Files

Abstract

X-ray absorption spectroscopy (XAS) is a powerful and well established technique with sensitivity to elemental and chemical composition. Despite these advantages, its implementation has not kept pace with the development of ultrafast pulsed x-ray sources where XAS can capture femtosecond chemical processes. X-ray Free Electron Lasers (XFELs) deliver femtosecond, narrow bandwidth $(\frac{\Delta E}{E} < 0.5\%)$ pulses containing $\sim 10^{10}$ photons. However, the energy contained in each pulse fluctuates thus complicating pulse by pulse efforts to quantify the number of photons. Improvements in counting the photons in each pulse have defined the state of the art for XAS sensitivity. Here we demonstrate a final step in these improvements through a balanced detection method that approaches the photon counting shot noise limit. In doing so, we obtain high quality absorption spectra from the insulator-metal transition in VO$_2$ and unlock a method to explore dilute systems, subtle processes and nonlinear phenomena with ultrafast x-rays. The method is especially beneficial for x-ray light sources where integration and averaging are not viable options to improve sensitivity.

Details

PDF

Statistics

from
to
Export
Download Full History