Files

Abstract

Small angle x-ray scattering (SAXS) is a well established technique to detect nanometer scale structures in matter. In a typical setup, this diagnostic uses a detector with a direct line of sight to the scattering target. However, in the harsh environment of high intensity laser interaction, intense secondary radiation and high-energy particles are generated. Such a setup would therefore suffer a significant increase of noise due to this background, which could eventually prevent such measurements. In this paper, we present a novel tool consisting of a mosaic graphite crystal that works as a mirror for the SAXS signal and allows us to position the detector behind appropriate shielding. This paper studies the performance of this mirror both by experiment at the European XFEL (X-Ray Free-Electron Laser Facility) laboratory and by simulations.

Details

PDF

Statistics

from
to
Export
Download Full History