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Femtosecond timing synchronization at megahertz
repetition rates for an x-ray free-electron laser
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A critical challenge of pump-probe experiments with x-ray
free-electron lasers (XFELs) is accurate synchronization of
x-ray and optical pulses. At the European XFEL we observed
megahertz rate timing jitter of 24.0 ± 12.4 fs.
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The emergence of x-ray free-electron lasers (XFELs) operating
at photon energies of around 10 keV (hard x-rays) over the past
decade has opened up new possibilities for the physical, chemical,
and biological sciences due to their high brightness and femtosec-
ond (fs) pulses [1]. These intense and ultrashort x-ray pulses are
used to record so-called molecular movies on fs time scales using
a pump-probe (PP) measurement to achieve both high temporal
and spatial resolution—a necessary step to truly understand the
dynamics of matter. One of the greatest difficulties to achieve
fs time resolution in PP experiments is the shot-to-shot timing
jitter, which can be hundreds of fs in XFELs [2]. Therefore, the
temporal resolution of an experiment may be severely limited by
the timing jitter if the relative PP delay time is not monitored on a
single-shot basis, prohibiting studies of fs dynamics. Unlike other
hard x-ray FELs so far, which have been operating at ≤120 Hz,
the European XFEL (EuXFEL) has been designed to deliver up to
27,000 pulses per second at megahertz (MHz) repetition rates with
burst operation [1]. In order to fully benefit from the increased

number of x-ray pulses that the EuXFEL can provide for PP exper-
iments, a unique optical PP laser system was developed to deliver
pulses as short as 15 fs with a burst structure matching that of the
x-rays while maintaining minimal jitter between the XFEL and the
optical laser using an optical synchronization system [3].

Characterization of the PP jitter at MHz repetition rate in
the hard x-ray regime, which is presented here, was made pos-
sible with the installation of the photon arrival time monitor
(PAM) at the Single Particles, Clusters, and Biomolecules and
Serial Femtosecond Crystallography (SPB/SFX) instrument [4].
The PAM uses the spectral encoding technique that has already
been successfully applied at other hard x-ray FELs [5] at up to
120 Hz. A 100 µm thick Ce:YAG was utilized as a target sample.
Two GOTTHARD (Gain Optimizing microsTrip sysTem witH
Analog ReaDout) detectors [6] operating at 564 kHz recorded
alternating optical pulses in each MHz pulse train. Using radiofre-
quency (RF) pre-lock synchronization [7], the inter-train RMS
jitter was measured to be 279 ± 32 fs. Figure 1 shows the relative
time of arrival of x-ray and optical pulses using the RF and optical
synchronization (OS) systems. An extremely low inter-train RMS
jitter of 24.0 fs with an uncertainty of 12.4 fs was observed over a
period of 10 min using OS [Fig. 1]. Additionally, measurements
over a period of 2 h show no significant slow drift while using OS.
These results demonstrate a significant advance towards fs PP
experiments at MHz repetition rates.

In conclusion, the spectral encoding technique was developed
for operation in the hard x-ray regime at a MHz repetition rate.
The PP inter- and intra-train timing jitter was characterized at
the EuXFEL with optical synchronization. Since the previous
report [7], the inter-train RMS jitter has been reduced by 1 order
of magnitude, down to 24.0 fs with 12.4 fs uncertainty, which
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Fig. 1. The black line shows the rolling mean over a 5 s window. The
inset shows a histogram of the relative arrival times using 100 x-ray pulses
per train (10 Hz inter-train and 1.128 MHz intra-train repetition rates)
with RF synchronization (blue, 854,430 pulses) measured using a 3.1 ps
temporal window and optical synchronization (red, 431,300 x-ray pulses)
measured using a 1.2 ps temporal window.

Fig. 2. Arrival time for each pulse with respect to the first pulse in
its train when averaging over 5000 x-ray trains. The error bars show the
standard deviation for each pulse in the train over a period of about 500 s.

can be attributed to the OS system and improved optical laser
beam transport. Furthermore, the intra-train jitter was measured
at 1.128 MHz repetition rate using a device that is available for
users of the SPB/SFX instrument [Fig. 2]. Our work highlights the
importance of the OS for future PP studies at high repetition rate
and ultrashort x-ray sources. Owing to the excellent synchroniza-
tion between the XFEL and the PP laser at EuXFEL, experiments
requiring a temporal resolution above 100 fs will not require
the conventional “measure and sort” approach and can thus be
performed much more readily.
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