

update: HED science instrument (web version)

European XFEL Users' Meeting January 28, 2015

Thomas Tschentscher for HED *thomas.tschentscher@xfel.eu*

XFEL High Energy Density Science – HED

Ultrafast dynamics and structural properties of matter at extreme states

- Highly excited solids \rightarrow laser processing, dynamic compression, high B-field
- Near-solid density plasmas \rightarrow WDM, HDM, rel. laser-matter interaction
- Quantum states of matter \rightarrow high field QED

Samples generated by pulsed excitation

- Highly dynamic and often non-equilibrium
- Irreversible processes \rightarrow sample refreshment required

Combination of high excitation with various x-ray techniques

Use of various pump sources to excite samples (OL, XFEL, ext. fields)

XFEL HED unique properties

Integration of x-ray FEL with high power laser systems and pulsed high magnetic fields

- 100 J, ns high-energy (HE) laser for dynamic compression *
- 4 J, 40 fs ultrahigh-intensity (UHI) laser for relativistic laser-matter interaction *
- 50 T, ~ms pulsed magnetic fields for condensed matter studies at high fields *

Utilization of high repetition rates

- Up to 4.5 MHz for non-destructive experiments
- Up to 10 Hz for destructive experiments

Provision of dedicated scattering setups

- Chamber for high energy laser-drive and various types x-ray scattering
- Setup for DAC (in air) diffraction *
- Setup for diffraction from specimen inside pulsed magnetic coil*

XFEL Integration of HED and HIBEF UC

Helmholtz International Beamline for Extreme Fields (HIBEF)

This User Consortium proposes to contribute critical instrumentation exceeding the baseline scope of the HED instrument. HIBEF is based on a wide community of users from

- → plasma and high pressure physics
- → solid-state physics
- → material sciences

The significant contributions are driven by the needs for the respective exps.

- → high energy lasers magnetic pulser DAC and high B setups spectrometer
- > many more have been mentioned

Integration

- supervised & coordinated by HED
- requires HIBEF staff to be integrated
- includes future operation

HIBEF executive

Coordinator: C. Baehtz (HZDR) Executive board: T. Cowan (HZDR), R. Redmer (U Rostock), J. Wark (U Oxford), E. Weckert (DESY), NN

HIBEF @ XFEL

XFEL DIPOLE 100-X*

UK contribution to HIBEF

- HE laser delivering ns pulses with ~100 J pulse energy
- **Diode-pumped**, cryogenic amplifier \rightarrow 10 Hz capability
- Pulse-shaping capability

Grants awarded by EPSRC and STFC to U Oxford and CLF

- Ambitious developments ahead
 - → Operational flexibility
 - → Pulse-shaping
 - → Frequency conversion
 - → Optical isolation

* external funding (HIBEF)

XFEL 2014 at HED

Completed, reviewed and published Technical Design Report (TDR)

- Reported at last UM, followed by User Workshop & HED-ART meeting
- XFEL.EU TR-2014-001; see <u>www.xfel.eu/documents/technical_documents</u>

Civil construction of HED-EXP enclosure

Heavy concrete construction to enable use of ultrahigh intensity lasers

Design of HED components

- X-ray beam delivery (attenuators, slits, CRLs → IKC by Denmark)
- Interaction chamber 1 (IA1) main work horse
- Overall instrument layout
- Optical laser installations

Continued definition of HIBEF User Consortium contributions

- Work on DIPOLE 100-X started
- Other contributions still under definition

Thomas Tschentscher, European XFEL, European XFEL Users' Meeting, Hamburg 28/01/2015

XFEL X-ray optics hutch (HED-OPT)

HED experiments enclosure 95% completed

XFEL HED-Laserroom (DIPOLE-100-X & UHI model)

10

XFEL HED experiment hutch

Thomas Tschentscher, European XFEL, European XFEL Users' Meeting, Hamburg 28/01/2015

XFEL Interaction chamber 1 (IA1)

Thomas Tschentscher, European XFEL, European XFEL Users' Meeting, Hamburg 28/01/2015

XFEL Area detector issues

Several experimental techniques require (large) area detectors

- Spectroscopy (XAS, IXS (hr, plasmon,Compton)) 2D improves selectivity
- Imaging (Ptychography, PCI, Coh-Imaging) distance requirements
- **Diffraction** (crystals, powders, liquids/amorphous) Large θ angle coverage
- \Rightarrow High expectation by user community

Specific issues

- Forward scattering: detectors/windows vs. intense FEL beam
- Debris from sample expansion
- EMP from laser pulses
- \Rightarrow Conflicting requirements

XFEL Forward diffraction experiments

Typical requirements (for class of exps.)

- large area detectors
- **c**lose to the sample (scatterer) to provide max. coverage of θ angle/Q-space
- **cover** min. 90°, better 180° in φ (azimuthal angle)
- **–** often mounted on x-ray axis to cover 360° in φ

Two scenarios

- 1. mount tile(s) in-vacuum
- 2. Put large area outside vacuum & off-axis

XFEL Area detector issues

Several experimental techniques require (large) area detectors

- Spectroscopy (XAS, IXS (hr, plasmon, Compton)) 2D improves selectivity
- Imaging (Ptychography, PCI, Coh-Imaging) distance requirements
- **Diffraction** (crystals, powders, liquids/amorphous) Large θ angle coverage
- \Rightarrow High expectation by user community

Specific issues

- Forward scattering: detectors/windows vs. intense FEL beam
- Debris from sample expansion
- EMP from laser pulses
- \Rightarrow Conflicting requirements

Start of operations

- Abandon idea to include large area, in-vacuum, full-reprate detector
- Place 'smallish' area detectors inside vacuum; EMP tested
- Continue search for possible large area detector solutions

Thomas Tschentscher, European XFEL, European XFEL Users' Meeting, Hamburg 28/01/2015

XFEL Concrete detector choices

AGIPD

- + Full rep-rate capability
- Weight & complexity
- Pixel size (220 µm)

Jungfrau

- + 1MHz/16-pulse capability
- + Pixel size (75 µm)
- Vacuum capability

MPCCD

- + Pixel size (50 µm)
- + EMP tests (SACLA)
- max 10 Hz rep rate
- red. dyn range
- red. sensitivity

Para- meter	AGIPD	Jungfrau	MPCCD
Sensor	500 μm Si	500 μm Si	300 μm Si
Dyn. range	10^4	10^4	10^3
Noise	~300 e ⁻	~180 e⁻	~300 e⁻

→ a possible scenario: MPCCD

Jungfrau

use in-vacuum

large area

AGIPD

out of vacuum future extension

→ in addition: epix, large area scient. CCDs

Several requests for experiments outside vacuum or in special environments (e.g. DAC, vacuum for very low temperatures: high B fields)

 \Rightarrow need to solve the issue of interaction with intense x-ray beam

⇒ Limits for min. beam size and/or max. pulse energy

- For experiments at repetition rates of 10 Hz (or less): absorbed dose needs to stay clearly below the dose enabling damage
 - → Simulations (V. Lyamayev): 100 µJ for \varnothing ~ 2 µm (for diamond & 20 keV)
- 2. For experiments aiming at multiple pulses within (10 Hz) pulse train: absorbed energy needs to stay clearly below the energy required for melting or structural phase transitions
 - → Simulations (V. Lyamayev) : on-going

In case of HE/UHI laser beam add. risks due to sample debris fragments

XFEL Early experiment program

Available

- X-ray beam (8 12 keV) limited flexibility/parameters
- PP-OL
- X-ray transport/diagnostics (incl. x-ray-OL cross-correlation measurement)
- High magnetic fields and DAC setup

Not available

Large laser systems (HE-OL & UHI-OL) still under installation/commissioning

First experiments

- X-ray-matter interactions
 - → Probed by x-ray (self-)scattering, x-ray emission, OL techniques
- fs-mJ // 100 mJ-ps OL excitation
 - → Probed by x-ray scattering
- Solids in high magnetic fields & at high P-T (DAC)
 - → Probed by x-ray scattering

XFEL Next steps & Conclusion

Time to 1st x-ray beam is little more than 2 years

- Rooms and infrastructure will be completed 2016
- X-ray delivery systems will be available 2016
- First x-rays during 1st half 2017
- Early user experiments to start in fall 2017
- Optical lasers systems will become available during 2017
 - → PP-OL: ~summer 2017
 - → HE-OL: ~end 2017
 - → UHI-OL: 2018
- ⇒HED instrument will be available in time for first x-rays
- ⇒First experiments probably using x-rays only and PP-OL

19

20

XFEL The HED team *plus*

