Files

Abstract

The emergence of new high brilliance and high coherence facilities such as X-ray Free Electron Lasers (XFELs) and 4th generation synchrotrons open a new era in X-ray optics. Dynamical diffraction effects before disregarded are starting to play a role in the beam control of large scale facilities. In the case of XFEL facilities the temporal characteristics of the dynamical diffraction by thin perfect crystals can be used as a tool to generate femtosecond monochromatic pulses, in the case of self-seeding in the hard X-ray regime, but could even be used as method to characterize materials in this temporal range. In this contribution we present the first steps in the understanding of the spatial-displacement dependence of forward beams diffracted by thin crystals. The data collected by this technique is compared with crystal models based in dynamical diffraction theory. This type of study could open a new field to understand low strain materials in the femtosecond regime.

Details

Statistics

from
to
Export