hRIXS@SCS Instrument of European XFEL Virtual Town Hall Meeting

October 28, 2020

Agenda:

- Status of hRIXS instrumentation (J. Schlappa)
- Commissioning and proposal schedule (A. Scherz)
- Plan for user-assisted commissioning (B. van Kuiken)
- Q-A Session

Please Type your Questions in the Q&A Chat at Any Time

Status of hRIXS instrumentation

Justine Schlappa SCS instrument, European XFEL

SCS Instrument & SASE3

SCS group, European XFEL, October 28, 2020

XFEL beam parameters								
Photon energy	0.49 – 3.0 keV							
Bandwidth	0.5 – 1.0 %							
X-ray pulse energy	Up to 8 mJ							
X-ray pulse duration	25 fs							
SA1 / SA3 mode	Interleaved @ 2.2 MHz							

4

SCS Instrument: Spectroscopy & Coherent Scattering

SCS Instrument: x-ray scattering in transmission geometry

Elastic and inelastic x-ray scattering in reflection geometry at SCS

hRIXS: Heisenberg RIXS User Consortium instrumentation

Aim:

Time-resolved Resonant inelastic x-ray scattering (RIXS) at the transfer limit

hRIXS Proposal, User Consortium

- J. Schlappa, B. van Kuiken, J. T. Delitz, A. Scherz, S. Neppl, F. Senf, C. Weniger, A. Föhlisch,
- T. Reuss, S. Techert, T. Laarmann, G. Ghirinhelli, S. Huotari.

SCS group, European XFEL, October 28, 2020

Resolving Power E/AE

hRIXS spectrometer: design & performance

Spherical VLS

- Single optical element -> ease of alignment and operation
- optimisation for working range: 270 1500 eV with one grating
- Slots for 3 gratings

SCS group, European XFEL, October 28, 2020

Scientific Motivation for Time-Resolved RIXS

Magnetic correlation dynamics in 3D and 2D:

Heisenberg RIXS UC setup for chemical environment (CHEM)

- Time-resolved spectroscopy from a liquid-jet:
 - Resonant inelastic x-ray scattering
 - X-ray absorption
- Time-resolved spectroscopy from chemical solid samples

- Base pressure: 10⁻³ 10⁻⁹ mbar
- Cylindrical liquid jet system + cryotrap
- Sample holder for solid samples
- Three fixed scattering angles: 90, 125 and 145 deg

Baseline SCS setup for X-ray Resonant Diffraction (XRD)

- Time-resolved spectroscopy from solid samples:
 - Resonant inelastic x-ray scattering
 - Resonant x-ray diffraction / x-ray reflectivity
 - X-ray absorption
- Nonlinear scattering

Sample stage Sample environment: **TwoTheta** Kappa **Theta** UHV ($p < 10^{-9}$ mbar) Cryogenic temperatures 3-circle diffractometer, 6 DOF of motion for sample Detectors: APDs and MCP Triple rotating flange: 60 deg $\leq 2\Theta \leq 150$ deg

SCS group, European XFEL, October 28, 2020

Momentum-resolved RIXS at SCS instrument:

■ XRD + hRIXS: combined continuous rotation in the scattering plane: 65 deg $\leq 2\Theta \leq 145$ deg

 CHEM + hRIXS: fixed geometry.
 Three 2Θ angles:
 2Θ = 90, 125, 145 deg

Outlook for the winter shutdown:

Installation of hRIXS and CHEM at SCS

Start of technical commissioning

Installation of new SCS monochromator grating

SCS group, European XFEL, October 28, 2020

Schedule of hRIXS Commissioning

Andreas Scherz SCS instrument, European XFEL

SCS operation schedule for the first half of 2021 (2021-I)

	2021	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1	Jan	Winter shutdown 2020/2021																														
2	Feb		hRIXS technical & X-ray commissioning																													
3	Mar		hRIXS technical & X-ray commissioning																													
4	Apr	User program 2021-I																														
5	May		User program run 2021-l																													
6	Jun														Sun	me	ers	shı	utd	lov	vn	202	20/	202	21							

hRIXS Program: February – March 2021

- Soft X-ray Monochomator and hRIXS Spectrometer commissioning at few working points
- Commissioning of Chemistry chamber
 - Solid sample environment
 - X-ray diagnostics
 - Liquid jet environment

European XFEL

SCS operation schedule for the second half of 2021 (2021-II)

-	7	Jul	Summer shutdown 2020/2021 User program 2021-II											
-	8	Aug	User program 2021-II											
-	9	Sep	User program 2021-II											
1	10	Oct	hRIXS User-assisted technical commissioning											
1	11	Nov	hRIXS User-assisted technical commissioning											
1	12 #	#####	Winter shutdown 2020/2021											

hRIXS Program: end of September – November 2021

- User-assisted technical commissioning:
 - Enabling methodologies for the start of user program in 2022
- Proposals for 2021-II:

the proposals will be coordinated and submitted by SCS outside of the normal user proposal call

17

Preparation of hRIXS proposal calls for the operation schedules 2021 and beyond

Call for proposals: Allocation period 2021-I Start of hRIXS x-ray commissioning 2021-II 2021-II deadline Dec 2020 user-assisted technical commissioning **User-assisted** technical hRIXS x-ray proposals for hRIXS (coordinated by SCS) commissioning (information today in the virtual town hall meeting) 2022-I deadline June 2021 2022open for community and individual user First hRIXS user program proposals for hRIXS

SCS group, European XFEL, October 28, 2020

Remote User operation:

- Zoom channel to the control room of the instrument
- exchange of information via e.g. SLACK
- elog / myMDC for documentation
- document sharing and editing on XFEL/desycloud

User-assisted commissioning proposals for 2021-2

Ben Van Kuiken SCS Instrument, European XFEL

Goals:

- Technically-driven proposals targeting the base functionalities of the instrumentation
- SCS has identified two liquid phase (Chem chamber) and two solid state projects (XRD Chamber)
- Measurements shall be done on scientific samples from users, in collaboration with users

Chem Proposal 1: High-Resolution RIXS Spectroscopy of Liquids

Scientific Purpose: Probing vibrational dynamics in liquids

Technical goal: Commissioning of combine hRIXS + Chem chamber for high-resolution studies on pure liquid samples

Potential Samples: water, organic solvents.

Photon energies: from 530 eV (O K-edge). Optimize X-ray resolving power for measuring vibrations.

Instrumentation

Liquid jet system

X-ray Beam: Focusing conditions, pulse energies, rep. rates

Chem Proposal 2: Solution-Phase Time-resolved RIXS of Coordination Complexes

Scientific Purpose: Examining photochemical reaction with RIXS to measure d-d excitations in ground and excited states.

Technical goal: Commissioning of combine hRIXS + Chem chamber for optical pump/x-ray probe experiments

Samples: solutions of transition metal complexes: high solubility, easily obtained, balanced crosssections

Photon energies: 700 eV – 1000 eV (Fe, Co, Ni, Cu L-edges)

Instrumentation

- PP laser in-coupling via breadboard at Chem and the Chem LIN chamber with possible laser wavelengths of 400 nm, 800 nm, 266 nm, or outputs from the OPA.
- Timing measurements

XRD Proposal 1: Pulse-resolved x-ray resonant diffraction (or reflectivity)

Scientific purpose: Pulse-resolved diffraction from a photo-excited correlated system, after excitation inside and above the band gap

Technical goal: X-ray commissioning of XRD chamber, commissioning of optical-pump/ x-ray-probe setup starting with 800 nm (fundamental)

XRD: solid samples, stable on air, UHV compatible, stable upon x-ray irradiation.

- Photon energies: from 700 eV 3000 eV. Band width ~3.000. No of photons: 10¹⁰/pulse.
 - Instrumental:
 - Detectors: APDs (@ TwoTheta circle) + MCP (@ fixed geometry)
 - PP laser: co-linear through LIN, 800nm and 400nm or 266nm. Repetition rate: up to 113 kHz
 Temperature: Preferred RT, LN2 or LHe might be available

XRD Proposal 2: High-resolution pump-probe RIXS from solid samples

Scientific purpose: high resolution RIXS from a photo-excited correlated system

Technical goal: optimization of hRIXS spectrometer for high-resolution RIXS, commissioning of optical-pump/x-ray probe RIXS in the combination XRD/hRIXS

XRD: solid samples, stable on air, UHV compatible, reasonably stable upon x-ray irradiation.

Photon energies: from 700 eV – 900 eV. Resolving power >5.000.

Instrumental:

hRIXS Detectors: Princeton CCD. Signal integrated over several trains

- hRIXS spectrometer at fixed geometry (preferably between 125 145 deg)
- PP laser: co-linear through LIN, 800nm, 400nm or 266nm.
- Temperature: Preferred RT, LN2 or LHe might be available

User-Assisted Commissioning Participation

Those with suggestions of samples and/or strategies relevant to the technical commissioning projects should contact us by November 11

Chemistry proposals: benjamin.van.kuiken@xfel.eu XRD Proposals: justine.schlappa@xfel.eu

SCS will shortlist the most practical and ideal projects for technical commissioning

A small group zoom meeting will be had between SCS and users that would like to participate for each of the projects (Week of November 16th)

Finally, SCS will submit these user-assisted commissioning projects to the PRP

Ideal Experimental Parameters

Proposal	Photon Energies	Laser Wavelengths	Scattering Angle (2θ)
Chem 1: High-Res RIXS of Liquids	530 eV (O K-edge)	N/A	125°, 145°
Chem 2: Time- resolved RIXS in Solution	700 – 1000 eV (Fe, Co, Ni, Cu L-edges)	800, 400, 266 nm	125°, 145°
XRD 1: Pulse- resolved diffraction	700 – 3000 eV	800 and 400 or 266 nm	125°-145°
XRD 2: Time- resolved RIXS in Solids	700 – 1000 eV (Fe, Co, Ni, Cu L-edges)	800, 400, 266 nm	125°-145°

Slides available for download on indico site: https://indico.desy.de/event/27658/

Q & A Session

Please Type your Questions in the Q&A Chat

Important Contacts:

Chem Chamber Experiments: Ben Van Kuiken (<u>benjamin.van.kuiken@xfel.eu</u>) XRD Chamber Experiments: Justine Schlappa (<u>justine.schlappa@xfel.eu</u>) XFEL User Office (useroffice@xfel.eu)