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Ultrafast optical pumping of spatially nonuniform magnetic textures is known to induce far-
from-equilibrium spin transport effects. Here, we use ultrafast x-ray diffraction with unprecedented
dynamic range to study the laser-induced dynamics of labyrinth domain networks in ferromagnetic
CoFe/Ni multilayers. We detected azimuthally isotropic, odd order, magnetic diffraction rings up
to 5th order. The amplitudes of all three diffraction rings quench to different degrees within 1.6 ps.
In addition, all three of the detected diffraction rings both broaden by 15% and radially contract by
6% during the quench process. We are able to rigorously quantify a 31% ultrafast broadening of the
domain walls via Fourier analysis of the order-dependent quenching of the three detected diffraction
rings. The broadening of the diffraction rings is interpreted as a reduction in the domain coherence
length, but the shift in the ring radius, while unambiguous in its occurrence, remains unexplained. In
particular, we demonstrate that a radial shift explained by domain wall broadening can be ruled out.
With the unprecedented dynamic range of our data, our results provide convincing evidence that
labyrinth domain structures are spatially perturbed at ultrafast speeds under far-from-equilibrium
conditions, albeit the mechanism inducing the perturbations remains yet to be clarified.

I. INTRODUCTION

Understanding ultrafast magnetization processes [1–
10] is challenging because of the strongly-coupled inter-
actions between the charges, spins, and phonons. These
are difficult to probe and model in equilibrium, and even
more so when the material is subjected to a femtosec-
ond laser pulse that floods the conduction band with a
far-from-equilibrium, dense distribution of hot electrons.
Many theoretical models and mechanisms have been pro-
posed to explain experimental findings, including heat re-
distribution in the quasi-equilibrium spin, electronic, and
lattice systems [1–3] , superdiffusive spin currents into
metallic spin sinks [4, 11], Elliott-Yafet scattering [4],
hot-electron transport [5, 6], ultrafast magnon genera-
tion and exchange splitting reduction [7, 12], and recently
the observation of critical behavior and a magnetic phase
transition within 20 fs [9, 10].

Many studies of ultrafast magnetization processes use
spatially-averaged measurements such as x-ray magnetic
circular dichroism (XMCD) or magneto-optic measure-
ments using visible or x-ray light. More recently, it

has been possible to study the impact of morphological
and magnetic spatial inhomogeneities on the dynamic re-
sponse of a material by taking advantage of the diffracted
x-ray intensity to extract spatial information [13–17].
Transport mechanisms [11, 18, 19] have been proposed
to describe spatially-dependent ultrafast responses, such
as the demagnetization and domain-wall broadening in
domain networks [15, 16, 20, 21], and the imprinting of
domain patterns in ferrimagnetic metallic alloys [13, 14].
An interesting signature of a dynamic nanoscopic spatial
response is a time-dependent shift in the observed x-ray
scattering. In Ref. 14, a ring contraction was associated
with the transition from a morphologically-induced mag-
netisation pattern into nonlinear dynamical spin textures
upon partial quenching of a homogeneously magnetised
ferrimagnet.

In Ref. 15, a puzzling ultrafast shift of the first-order
x-ray magnetic diffraction ring radius was first observed
in the case of a labyrinth domain network. The authors
hypothesized that the shift was a higher-order effect due
to domain-wall broadening. Such broadening was pre-
dicted to occur as a result of superdiffusive spin current

ar
X

iv
:2

00
1.

11
71

9v
4 

 [
co

nd
-m

at
.m

es
-h

al
l]

  9
 J

un
 2

02
2



2

propagation across the domain walls [20]. However, the
inability to detect any higher order diffraction rings pro-
hibited quantitative testing of this hypothesis. Only a
very weak or negligible shift in diffraction ring radius has
been detected to date when the experiment is repeated
with samples that exhibit stripe domain patterns stabi-
lized by a weak external magnetic field [16, 17, 21]. It
was recently shown by use of samples supporting both
stripe and labyrinth domain patterns that the shift in
the diffraction ring radius occurs only with labyrinths
and not with stripes, suggestive of a mechanism that is
sensitive to domain symmetry [17].

Here, we probe time-resolved x-ray diffraction from
labyrinth domain networks in a CoFe/Ni multilayer with
perpendicular magnetic anisotropy to discern the in-
fluence of domain-wall broadening on the shift of the
diffraction rings. We are able to resolve up to the fifth-
order diffraction ring with unprecedented dynamic range,
enabling a quantitative determination of how ultrafast
pumping affects both the domain-wall width and the
magnetic correlation length. We rule out domain wall
broadening as the cause of diffraction ring radius shift.

A 31% ultrafast broadening of the domain-walls is rig-
orously quantified by fitting the relative quench of the
first three diffraction ring amplitudes to a Bloch-wall
model. In addition, we detect a 15% decrease in the
domain correlation length –– from 845 nm ± 1 nm to
711 nm ± 2 nm within 1.6 ps. This surprising result
is suggestive of an ultrafast spatial alteration of the do-
main structure, possibly the result of a zero-mean ran-
dom domain wall displacements mediated by far-from-
equilibrium electronic excitations. A 6% contraction of
the diffraction ring radii within 1.6 ps of laser excitation
is simultaneously observed, confirming previous reports
of such shifts. Because we can extract the true domain
wall broadening via detection of the first three orders
of diffraction rings, we conclusively exclude domain-wall
broadening as the source of diffraction ring contraction,
contrary to the original hypothesis in Ref. 15. Our ob-
servation of significant distortions in the diffraction ring
structure, which include amplitude, width, and radius,
suggests that domain walls in labyrinth structures are to
some extent mobile at ultrafast speeds when subjected
to far-from-equilibrium conditions. It remains to be de-
termined how such a surprising effect occurs.

II. TIME-DEPENDENT X-RAY SCATTERING

We measured the picosecond time-evolution of the
labyrinth domain network by use of pump-probe co-
herent, time-dependent, soft x-ray small-angle scatter-
ing at the Linac Coherent Light Source (LCLS) free-
electron laser. The magnetic samples were fabricated by
sputter deposition with the following layer composition:
Si3N4(50) / Ta(3) / Cu(5) / [Co90Fe10(0.2)/ Ni(0.6)]x50
/ CoFe(0.2) / Cu(3) / Ta(3), where the layer thick-
nesses in parentheses are in nm and the Si3N4 mem-

brane allowed for x-ray transmission. The magnetic
parameters of the 40 nm thick CoFe/Ni ferromagnetic
multilayers were measured as a function of temperature
with a vibrating sample magnetometer (VSM). At room
temperature, we determine a saturation magnetization
Ms = 771 kA/m, a first-order anisotropy constant K1 =
739 kJ/m3, and a negative second-order anisotropy con-
stant K2 = −266 kJ/m3. A non-negligible second-order
anisotropy was previously reported for this material sys-
tem [22]. The net uniaxial anisotropy, including the mag-
netostatic contribution, is 99 kJ/m3. This corresponds to
an effective magnetization Meff = −2.05 kA/m for per-
pendicular ferromagnetic resonance (FMR). The experi-
mentally measured FMR value is Meff = −2.12 kA/m, in
good agreement with the VSM measured value. Despite
the large second-order anisotropy constant, the relative
magnitudes of the first- and second-order anisotropies are
within the range necessary for a net perpendicular mag-
netic anisotropy [23]. We confirmed that the out-of-plane
labyrinth domain network is indeed stabilized at room
temperature by use of magnetic force microscopy mea-
surements with a spatial resolution of ≈ 22 nm, shown
in Fig. 1(a).

X-ray measurements were performed at the SXR
hutch [24]. The experimental setup is schematically
shown in Fig. 1(b). The free-electron laser (FEL) gen-
erated 60 fs long soft x-ray pulses at a repetition rate
of 120 Hz with a photon energy of 852.7 eV to match
the L3 absorption edge of Ni. Circularly polarized x-rays
were achieved by use of a Delta-undulator [25]. The x-ray
beam was focused to an elliptical spot with foci a = 23 µm
and b = 15 µm. A high-speed primary pnCCD cam-
era (Max Planck Semiconductor Laboratory supplied by
PNSensor GmbH) placed 275.3 mm away from the sam-
ple captured the time-dependent scalar diffracted inten-
sity of the probe beam. The detector had four 512× 512
pixel panels that could be moved independently from one
another and each pixel had a maximum well-depth of
16,000 electrons. The CCD camera had an opening at
the center through which unscattered x-rays were trans-
mitted. These x-rays were detected with a secondary
CCD camera (Andor Newton DO940P-BN) placed be-
hind the primary CCD camera. An Al filter in front of
the secondary CCD was used to suppress the infrared
pump beam, which was collinear with the incident x-
ray beam. In addition to scattering measurements with-
out an applied magnetic field, we carried out measure-
ments of both the scattering (with the primary CCD
camera) and XMCD (with the secondary CCD camera)
when the sample was magnetically saturated to remove
any non-magnetic contributions from the zero-field scat-
tering data [26] (see Appendix A for details). For this,
an external magnetic field of 0.6 T was applied perpen-
dicularly to the surface of the sample. This experimental
geometry allowed us to detect x-rays scattered at angles
of up to ≈ 8◦.

An amplified infrared (IR) laser pump pulse from a
Ti:Sapphire laser at the central wavelength of 795 nm
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FIG. 1. (a) 10 × 10 µm2 magnetic force microscope (MFM) image of a similar CoFe/Ni multilayer sample to that used for
the x-ray scattering measurements. (b) An incident femtosecond infrared (IR) pulse excites the sample. The time-dependent
magnetization is measured by a time-delayed, circularly-polarized x-ray probe. The scattered x-rays are captured by a primary,
high-speed CCD while the unscattered beam is captured by a secondary CCD acting as a point detector. An electromagnet is
used to saturate the sample, allowing for both measurements of time-resolved XMCD, as well as the static charge contribution
to the scattered intensity. (c) Two-dimensional magnetic component of the scattered intensity obtained with the primary CCD.
The first-order diffraction ring is partially obscured due to the aperture in the middle of the primary CCD.

was used to pump the sample. The duration of the
IR pump pulses was 60 fs, the Gaussian beam waist
size was 172 µm, and the average incident pump flu-
ence was 23 mJ/cm2. Higher pump fluence resulted in
catastrophic damage to the sample. The pump laser was
synchronized with the FEL to within the jitter of the ar-
rival time of x-ray pulses. The delay time between the
IR pump and the x-ray probe was varied from negative
delays (to probe an unperturbed sample before the IR
pump has arrived) to 20 ps. Scattering patterns at dif-
ferent delays were collected in a single-shot manner, and
the pattern at a given delay was computed as an average
of all of the scattering patterns taken within ±200 fs of
that delay.

The time-evolution of the labyrinth domain network is
inferred from the squared magnetic scattering amplitude
|S(q, t)|2, with wavevector q. We isolated this compo-
nent from the diffracted intensity I(q, t) by subtracting
the charge intensity |C(q, t)|2 obtained from the satu-
rated sample, as described in Appendix A. For labyrinth
domains randomly oriented in the film’s plane, |S(q, t)|2
consists of concentric rings, shown in Fig. 1(c). The first-
order diffraction ring contained 500 electrons per shot,
≈ 3% of the CCD camera saturation. We note that the
first-order scattering ring is partially obscured by the lo-
cation of the through-beam aperture in the center of the
CCD camera, depicted as a dark-blue box in Fig. 1(c).

We azimuthally average the magnetic scattering inten-
sity to obtain S2(q, t), where q = |q|. To account for the
incomplete data captured by the primary CCD camera,
we utilize the following algorithm. First, the center of
the scattering pattern, |q| = 0, is determined by fitting
a circle to the third-order diffraction ring. Because this
diffraction ring was not obscured by the central square
aperture, a reliable fit can be obtained for the center loca-
tion in pixels. Once the center is determined, the data is
then azimuthally averaged. By definition, the azimuthal

average is

S2(q, t) =

∫ 2π

0
S2(q cos (θ), t)dθ

L(q)
, (1)

where ϕ is the azimuth for the q vector and L(q) is the
circumference for a given q. To account for the missing

pixels, we compute L(q) =
∫ 2π

0
W (q, t)dϕ, where W (q, ϕ)

is a two-dimensional mask of the CCD cameras and miss-
ing pixels are numerically counted as zeros. In this way,
the azimuthal average is normalized by an adjusted cir-
cumference.

The pre-pump (t < 0) average data is shown in
logarithmic scale in Fig. 2(a) by a solid black curve.
The shoulder in the first-order diffraction ring at q <
0.0375 nm−1, shown by a grey area, is an artifact of
the aforementioned partial obscuration by the aperture
whereby the limited data is more sensitive to the number
of pixels available when computing Eq. (1). The fifth-
order ring, as well as an exponentially decaying back-
ground, are clearly visible in the azimuthally averaged
intensity.

III. EMPIRICAL MODEL AND DATA FITTING

To extract information from the azimuthally averaged
scattering S2(q, t), we make use of a Lorentzian empirical
fitting function for the first three of the odd nth order
diffraction rings

f(q, t) = e−2q/Q(t)

M0(t) +
∑

n=1,3,5

Mn(t)(
q−nq0(t)
nΓ(t)

)2

+ 1


2

.

(2)
The first factor outside of the square brackets is an

exponential form factor we associate with the non-zero
characteristic spin-spin correlation length scale, Q(t).
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FIG. 2. (a) Equilibrium azimuthally-averaged magnetic scat-
tering. The data, the fit to the data with Eq. (2), and the
fitted form factor are shown by the solid black, dashed red,
and dashed blue curves, respectively. The same data and fit
are shown in (b) after equalization, as per Eq. (3), to accentu-
ate the quality of the fit for all the diffraction rings. The solid
blue curves represent the three Lorentzian components of the
fit used to determine the periodic structure of the domains.
The asymmetry of the Lorentzians is due to the power law
scaling used to equalize the 1st and 5th order diffraction ring
intensities.

The term in the square brackets is the magnetic struc-
ture factor, consisting of a linear superposition of random
uniform spatial fluctuations M0(t) and three Lorentzian
diffraction rings centred at odd-integer multiples of the
first-order ring position q0(t). Mn(t) are the rings’ ampli-
tudes with subscripts n = 1, 3, 5 denoting the respective
odd order diffraction ring, and the width of each diffrac-
tion ring or linewidth is parameterized by Γ(t). Note that
while each ring is fitted with an independent amplitude,
the ring radii and widths are all constrained to be integer
multiples of the diffraction order.

We stress that f(q, t) is purely phenomenological; it
was found by trial and error that application of such a
function yields an excellent fit to the data. However,
the applicability of a Lorentzial linewidth is consistent
with an exponentially decaying autocorrelation function
for the domain pattern. The fitting function proposed
in Ref. 27 was not used because the underlying model
used in its derivation is only applicable for a system of

parallel stripe domains with domain walls much narrower
that the domain spacing.

The simultaneous fit of all three diffraction rings and
the form factor allows us to to accurately determine all
seven fitting parameters in f(q). This approach takes
advantage of all the available data and the integer multi-
ple relationship between all three rings to obtain an un-
ambiguous fit despite potential artifacts associated with
the partial obscuration by the central aperture. The fits
are performed on the logarithm of the scattering data to
maximize sensitivity of the strongly attenuated 3rd and
5th order diffraction rings.

The fit of the time-averaged t < 0 diffraction data
by use of Eq. (2) is shown in Fig. 2(a) by the red
dashed curve. The fitted first-order ring radius is q0(0) =
0.0392 nm−1 ± 2× 10−5 nm−1, equivalent to an equilib-
rium domain width of π/q0(0) = 80.1 nm ± 0.01 nm.
Magnetic force microscopy imaging of the labyrinth do-
main network is comparable to this average domain
width. The small error associated with the fitted pa-
rameters is a result of the simultaneous fitting of the
harmonic third-order and fifth-order ring radii.

The exponential form factor contribution of Q(0) =
0.1087 nm−1± 4× 10−5 nm−1 is shown by a dashed blue
line. Because Q corresponds to a spatial distribution of
spin density with a Lorentzian-like correlation function,
we may interpret it as an approximation of the exchange
length, λex ≈ 1/Q = 9.19 nm ± 0.0038 nm. This quan-
tity is in rough agreement with the calculated exchange
length of 7.3 nm determined from a combination of mag-
netometry measurements and an assumed exchange con-
stant of Aex = 20 pJ/m, so that λex =

√
2A/(µ0M2

s ).
To illustrate the quality of the fitting, we show the

azimuthally averaged scattering in Fig. 1(b) using an ad
hoc equalized representation

Se(q, t) =
(√

S2(q, t)e(2q/Q) −M0(t)
)
q2.12, (3)

where the exponential form factor is divided out, the
magnetic noise background M0(t) is subtracted, and an
adjustable power law scale factor q2.12 was chosen to
equalize the amplitudes of the first-order and third-order
rings. By use of this ad hoc equalization, the excellent
fidelity of the fits is clearly apparent. The individual
Lorentzian components are shown with solid blue curves.
Again, we stress that the radii and widths of all three
Lorentzians are constrained to be odd integer multiples
of the 1st order diffraction ring.

IV. FOURIER ANALYSIS OF THE
EQUILIBRIUM SCATTERED SPECTRA

The empirical model of Eq. (2), f(q, t), provides accu-
rate fits to the azimuthally averaged data, as shown in
Fig. 2. Therefore, we invoke concepts of Fourier analysis
to interpret the salient features of the physical system
captured by the functional form of f(q, t).
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FIG. 3. The equalized data, fits, and Lorentzians, as per Eq. 3, are shown by solid black, dashed red, and solid blue curves,
respectively for three instances in time after pumping: (a) 1.6 ps, (b) 11.2 ps, and (c) 18.8 ps. The horizontal black lines
illustrate the relative amplitude of the first- and third-order diffraction rings. (d) Temporal amplitude evolution of the first-
(blue), third- (red), and fifth-order (grey) diffraction rings. The vertical dashed lines correspond to the time instances shown
in panels (a), (b), and (c). Error bars represent one standard deviation of the fitted quantities. The grey area represents the
standard deviation of fifth-order magnitude by averaging the pre-pump (t < 0) data.

First, consider an ideal, 1D periodic function with pe-
riod x0. By Fourier series decomposition, its spectrum
will be composed of harmonically related delta functions
starting at the fundamental frequency 2π/x0. Such a
spectrum is independent of the periodic function’s pro-
file or functional form. Instead, the profile is encoded in
the relative amplitudes of the harmonic delta functions.
In the case of a perfect sinusoidal function, the ratio is
zero, meaning that only the fundamental harmonic ex-
ists. In the extreme case of a square wave, the ratio is
1/n, with n being the odd order index of the Fourier
component. Any smooth profile will therefore exhibit
components with amplitudes with an order dependence
that varies between 0 (sine wave) and 1/n (square wave).
The crucial statement here is that the spatial profile of
the domain walls in a periodic lattice is principally en-
coded in the relative amplitudes of the components, not
in their widths. The diffraction ring widths are instead
related to phase uncertainty for periodic structures.

Variations in the periodicity of a 1D oscillatory func-
tion, akin to jitter in temporal signals [28], introduces
uncertainty in the component frequency. The greater

the variations, the broader the individual Fourier com-
ponents of the periodic function. Most importantly, the
broadening scales with the integer order of the individual
components, i.e. the fractional uncertainty in the peri-
odicity of the domain structure is the same, regardless of
the diffraction order of the ring. The form of Eq. (2) ac-
counts for these fundamental properties of any periodic
domain structure.

From the aforementioned properties of Fourier series,
it becomes clear that the azimuthally averaged scatter-
ing provides two distinct types of information: 1) the
position of the harmonic peaks is related to the aver-
age spatial frequency of the magnetic texture, and 2)
the relative amplitude of the harmonic rings is related
to the profile of the magnetic texture, i.e., the domain-
wall width. These properties have profound implications
in the interpretation of the time-dependent modifications
of the scattering.

It is worth pointing out that this analysis is rooted in
linear response theory. In other words, these arguments
hold as long as the system does not exhibit nonlineari-
ties. If nonlinearities are present, the Fourier spectrum
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FIG. 4. Time evolution of the fitted form factor, Q(t). The
magenta solid line indicates the pre-pump equilibrium value,
Q(0). The dashed vertical black lines indicate t = 0 ps and
t = 13 ps, when Q(t) recovers its pre-pump value.

can indeed exhibit an artificial shift based on the distor-
tion of the underlying waveform. Such a shift, however,
is accompanied by a spectral distortion of the peak it-
self. As we show below, our experiments exhibited no
discernible spectral distortion, suggesting that linear re-
sponse theory is appropriate.

V. ULTRAFAST MODIFICATION OF THE
DIFFRACTION PATTERN

We apply Eq. (2) to fit the time-dependent, az-
imuthally averaged scattering data. In Fig. 3(a), (b),
and (c), we show the fitting results in the form of Se(q, t)
at select times. In all panels, the diffraction amplitudes
are quenched, c.f. Fig. 2(b), as expected for ultrafast
demagnetization. The full temporal evolution of the nor-
malized amplitudes M1,3,5(t)/M1,3,5(t = 0) is shown in
Fig. 3(d), exhibiting three distinct dependencies on time.
At 1.6 ps, the third-order ring is quenched slightly more
than the first-order ring. Both the first-order and third-
order rings partially recover until 13 ps after quenching.
For t > 13 ps, the third-order ring resumes quenching,
but at a much slower rate of ≈ 2% per picosecond. The
fifth-order ring is still detectable in spite of a greatly re-
duced signal-to-noise ratio due to the low photon flux at
high q. The error of the fifth-order ring amplitude shown
as a gray background in Fig. 3(d) is estimated from the
fitted amplitude’s fluctuations at t < 0. It is still appar-
ent that the 5th order ring amplitude is almost entirely
quenched after pumping, despite the reduced signal-to-
noise. By averaging the scattering data over a time-span
from 6 ps to 11 ps, we are able to fit the fifth-order ring
with better accuracy and confirm that its amplitude is
quenched by almost 90 percent, see Appendix B. The
almost total quench of the 5th order ring is important

FIG. 5. Color contour plots of the azimuthally-averaged mag-
netic diffraction ring intensity profiles, after form-factor nor-
malization, as a function of both time and radial q for the first
and third-order rings. The first and third-order rings are pre-
sented in the bottom and top panel, respectively. The dashed
red line marks the average ring radius prior to optical pump.
The dashed black line marks the ring radius averaged between
6 ps and 1 ps after optical pump. A shift in both rings is de-
tected; 0.0018 nm−1 ± 0.0001 nm−1 for the first-order ring
and 0.0054 nm−1 ± 0.0003 nm−1 for the third-order ring.

for the quantitative analysis presented below.

The time evolution of the form-factor, Q(t), is shown
in Fig. 4, exhibiting an ultrafast increase and subsequent
recovery to equilibrium, shown by a solid magenta line,
at ≈ 10 ps. It is possible this is the result of an ultra-
fast alteration in the characteristic exchange length of the
sample. If it is indeed the case that Q ∝ 1/λex, then the
ultrafast change in Q would suggest that the exchange
stiffness is attenuated more than the magnetization im-
mediately after optical pumping. This is in agreement
with previous studies that found significant evidence for
a reduction in the exchange splitting in ultrafast pump-
ing experiments [4, 7]. The fact that Q(t) returns to
its equilibrium value 13 ps after pumping suggests that
this is the time scale at which conventional equilibrium
concepts relating temperature, magnetization, and the
renormalization of exchange, i.e., A ∝Ms, are valid [29–
31]. Coincidentally, 10 ps is the time scale at which the
electron, spin, and lattice thermal baths are generally
considered to be in thermal equilibrium with each other.

The diffraction ring radii also exhibit ultrafast changes.
In Fig. 5 we show colour contour plots of the azimuthally
averaged magnetic diffraction ring intensity profiles for
the first- and third-order rings as a function of both time
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and q, divided by the equilibrium form factor. The vis-
ible shift in both radii are marked with horizontal lines
that indicate the q-value for the time-averaged ring radii
before (dashed red line) and between 6 and 11 ps after
optical pumping (dashed black line). The difference in
the average radii, δq, is 0.0018 nm−1 ± 0.0001 nm−1 for
the first-order ring, and 0.0054 nm−1 ± 0.0003 nm−1 for
the third-order ring. These differences in the average
radii are harmonically related by a factor 3, indicating
that the full spectrum shifts.

A reminiscent 4% shift in the first-order diffraction
ring radius was previously observed by time-resolved x-
ray scattering in a similar magnetic system that supports
labyrinth domain patterns [15]. In that work, the authors
attributed the first-order diffraction ring radius shift to
a Gaussian filter function that attenuated high-q compo-
nents of the diffraction after pumping. Use of a Gaus-
sian filter function was justified as higher order effect
to be expected under the hypothesis of strong ultrafast
domain-wall broadening that fully quenches all higher or-
der diffraction rings. However, higher order rings were
not detected in Ref. 15, precluding the ability to directly
test the validity of this hypothesis. The substantial dy-
namic range of our experimental method allows us to di-
rectly access the necessary data to determine how pump-
ing actually affects the domain wall width.

VI. EFFECTIVE BLOCH DOMAIN-WALL
MODEL

For materials with strong perpendicular magnetic
anisotropy, a hyperbolic Bloch-wall model is applica-
ble [23], with a one-dimensional (1D) profile given by

md(x, t) = m(t) tanh

(
x

a(t)

)
, (4)

where m(t) is the time-dependent, normalized magneti-
zation within the adjacent domains and a(t) is a measure
of the domain-wall width. Equation (4) is strictly appli-
cable to materials with negligible second-order anisotropy
constant. In our case, the ratio between the second and
first-order anisotropy constants is κ = −0.36. This ra-
tio leads to a broader domain-wall, yet similar in shape
to that predicted from Eq. (4). See, e.g., Figure 3.60 in
Ref. 23.

Our use of a particular equilibrium model for the do-
main wall profile is meant to be applied to our data anal-
ysis in the most general sense. In particular, it is power-
ful in its ability to provide a quantitative interpretation
of the time-resolved diffraction intensities. However, the
general intention of this model is to, at a minimum, pro-
vide a qualitative description of how the domain walls be-
have under conditions of ultrafast pumping. Any model
for the domain wall profile will have a monotonically de-
creasing intensity of the diffraction rings with diffraction
order. While the sharpness of the domain wall is some-
how encoded in the dependence of intensity on q, we can

only speculate as to the exact details of that wall pro-
file since we can only measure those intensities up to
5th order. We indeed concede that the fact that our
model actually fits our data so well, as we will show,
does not necessarily mean the model is correct in an exact
sense, but the ability to interpret the diffraction inten-
sities in a quantitative manner does add confidence to
any qualitative interpretation of the data that involves
time-dependence of the domain wall profile.

The domain-wall width is calculated following the Lil-
ley interpretation that considers the slope of the domain-
wall profile at the origin[23]. Therefore, we define the
domain-wall width as

ww = πa(t). (5)

To extract the parameter a(t) from the experimental
data, one must be conscious that Eq (4) is a 1D pro-
file whereas the sample is stabilized in a 3D labyrinth
domain pattern. By micromagnetic simulations using
mumax3 [32], we find that the domains have negligible
variation through the thickness (see Appendix D) and
so the labyrinth domain pattern can be assumed to be
2D. In order to map this pattern to a 1D equivalent,
we must consider that the labyrinth domain network dis-
tributes the diffracted photons uniformly along the az-
imuthal coordinate. To account for this, we consider that
the domain-wall is part of a periodic array of domains of
width wd = π/q0 and the effective amplitudes An(q0, t)
are related to the fitted diffraction ring amplitudes via

An(q0, t) = Mn(t)
√

2πnq0. (6)

This relationship means that we map the 2D diffraction
data to the diffraction expected from a perfectly peri-
odic 1D stripe domain pattern, which is the underlying
assumption implied in azimuthal integration of scattered
intensities and any derived analysis. We stress that, while
we initially perform numerical azimuthal averaging of
the diffraction signal to determine the time-dependent
scattering amplitude of the nth order ring, e.g. Mn(t),
we subsequently perform fits with the square root of the
azimuthally integrated intensity, e.g. An(q0, t). This is
equivalent to the statement that the diffraction from the
labyrinth domain pattern, when azimuthally integrated,
is equivalent to the diffraction from 1D periodic domains,
albeit with the diffracted photons spread out uniformly in
the azimuthal coordinate. This allows us to connect the
simplified 1D model to the actual 2D diffraction pattern
so that our analysis is consistent throughout.

To connect the effective amplitudes to the Bloch-wall
model, we compute the Fourier transform of Eq. (4) by
convolving the spectrum of a square wave of periodicity
wd = π/q0 with the spectrum of the derivative of Eq. (4).
The resulting discrete spectrum has harmonic amplitudes
given by

An(t) =
πm(t)ww(t)

2wd(t)
csch

(
πnww(t)

2wd(t)

)
, (7)
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FIG. 6. Effective amplitudes at selected time instances fitted
with the Bloch-wall model of Eq. (7). The amplitudes (circles)
and fits (crosses) are shown in logarithmic scale and vertically
shifted for clarity.

where we used the domain-wall-width definition of
Eq. (5) to explicitly include it in the expression. We
restate that m(t) is the asymptotic magnetization ampli-
tude in the infinite wavelength limit, i.e. when q0 → 0.
It is not to be confused with the maximum amplitude of
the magnetization between the domains for non-zero q0.

Fits to the effective amplitudes are shown in logarith-
mic scale by crosses in Fig. 6 for selected times. The
amplitudes obtained from Eq. (6) and the fitted ampli-
tudes of the azimuthally averaged scattering are shown
by circles with errorbars denoting the standard deviation
of the fit. We note that the fifth-order ring amplitude
has little weight on the overall fit shown in Fig. 6 since
its amplitude after pumping is close to the noise level.
However, the nearly total quench of the fifth-order ring
is consistent with the quantitative degree of domain-wall
broadening extracted from the 1st and 3rd order diffrac-
tion rings.

The evolution of m(t) is shown in Fig. 7(a), exhibit-
ing a typical demagnetization behavior, but with a faster
remagnetization process than would otherwise be sur-
mised by inspection of the diffraction amplitude data
in Fig. 3(d). It is also distinct from the time-resolved
XMCD data, shown in Fig. 6(c). While the signal-to-
noise for the XMCD is significantly less than that of the
diffraction data fitting, it is clear that there is little to
no recovery of the magnetization after pumping, as also
apparent in the diffraction amplitude data.

The evolution of ww(t) is shown in Fig. 7(b). The
initial domain-wall width is 39 nm, in good agree-
ment with the calculated value of 45 nm from Bloch-
wall theory when considering the reduced anisotropy
π
√
Aex/(K1 +K2). We find a significant broadening of

the domain-walls from 39 nm to 51 nm (31%) within
1.6 ps, followed by partial recovery towards its original
equilibrium value in the first 13 ps after pumping. From
13 ps to 20 ps, the domain-walls resume broadening by
approximately 38% more than the original equilibrium
value, likely because of a reduction in the effective mag-
netic anisotropy of the sample due to delayed thermal
diffusion through the sample thickness, see Appendix E.

Ultrafast domain-wall broadening was indeed previ-
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FIG. 7. Evolution of the (a) asymptotic magnetization, m(t),
and (b) the domain-wall width, ww(t). The color-coded ver-
tical lines represent the time instances shown in Fig. 6. The
domain walls broaden by 31% within the first 2 ps after pump-
ing. (c) XMCD data obtained when the sample is magnetized
with the external field. The error is shown as gray shadow and
it is computed from the standard deviation of the pre-pump
data.

ously inferred from 1st order diffracting ring measure-
ments [15]. However, the method used in Ref. 15 was
purely inferential insofar as it was not possible to truly
determine the smoothing of the domain walls from the
width of the diffraction rings. As shown here, we pre-
cisely determine the broadening from an entirely differ-
ent perspective: we take advantage of the substantial
dynamic range of our measurement system, then apply
a Fourier series decomposition method that relies on the
simple fact that the domain-wall profile is actually en-
coded in the relative amplitudes of the diffraction orders.
In other words, we do not infer the domain-wall widths,
but rather we directly measure them.

VII. LINEAR FILTER FUNCTION ANALYSIS

We have conclusively shown that domain wall broad-
ening does indeed occur in our system, whereby we rigor-
ously measured the degree of broadening by use of Fourier
analysis. Having settled the question as to whether ul-
trafast broadening actually does occur, we can now test
whether use of a linear filter function to extract wall
broadening from the time-resolved distortions of a sin-
gle diffraction ring, as was done in Ref. 15, is consistent
with our rigorous quantitative result.
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FIG. 8. (a) Comparison of the third-order ring spectrum iso-
lated from experimental data (black curve) and predicted by
the use of a suitable Gaussian filter function (blue curve). (b)
Time-dependent filter function g(q, t) computed from exper-
imental data at t = 1.6 ps. The grey shaded area represents
the error in determining g(q, t) from shot noise.

Let us consider an azimuthally averaged spectrum that
has a simple functional shape, ft(q) given by the product
of a Lorentzian diffraction lineshape and a Gaussian filter
function

ft(q) =

 M(t)(
q−q0
Γ(t)

)2

+ 1

 e−q2/2σ(t)2 , (8)

where M(t), q0, and Γ(t) are the Lorentzian’s amplitude,
peak position at equilibrium (t < 0), and linewidth, re-
spectively, and σ(t) is the Gaussian’s standard deviation.
This Gaussian filter function in reciprocal space is used
to model how the domain structure that gives rise to the
Lorentzian lineshape might be smoothed by convolution
with the same Gaussian, but in the form of its inverse
transform in real space.

The maximum of Eq. (8) can be analytically computed
from ∂ft(q)/∂q = 0. Introducing the peak shift ∆q(t) =
q0 − qmax(t) as a function of the measured peak position
qmax(t) and solving for σ, we obtain

2σ(t)2 =
Γ(t)2q0 + q0∆q(t)2 −∆q(t)3

∆q(t)
− Γ(t)2. (9)

For a small shift, ∆q(t) � 1, we can approximate the
Gaussian standard deviation to

2σ(t)2 ≈ Γ(t)2

(
q0

∆q(t)
− 1

)
. (10)

This powerful yet simple expression permits us to di-
rectly determine the degree of smoothing σ(t) as a func-
tion of the measured parameters, i.e. the original diffrac-
tion ring radius q0, the shift in the ring radius ∆q(t), and
the original width of the diffraction ring Γ(t). For exam-
ple, given the equilibrium ring radius q0 ≈ 0.0392 nm−1

and parameters at 1.6 ps after optical pumping ∆q ≈
2.7 µm−1, and Γ ≈ 8.8 µm−1, we obtain σ ≈ 0.023 nm−1.
This is a substantial degree of smoothing that implies an
almost total quench of all diffraction orders except for the
1st order ring. In the case of our measured distortions
in the 1st order diffraction ring, the amplitude ratio be-
tween the third and first-order rings would be expected
to be ≈ 8× 10−6, four orders of magnitude smaller than
the actual fitted ratio of 0.08. Clearly, the degree of
domain wall broadening extracted from the distortions
of the 1st order diffraction ring is inconsistent with that
directly measured by use of the 3rd and 5th order diffrac-
tion rings. We are forced to conclude that the ultrafast
shift of the diffraction ring radii cannot be ascribed to
domain-wall broadening.

In addition to being quantitatively erroneous with re-
gard to domain-wall broadening, the use of a filter func-
tion as a model for such broadening also induces a size-
able asymmetry in the q-dependent spectrum that is not
actually observed. In Fig. 8(a), we compare the isolated
azimuthally averaged third-order ring from the experi-
mental data (black curve) and computed by means of a
Gaussian filter function (blue curve). For this, we use
the pre-pump (t < 0) time-averaged data for the third-
order ring, multiply it by a Gaussian filter function with
a standard deviation computed from Eq. (10), and scale
it so as to match the ring amplitude at all times. As
is easily seen by eye, the Gaussian filter results in sig-
nificant asymmetry in the spectrum that does not agree
with the experimental data. An even poorer agreement
is obtained by scaling the Gaussian filter function by the
measured XMCD data, as would be expected from the
fact that a filter function at q = 0 should be proportional
to the quenching for a uniformly magnetized sample.

A slightly different approach can be taken by assuming
distortions of the domain configurations. In this case, a
real-space distortion would imply a harmonic application
of the Gaussian filter function, as further discussed in Ap-
pendix C. This approach also results in a poor model for
our experimental data and is yet further evidence that
fitting of the data with a Gaussian filter is not an effec-
tive method for the extraction of domain wall broadening
from the measured diffraction.

It can be argued that the assumption of a Gaussian
smoothing function to model domain-wall broadening is
itself specious, and that a phenomenological smoothing
function would be more accurate at assessing the details
of domain wall dynamics. Based on linear response the-
ory, the dynamic evolution of the domain network can
always be analyzed in terms of a time-dependent spatial
filter kernel G(x, y, t) that is convolved with the equilib-
rium perpendicular-to-plane magnetization component

Mz(x, y, t) = G(x, y, t) ∗Mz(x, y, t = 0). (11)

Because the scattering intensity is related to Mz via a
Fourier transform, |S(q, t)|2 = |F{Mz}|2, it is possible to
reinterpret the filtering kernel as a multiplicative factor in
Fourier space, g(q, t), that describes the time-dependent
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evolution of the scattering, given by

g(q, t) =

√
|S(q, t)|2
|S(q, t = 0)|2

, (12)

where g(q, t) = F{G(x, y, t)}. This kernel may be com-
puted from experimental data with good accuracy up to
the third-order peak. The associated error to the kernel
can be computed by standard error propagation to be

δg(q, t) =
1√
N(q

g(q, t)

2

√
1

q(q, t)2
+ 1, (13)

where N(q) is the time-independent photon count per
q and we assume that the main source of noise in the
measurement is shot noise.

The resultant scalar filter function obtained from ex-
perimental data at t = 1.6 ps is shown in Fig. 8(b).
The shaded area represents the error computed from
Eq. (13). We see that the spectral modulation of the
diffraction rings by such a time-dependent scalar filter
function is qualitatively non-trivial, given the function’s
complex oscillatory form. We also see that the reciprocal-
space radii of maximal quenching are correlated with the
diffraction ring positions. If optically-induced quench-
ing is a simple function of wavelength, whereby shorter
wavelength features demagnetize more efficiently than
longer wavelengths, we would expect monotonically de-
creasing low-pass filter behavior. Instead, we find that
the experimentally determined filter function is unam-
biguously non-monotonic. Such a complex dependence
of quenching cannot be easily attributed to an uncompli-
cated reciprocal-space dependence of demagnetization, as
was originally proposed by Pfau, et al.15.

Finally, the analysis presented in this section also clar-
ifies the impact that thermal fluctuations of the domain
wall spatial positions has on diffraction. When ther-
mal fluctuations affect atomic coordinates in the case
of Bragg diffraction, this is typically accounted for with
the Gaussian-like Debye-Waller factor (DWF). The DWF
accounts for the fact that the amplitudes of high-order
diffraction features [33] are strongly attenuated by ther-
mal fluctuations when q is greater than the wavenum-
ber of the scattering photons. If we apply by analogy
the DWF to the case of magnetic diffraction from do-
main wall patterns, and we assume thermal fluctuations
cause random fluctuations of domains walls from their
average position, the estimated σ ≈ 0.023 nm−1 from
Eq. (10) would imply a mean spatial displacement of√

2π/(2σ2) ≈ 77×10−9 m. In other words, domain walls
would need to fluctuate approximately 77 nm to account
for the observed shift in the ring positions. Such mas-
sive spatial fluctuations in the domain wall positions are
clearly unphysical. In addition, such large random do-
main wall motion would also fully extinguish the higher
order scattering from the domain structure by smearing
out details of the domain wall structure, which is clearly
not the case in the measurements presented here. As

such, we can also rule out any stochastic phenomena that
can be accounted for with the DWF as relevant explana-
tions for the phenomena we observed.

VIII. ULTRAFAST DOMAIN
REARRANGEMENT

Having established and definitively quantified ultra-
fast domain-wall broadening from the time dependence
of diffraction ring amplitudes, and excluding the applica-
bility of a monotonically decaying filter function as the
result of said wall broadening, we now focus on the ultra-
fast dynamics manifest in both the diffraction ring radii
and linewidths. The diffraction rings’ linewidths exhibit
an ultrafast time dependence, as shown in Fig. 9(a). The
linewidth broadens 15% within 1.6 ps and exhibit a par-
tial recovery until 13 ps where it then remains relatively
constant. Interpreting the linewidth Γ as a reciprocal
measure of the correlation length, 2π/Γ, this quantity de-
creases from the equilibrium value of 845 nm to 711 nm
at 1.6 ps after optical pumping. We understand such cor-
relation lengths to be the distances over which the phase
of the periodic domain structure is no longer predictable.
As such, a rapid reduction in the correlation length is a
clear indication that the domain pattern is subject to
some sort of ultrafast rearrangement, whereby the phase
coherence of the domains is further reduced under far-
from-equilibrium conditions. We stress that the fits are
obtained by the use of Lorentzian functions that are sym-
metric with respect to the ring radii. As such, the small
error bars in Fig. 9(a) are clear evidence that there is
minimal ultrafast distortion of the ring shapes beyond
position and width.

The decrease in the spatial coherence of the domain
structure implies that some degree of domain-wall motion
is occurring, albeit such motion must be both stochastic
and zero-mean. The need for the motion to be stochastic
is obvious given the broadening of the linewidth. The re-
quirement that the domain wall motion be a zero-mean
effect is necessary if there is no net overall change in the
average domain wall density. Instead, we conjecture that
ultrafast optical pumping simply causes increased vari-
ability in the size of the domains across the probe spot.
Because the scattering is fitted well with a symmetric
Lorentzian lineshape, we can rely on standard Fourier
analysis of a Langevin-type equation subject to a Wiener
random process [34] to quantify a domain-wall “jitter”
δλ(t) given by

δλ(t) =

√
2Γ

q3
0

, (14)

that depends on the measured linewidth and ring radius.
Using Eq. (14), we obtain δλ(t) = 15.7 nm ±0.1 nm at
equilibrium. δλ(t) jumps to 18.8 nm ±0.2 nm in a time
1.6 ps after pumping. The average domain-wall speed re-
quired to accommodate such a rapid change in positional
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FIG. 9. Time evolution of the fitted (a) linewidth Γ and (b)
ring radius q0. Both quantities exhibit ultrafast changes. The
ring radius shrinks by 6% and the linewidth broadens by 15%.

jitter is approximately 2 km/s, well within the range of
plausibility. [35]

The evolution of ring radii is shown in Fig. 9(b). We
detect a 6% shift in both the first- and third-order ring
radii at 1.6 ps after optical pumping, followed by a partial
recovery. This confirms the similar shift from labyrinth
domain patterns observed in Refs. 15 and 17. Here, we
extend our observation to the higher-order diffraction
rings. After 13 ps, the rings continue to shrink for the
remainder of the measurement time. The very slight con-
tinued shrinking of the ring radius shift past 13 ps might
be attributed at least in part to thermal expansion of the
lattice.

The simultaneous observation of both a reduction of
the correlation length and a contraction of the diffraction
rings’ radii are strong evidence in support for the spa-
tial rearrangement of the domain pattern at picosecond
timescales. These results indicate that domain-walls are
mobile upon optical excitation, though the exact details
of the spatial modifications are not directly accessible via
scalar diffraction measurements nor by the required av-
eraging of single-shot measurements.

The hypothesis of domain dilation stemming from the
ring radius shift was deemed unphysical in Ref. 15 due
to the exceedingly large domain-wall speeds at the edges
of the x-ray probe spot implied by a fractional expan-
sion in the average domain width. In our experiments, a
6% domain dilation would imply domain-wall speeds at
the outer radius of our probe spot to be on the order of
(0.06×10µm)/1.6 ps ≈ 375 km/s. Such an extreme speed
is many orders of magnitude faster than what is capable
by any known mechanisms to drive isolated domain-walls
in equilibrium, e.g. Refs. 36 and 37, and even one order
of magnitude faster than a recent prediction of femtosec-
ond domain-wall motion due to superdiffusive spin cur-
rents [35]. As such, the physical interpretation of the

observed contraction in the ring radii remains a mystery.
Nevertheless, it still stands that we have confirmed that
domain wall broadening does in fact occur, as Pfau, et
al., [15] concluded, but we disproved their method of de-
termining the magnitude of the broadening. In addition,
we have now shown that the effect extends harmonically
to the third-order diffraction ring, thereby verifying that
the effect is both reproducible and self-consistent across
multiple orders of diffraction. This clearly precludes any
kind of experiment artifact as the origin of the broaden-
ing and shifts.

IX. CONCLUSION

In this paper, we have measured the time-dependent
scattering of a labyrinth domain pattern subject to ultra-
fast optical pumping up to the fifth-order diffraction ring.
This large range of wavevectors allowed us to use Fourier
series concepts to unambiguously and simultaneously re-
cover information on the average domain-wall width and
domain size. Our main observation is that, contrary to
what has been posited to date, domain-walls are mobile
when subjected to ultrafast optical pumping, suggesting
the appearance of a net torque on the domain-walls and
the ultrafast rearrangement of the domain pattern.

Our results are consistent with the recent observation
that a much larger shift in the radii of the diffraction rings
occurs in the case of labyrinth domains as opposed to that
for parallel stripe domains [17]. This indicates that lower
symmetry spin textures, e.g. labyrinths with randomly
dispersed domain junctions, termini, and bubbles, are
more susceptible to ultrafast rearrangement than higher
symmetry spin textures, e.g. periodic stripe domains.

A recent study has indicated that the nature of the
torque may be related to the hybridization of domain-
wall types in materials with Dzyaloshinskii-Moriya in-
teraction [38]. It would be interesting to generalize this
concept to domain-walls in material without well-defined
chirality.

The possibility of domain structure rearrangement by
ultrafast optical pumping raises the possibility that spin
textures can be optically controlled. The presented re-
sults greatly expand the parameter space in which to
further explore the rich nature of far-from-equilibrium
magnetization dynamics, including materials with more
exotic spin textures, such as chiral domain networks and
skyrmion lattices.
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Appendix A: Subtraction of charge contribution to
the scattering intensity

To separate the electronic and magnetic contributions,
we use the refractive index formalism to describe the in-
teraction of soft x-rays with the ferromagnetic multilayer
film. An equivalent description in terms of scattering
amplitudes is also possible [39].

Within the approach adopted here, spatial variations
of the refractive index n0 will cause the incident x-rays to
scatter. The variations could either be caused by inhomo-
geneities of the chemical composition or surface rough-
ness, collectively referred to as charge variations c(r),
where r = (x, y) is the spatial coordinate, or a spatially
dependent profile of the out-of-plane magnetization com-
ponent s(r) ≡Mz(r). We assume no spin-charge correla-
tion in our multilayered samples. While such correlations
exist for granular[40, 41] or patterned [42] media, we do
not expect such correlations in our samples because the
exchange interaction between adjacent grains is compa-
rable to that within the grains themselves. Indeed, such
strong intergranular exchange coupling is a prerequisite
for the formation of labyrinth domain patterns.

With the corrections to the refractive index δnc and
δns due to charge and spin variations, respectively, the
electric field of an electromagnetic wave transmitted
through the sample is

E = E0e
ikd[n0+δnss(r)+δcc(r)], (A1)

where E0 is the incident circularly polarized wave and is
assumed to be a plane wave (E0 = 1) due to the large
spot size of the incident beam of ≈ 100 µm relative to its
wavelength of 1.45 nm, d is the sample thickness, and k is
the wavenumber of the incident x-rays. E in Eq. (A1) is
referred to as the exit surface wave (ESW). We divide out
the term eikdn0 and, to make the notation more compact,
introduce substitutions C(r) = ikdδncc(r) and S(r) =
ikdδnss(r). A Taylor expansion of Eq. (A1) to first order
in C(r) and S(r) yields

E = 1 + C(r) + S(r). (A2)

The scattered intensity at the detector is obtained by
taking a Fourier transform of Eq. (A2) and multiplying
it by the conjugate

I(q) = |C(q)|2 + |S(q)|2 + 2Re{C(q)S(q)}, (A3)

where C(q) and S(q) are Fourier transforms of C(r) and
S(r), respectively. The Fourier transform of the first term
in Eq. (A2) is a delta function δ(q), which is non-zero

FIG. 10. Pre-pump (t < 0) charge scattering.

only when the scattering vector q = 0. Since we are
not interested in the unscattered signal, we neglected the
delta function in Eq. (A3).

Because the incident x-ray probe is circularly polar-
ized, the magnetically and electronically scattered x-rays
have the same polarization, and thus the third term in
Eq. (A3) is, in general, non-zero.

When a saturating perpendicular magnetic field Hz

is applied to the sample, it eliminates the magnetic
domains, and the complex magnetically scattered sig-
nal S(q) vanishes except at q = 0, in which case
I(q) ∝ |C(q)|2. However, the total transmission through
the sample still depends on its magnetization direction
due to the effect of x-ray magnetic circular dichroism
upon circularly polarized x-rays, which in turn affects
the charge scattering because of the non-zero sample
thickness. Thus, the magnitude of the scattered in-
tensity is essentially a product of the charge scatter-
ing and a field-dependent XMCD transmission factor
IXMCD(Hz)|C(q)|2. This variation can be accounted for
by including second order terms in the Taylor expansion
of Eq. (A2), as was done in Ref. 43. For that reason, the
pure charge scattering |C(q)|2 with circular polarized x-
rays and a non-negligible sample thickness is found from
the scattering intensities taken with positive and negative
applied saturating fields

Σ =
1

2
[I(q,+Hz) + I(q,−Hz)] = |C(q)|2. (A4)

The charge scattering shown in Fig. 10 is found at
wavevnumbers of 0.2 nm−1, so that the signal mainly
overlaps with the magnetic fifth-order diffraction ring
and the effect of cross-terms in Eq. (A3) is negligibly
small on the magnetic first-order and third-order diffrac-
tion rings. Further details can be found in Ref. 43. We
then extract the magnetic scattering intensity as

|S(q)|2 = I(q, Hz = 0)− Σ. (A5)
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Appendix B: Fits of time averaged scattering data
after pumping

To test if the fifth-order ring can be fitted accurately
from the data, we time-average the already azimuthally
averaged scattering in the interval ti = [6 ps, 11 ps].
The equalized data, fits, and Lorentzians in the rep-
resentation of Eq. (3) are shown in Fig. 11 by solid
black, dashed red, and solid blue curves, respectively.
After time-averaging, the fifth-order ring, though signif-
icantly quenched relative to what is detected prior to
pumping, e.g. Fig. 2(a), is more clearly distinguished,
and is found to be resolved in a manner that is consis-
tent with the fitting of the first- and third-order rings.
Small errors in the fit with increasing q are visibly en-
hanced in this equalized representation. Regardless,
the fit is extremely sensitive to the exact positions of
the diffraction rings in the data, as captured with the
Lorentzian model for the ring profiles. In this particular
fit, we obtained q0 = 0.0373 nm−1 ± 4.5 × 10−5 nm−1.
This represents a ≈ 0.26% shift in the ring radius of
0.0374 nm−1 ± 9 × 10−5 nm−1 calculated from time-
average of the domain width shown in Fig. 6(a) within
the time interval ti.

Appendix C: Modeling the Ultrafast Distortion of
the Domain Configuration

An alternative interpretation of our data is that there
is an ultrafast distortion in the shape of the individual
diffraction rings due to a change in the statistical distri-
bution of domain sizes, shapes, and/or amplitudes. In
that case, the distortion in the spectral profile of each
diffraction ring is a function of the ring order. We con-
sider a simplified model for such an effect whereby the
distortion in the ring profile can be represented by a
Gaussian filter function that shifts the weight of each
diffraction ring to lower wavenumbers. To fit the ex-
perimental data with such a model, we multiply each
Lorentzian in the diffraction ring profile by a filter func-
tion that depends on the diffraction order of the ring to
be fitted, i.e. the position and width of the filter func-
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FIG. 11. Fits of time averaged scattering data after pumping.

FIG. 12. Data fitting using a fitted Gaussian filter func-
tion. The data is presented in the equalized representation
of Eq. (2). The experimental data are shown by solid black
curves, the empirical fits by dashed red curves, and the fits us-
ing a Gaussian filter function, Eq. (C1) by dashed blue curves.
Time instances at 0 ps, 1.6 ps, and 18.8 ps are shown and ver-
tically shifted for clarity.

tion are linear in the diffraction order n. Multiplication
of each diffraction ring by a different filter function is jus-
tified based on the fact that the domain-wall profile gives
rise to the multiple observed rings according to Fourier
series decomposition. The resulting empirical function
fG(q, t) has the following functional form
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FIG. 13. (a) 3D rendering of the equilibrium magnetization. (b) Cross-section of the domain pattern along the red line shown
in (a) and the thin film’s height. The profile is uniform across the thickness.

fG(q, t) = e−2q/Q(0)

M0(0) +
∑

n=1,3,5

M̃n(t)(
q−nq0(0)
nΓ(0)

)2

+ 1
e−q

2/2(nσ(t))2


2

(C1)

where the quantities M̃n(t) are fitting parameters and
σ(t) is the Gaussian standard deviation. Note that only
the Gaussian filter function is time-dependent while the
remaining parameters can be estimated from the fit to
the equilibrium spectrum.

The resulting fits at selected times are shown in Fig. 12.
At equilibrium, the Gaussian reduces to a constant and
the scattering is accurately fitted as shown by the dashed
blue curve. However, the scattering at later times cannot
be fitted with this functional form as shown by the blue
curves. For comparison, we also plot the fits using our
empirical function in red dotted curves.

Appendix D: Micromagnetic simulations

The equilibrium domain pattern is estimated using
the micromagnetic package MuMax3 [32] and run on
an NVIDIA Tesla P100 GPU accelerator. We set a
5, 120 nm×5, 120 nm×40 nm simulation area discretized
in cells of 5 nm×5 nm×5 nm and imposing periodic
boundary conditions on the film’s plane. The cell size

is below the estimated exchange length of 7.3 nm. We
used experimentally measured magnetic parameters at
room temperature: Ms = 771 kA/m, K1 = 739 kJ/m3,
and K2 = −266 kJ/m3 and we assumed an exchange
constant of Aex = 20 pJ/m.

The ground state is found by the use of the relax
routine in Mumax3 which estimates the energy minimum
by removing the conservative term of the Landau-Lifshitz
equation and using a Runge-Kutta 23 solver.

The simulation is initialized with a random magnetiza-
tion distribution. The resulting labyrinth domain pattern
is shown in Fig. 13(a). By Fourier analysis, we obtain an
average domain size of 78 nm ±13 nm, in good agree-
ment with the equilibrium domain size deduced from the
pre-pump scattering data. The cross section along the
red line shows that the domains are essentially constant
across the thickness, as shown in Fig. 13(b).
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FIG. 14. Depth profile temperature results of three-temperature heat transport model for the electronic, lattice, and spin
temperatures.

Appendix E: Time evolution of thermal profile in
thick metallic multilayers after optical pumping

The heat transport in the film was modeled by use
of the three-temperature model [1], which includes three
coupled equations to describe the dynamics of the elec-
tron, lattice, and spin temperature baths

Ce(Te)
∂Te

∂t
= ~∇ ·

(
κe(Te, Tl)~∇Te

)
+Gel(Te) (Tl − Te) +Ges (Ts − Te) + S(z, t), (E1a)

Cl(Tl)
∂Tl

∂t
= ~∇ ·

(
κl(Te, Tl)~∇Tl

)
+Gel(Te) (Te − Tl) +Gls (Ts − Tl) , (E1b)

Cs(Ts)
∂Ts

∂t
= Ges (Te − Ts) +Gls (Tl − Ts) . (E1c)

We used material-specific and temperature-dependent
values for the specific heat Cx, thermal conductivity κx,
the electron-lattice coupling constant Gel, the electron-
spin coupling constant Ges, and the lattice-spin coupling
constant Gls [43–46]. The subscript x stands for e, l, or
s to denote the electron, lattice, or spin system, respec-
tively. The laminate structure of the sample was taken
into account, and the spatial profile of the heat source
S(z, t) was found by computing the absorption of the
pump light with an incident fluence of 26.7 J/cm2 by the
film using the multilayer formalism of Ref. 47. More de-
tails on the material parameters used in the simulation
can be found in Ref. 43.

The calculated depth-dependent electron, lattice, and
spin temperatures are shown in Fig. 14. The magne-
tization profile was obtained from the calculated tem-
perature of the spin system using the experimentally
measured temperature dependence of the magnetization.

The electron-spin coupling parameter was chosen to be
Ges = 3 × 1017 W/m3K to obtain a good fit to the ex-
perimental XMCD signal. However, one must take the
calculated temperatures for the various thermal baths
in this model to be no more than rough estimates at
the short times over which substantial changes in the
magnetic scattering occurs. Given that Ges � Gls,
and an estimated Cs(Ts) ≈ 1.5 × 106 J/m3K at the el-
evated temperatures expected after pumping, the esti-
mated time constant for heat transfer between the elec-
tronic and spin system is 5 ps, which is much longer than
the measured domain dilation time and the domain-wall
broadening time of 1.6 ps. This highlights the fact that
the electron-spin scattering processes in the far-from-
equilibrium regime are strongly amplified for this system
when compared to those expected from highly simplified
models based on equilibrium dynamics.
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