

Materials Imaging and Dynamics Instrument

European XFEL User Meeting, 27 Jan. 2016

MID team:

J. Hallmann, T. Roth, W. Lu, C. Kim, U. Bösenberg, G. Ansaldi,

A. Schmidt¹, B. Friedrich², B. Kist³ and A. Madsen

¹also HED instrument, ²at HZB/TU Berlin, ³also TU Hamburg-Harburg

FEL MID's Mission

The Materials Imaging and Dynamics (MID) instrument aims at the investigation of nanosized **structure** and nanoscale **dynamics** using **coherent radiation**. Applications to a **wide range of materials** from hard to soft condensed matter and biological structures are envisaged

XFEL Facility Outline

MID @ SASE-2

XFEL SASE-2: The Southernmost Beamline

Seeding at SASE-2

- Self seeding concept (Geloni, Kocharyan, Saldin) using wake monochromators will be implemented at SASE-2
- Two seeding chicanes allow reducing the heat load on the diamond mono. High-rep rate operation. Seeding project: German-Russian "Ioffe-Röntgen Institute"
- Chicanes also helpful for high harmonic lasing (Schneidmiller & Yurkov)

Typical gain: × 100 in spectral brightness due to seeding and tapering.

 $I \sim 3 \times 10^{13}$ ph/pulse in 10⁻⁴ BW @ 1 nC and 9 keV \rightarrow very high average flux

undulator

SASE-2 Beamline Overview

attenuator

888.5 887.5 880 m

3

imager-3 slit-1

mono-1: Si(111)

931 m

MID experimental hutch

last 25 m in experimental hall

Not shown:

A. Madsen, MID

MCP at 303m (fine tuning of SASE)

Distribution mirror(s) at 390m and 395m (MID on central branch)

Beam loss monitors, PES

XFEL The MID Station

XFEL Optics Hutch

- 1. Alignment laser
- 2. Si(220) mono
- 3. Reserve (hi-res mono)
- 4. Slit Imager Att
- 5. Split-delay line
- 6. Beam shutter

1) Pop-in alignment laser. 2) Double crystal Si(220) artificial channel cut mono. Range 5-25 keV, Pulse tube cryocooler . 3) Reserve for high-resolution mono. IXS applications. 4) High-power slit, pop-in imager & attenuator integrated on optical table. 5) Crystal split-delay line, 0-800 ps, optical or geometrical splitting, co-linear or inclined beams. 6) High-power beam shutter

Experimental Hutch

- 1. Alignment laser
- 2. Reserve (polarizer)
- 3. Mirror
- 4. Differential pump
- 5. Optical laser table, incoupling & timing tool
- 6. Multi-purpose chamber

1) Pop-in alignment laser. 2) Reserve for single crystal X-ray polarizer. 3) Double mirror for upwards (with SDL) or downwards reflection (liquid surfaces). 4) Differential pumping section with large beam aperture (4 x 40 mm²). 5) Optical laser transfer pipe, laser incoupling and timing tool. 6) Multi-purpose chamber for scattering and imaging experiments.

_ Experimental Hutch

- 1. Multi-purpose chamber
- 2. Telescopic flight tube
- 3. Transfer pipe
- 4. AGIPD with stand
- 5. Diagnostics end-station
- 6. Cable tray
- 7. High quality floor

1) Multi-purpose chamber for scattering and imaging experiments. 2) Telescopic flight tube and 2θ rail. Expand/compress and 2θ capability. 3) Wall-mounted transfer pipe. 4) AGIPD and support structure for detectors 5) Diagnostics end-station with spectrometer, imager, intensity monitor, and beam stop. 6) Cable tray for 2θ rail, AGIPD and detectors. 7) ~70 m² floor of stone tiles allowing a smooth motion of the rail and detector

XFEL Multi-Purpose Chamber

- Multi-purpose chamber: pump-probe, coherent scattering, nano-focusing,...
- Sample environments (liquid jet, aerosol injector, scanning setup, pulsed magnet,...)

- Hexapod goniometer for solid samples
- Small-hexapod stage for nano-focusing optics
- Stages decoupled from walls of vacuum vessel

XFEL 4.5 MHz 1M Pixel Area Detector: AGIPD

AGIPD (Consortium lead by H. Graafsma, DESY)

AGIPD in its cage with the required motions

XFEL AGIPD Interfaced to Multi-Purpose Chamber

Instrument Laser Hutch

Optical Laser

Pump-probe mode (4.5 MHz)

- 800 nm wavelength (0.2 mJ pulse)
- Down to 15 fs pulses

Molecular alignment mode (200 kHz)

- 800 nm wavelength (up to 3 mJ/pulse)
- 1080 nm wavelength (up to 0.1 J/pulse)
- <20 fs 0.5 ns pulses
- Frequency conversion (SHG & THG) and TOPAS system (267 nm-15 μm)
- 20 μm possible with extra cost

XFEL HQ Floor Installed

FEL Progress in MID Planning and Construction

- Contracts awarded for all major instrument parts
- Overall Exp hall schedule (PSPO):
 - Hutch Construction at SASE-2 starts March 30, 2016
 - Contract lead hutches awarded
 - Contract optical laser hutches awarded
 - CfT steel construction published
 - CfT infrastructure out soon (readiness review last week)
 - Planning of cabling in progress
- Instrument installation start: January 14, 2017
- 1st lasing SASE-2: April 2017

BMBF Verbundforschung Project: Hard X-Ray Split-Delay Line

Bundesministerium für Bildung und Forschung

Verbundforschung AG Eisebitt, MBI/TUB

Laser interferometer required to control crystal positions

(collaboration M. Holler, PSI)

BMBF Verbundforschung Project: Hard X-Ray Split-Delay Line

(HERA-S) and simulations of SDL beam characteristics

and

Verbundforschung
AG Eisebitt,

Ratio of the U and L branch throughput

BMBF Verbundforschung Project: Hard X-Ray Split-Delay Line

Energy [eV]

(a)

Energy separation in U and L branch

Num. of SASE pluse

(c)

→ ΔE = 0.6 eV

Verbundforschung AG Eisebitt, MBI/TUB

Seeding improves intensity throughput by x10 with increased stability

Agapov, Lu, and Geloni

100 110 120

Inclined Beams From Split-Delay Line

4 m mirror-sample distance, $2\alpha_i = 0.4 \text{ deg}$

 α_{i} even larger with mirror coating

Separation of two beams at detector

Two scattering images on detector:

2nd pattern 1st pattern

Probe-Pump-Probe: Ratiometric Measurements of Photo-Induced Protein Dynamics

FEL Diagnostics End-Station (DES)

DES function:

- Intensity, shape, position, spectrum of direct beam
- Measurement of SAXS ptychography (for ptychographic reconstruction of beam profile at the sample position)
- Stop the direct beam

Single-shot spectrometer

- Si bender constructed (BA thesis, B. Kist)
- Development of diamond single-shot spectrum analyzer with TISNCM (V. Blank, S. Terentiev) and XFEL Optics Group (Samoylova, Sinn)
- Diamond spectrum analyzer tests at LCLS in Feb 2016

MID Specifications & important dates

- 5-25 keV, synchronized optical laser
- pink SASE, Si(111), Si(220), or self-seeded beam
- 4.5 MHz, 220 ns spacing (native), 0-800 ps, few fs precision (SDL)
- high throughput optics, variable spot size, nano-focus
- straight, or up/down deflected beam (SDL/liquid surface)
- up to $>10^{13}$ photons/pulse (SASE-2 seeding and tapering)
- window-less (diff pump) or sample in air (diamond window)
- detectors (AGIPD), attenuators, slits, single-shot diagnostic,...
- 1st lasing at SASE-2: April 2017...
- thereafter beamline & instrument commissioning
- 1st MID experiments (reduced specs): August 2017
- full performance and user operation: 2018

_ Acknowledgements

All XFEL groups involved, particularly Optics, Optical laser, Detector, Sample Env. Vacuum and Diagnostics Groups. PSPO, TS, CIE, and IT, Software and Electronics

- M. Mattenet & ESRF instrument engineering,
- G. Geloni and I. Agapov (XFEL), S. Eisebitt and T. Noll (MBI/TUB/HZB),
- M. Holler (PSI), S. Terentiev & V. Blank (TISNCM), AGIPD consortium,
- + numerous scientific collaborators at LCLS, DESY and elsewhere

Thank you for your attention!

Questions?

SDL Funding:

XFEL member countries:

