to find files.

The vc subpackage contains verification components

to interface to the TwinCAT system and also to specific

PLC programs, such as used for the undulator control

system. The system VCs provides methods to start, stop

and reset a PLC, or to modify NC parameters of

simulation axes.

Verification components use the ADS communication

class from the core subpackage to communicate with the

PLC system. The reference to that class is stored inside

the verification environment and is passed as an argument

to the constructor of each VC.

PLC Subsystem

The PLC subsystem is configured to run two PLCs in

parallel: one for the PUV and one for the simulation

program. Beckhoff TwinCAT 2.11 provides up to four

virtual “PLC CPUs” to run multiple PLCs on one physical
system. The PUV is loaded onto virtual CPU #1, and the

simulation program is loaded onto virtual CPU #2.

The PLC subsystem configuration is different from the

real system configuration. Inputs of the PUV are directly

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC082

Project Management and Collaboration

ISBN 978-3-95450-139-7

289 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

linked to corresponding outputs of the simulation

program, and outputs of the PUV are linked to

corresponding inputs of the simulation program. The

movable axes of the real hardware device are replaced by

simulation axes.

The main task of the simulation program is to drive the

inputs of the PUV similar to the real hardware device. An

example is the triggering of limit switch inputs, if the

undulator gap is reaching either its minimum or

maximum value. In addition, the simulation program

provides ADS access for the VCs to the PUV I/Os.

Scripting

The main script to run a testcases is a batch file named

plcsim.bat that can be directly executed from the

command shell. Its only purpose is to set the environment

variable IRONPYTHONPATH to the list of directories,

where PVL and the ADS .NET library are installed, and

then call the Python interpreter with the file plcsim.py.

plcsim.py first locates the file containing the

verification environment, and then the files containing the

testcases. In order to simplify this procedure, the PUV

directory needs to be structured as shown in Fig. 3.

Figure 3: PUV File Hierarchy.

The plcsim script is started in the run\ directory. The

test\ directory contains the environment in file env.py, and

the scenarios\ directory contains the testcases, organized

in groups. The testcase itself is defined in a file main.py,

and the testcase name is deduced from the path to that

file, for example “group_1\scenario_1”. If plcsim is called

without any arguments, then all testcases that are found

below the scenarios\ directory are run. If an argument is

specified, then only those testcases are run, whose name

matches the argument. For example ‘plcsim group_1’
would only run the testcases from test group group_1.

Once all files are located, a test suite is created and run

with the list of the environment and testcase files. The

suite executes all testcases sequentially, counts the passed

and failed testcases and generates a final report, which is

printed to the console.

Execution Environment

For PLC program development and verification a

regular office PC (Intel Core i5 CPU, 8GB RAM) with

Windows 7 64-bit OS is used. The PLC subsystem runs

on a virtual machine with a Windows XP 32-bit OS, since

TwinCAT 2.11 does not support x64 architecture. A

future upgrade to TwinCAT 3.1 would eliminate the need

for a separate VM, since it runs on x64 architecture.

In order to have support for the Python scripting

language and tight integration into the .NET framework,

IronPython [1] has been installed. The Beckhoff ADS

.NET library is then simply referenced, and ADS methods

can be called directly from Python code. Since the

development of the verification environment is done with

Visual Studio 2010, Python Tools for Visual Studio 2010

(PTVS) [2] has also been installed.

EXAMPLE

The PLC verification environment is used in the

context of the European XFEL undulator control system.

As described in the Conceptual Design Report [3], two

PLC programs are used: one on local level to drive a

single undulator, and one on global level to drive a

complete undulator system. This example shows how

verification has been set up for the global PLC program.

Setting Up Verification

The first step is to create the verification environment,

stored in test\env.py:

from pvl.core.testing import TestEnvBase

from pvl.vc.undulator import SoftwareDriver

from pvl.vc.system import PlcDriver

class Env(TestEnvBase):

 def __init__(self):

 super(Env, self).__init__()

 self.ams_net_id = "10.0.254.2.1.1"

 self.plc_driver = PlcDriver('generic PLC VC',

 self)

 self.sw_driver = SoftwareDriver(

 'SW Interface VC', self)

 def setup(self):

 super(Env, self).setup()

 self.plc_driver.reset_rt()

 self.plc_driver.start_rt()

 def teardown(self):

 super(Env, self).teardown()

The environment is defined as a class named Env,

derived from the TestEnvBase class. __init__() is the

constructor, which contains the instantiation of the

verification components. In this example, a generic PLC

VC and a software interface VC is used. The arguments to

the VCs are a descriptive name and the reference to the

contains env.py

contain

main.py

 contain
main.py

MOPPC082 Proceedings of ICALEPCS2013, San Francisco, CA, USA

ISBN 978-3-95450-139-7

290C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Project Management and Collaboration

environment using self . The setup() method is used to

reset and start the PLC before a testcase to have a defined

PLC state. Both, setup() and teardown(), are required to

first call the implementation of the base class.

Next step is the definition of testcases. The very simple

example shown here verifies, whether the program

version can be read out from an internal variable. The

testcase is defined in file scenarios\ads\version\main.py:

from pvl.core.testing import TestBase

class Test(TestBase):

 def run(self, env):

 """Verify that version string is non-empty."""

 ver = env.sw_driver.read_version()

 self.assertTrue(len(ver) > 0, 'zero length version')

A testcase is defined as a class named Test, derived

from TestBase. The scenario is implemented in the run()

method, which takes the environment as an argument.

Inside the scenario, the VCs can be accessed for example

as env.sw_driver.

Each VC provides high level methods to interact with

the PUV. In this case, the read_version() method of the

SW interface VC is used to read the version string from

the PUV. The name of the variable containing the version

string is defined inside the VC. If this name is changed,

then only the VC requires an update.

Subsequently, an assertion is used to verify, that the

length of the version string is larger than zero. Assertion

methods are defined in the TestBase class and can be

called using the self reference.

Running Testcases

Testcases are run by changing to the run\ directory an

executing the plcsim script:

C:\ >cd run

C:\ >plcsim ads\version

plcsim v0.1 (c) 2013 A.Beckmann

connecting to AMS net id: 10.0.254.2.1.1

Test: ads\version: FAIL -- 'Ads-Error 0x710 : Symbol

could not be found.'

Group: ads: Run: 1 Failed: 1

Suite: 0.0% (0/1 passed)

 ads: 0.0% (0/1 passed)

In this case, only one testcase is selected by passing the

name of the testcase as an argument to plcsim. plcsim

command first connects to the PLC subsystem. Then, the

testcase is run and the result is reported by a line in the

format ‘Test: <name of testcase>: <result>’. Here, the

testcase failed, because the variable defining the PLC

program version string was not found.

After fixing the problem in the PLC program and

rerunning the testcase, the output looks like:

C:\ >plcsim ads\version

plcsim v0.1 (c) 2013 A.Beckmann

connecting to AMS net id: 10.0.254.2.1.1

Test: ads\version: OK

Group: ads: Run: 1 Failed: 0

Suite: 100.0% (1/1 passed)

 ads: 100.0% (1/1 passed)

Now, the testcase passed and the version string

functionality has been successfully verified.

OUTLOOK

The development of the automated PLC verification

environment has just started. The architecture has been

defined and an initial version of the PLC Verification

Library has been created. Work will continue in order to

improve usability, and also to make it independent from a

specific PLC vendor.

One major enhancement would be to add a graphical

user interface in order to improve the visualization of test

results. Alternatively, it could be integrated into the

Visual Studio IDE, which is used for TwinCAT 3.x, or

any other IDE such as Eclipse or Netbeans.

Additional tools to automate the generation of

verification environments, for example generating PLC

subsystem configurations automatically from PUV code,

would be of great help.

SUMMARY

Verification of PLC programs is an essential step in the

development process of control systems. In order to

reduce the effort to verify the functionality of the

programs used in the European XFEL undulator control

system, an automated verification environment has been

set up.

The creation of the verification environment is

facilitated by making common structures available

through PVL, the PLC Verification Library. Functionality

is verified by defining a set of testcases, which are run

automatically using a single script. Testcases are self-

checking, so that no manual work is required afterwards

to decide, whether testcases have passed or failed.

Testcases run on simulated hardware, so that

verification can be performed without the need for real

hardware device.

REFERENCES

[1] http://www.ironpython.net

[2] http://pytools.codeplex.com

[3] A. Beckmann, S. Karabekyan, and J. Pflüger, „Conceptual
Design Report Undulator Control Systems“, XFEL report

XFEL.EU TR-2013-001, 2013

Proceedings of ICALEPCS2013, San Francisco, CA, USA MOPPC082

Project Management and Collaboration

ISBN 978-3-95450-139-7

291 C
op

yr
ig

ht
c ○

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

