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Abstract

We consider the maximum of the Wigner distribution (WD) of synchrotron radia-
tion (SR) fields as a possible definition of SR source brightness. Such figure of merit
was originally introduced in the SR community by Kim. The brightness defined in
this way is always positive and, in the geometrical optics limit, can be interpreted as
maximum density of photon flux in phase space. For undulator and bending mag-
net radiation from a single electron, the WD function can be explicitly calculated.
In the case of an electron beam with a finite emittance the brightness is given by the
maximum of the convolution of a single electron WD function and the probability
distribution of the electrons in phase space. In the particular case when both elec-
tron beam size and electron beam divergence dominate over the diffraction size and
the diffraction angle, one can use a geometrical optics approach. However, there
are intermediate regimes when only the electron beam size or the electron beam
divergence dominate. In this asymptotic cases the geometrical optics approach is
still applicable, and the brightness definition used here yields back once more the
maximum photon flux density in phase space. In these intermediate regimes we
find a significant numerical disagreement between exact calculations and the ap-
proximation for undulator brightness currently used in literature. We extend the
WD formalism to a satisfactory theory for the brightness of a bending magnet.
We find that in the intermediate regimes the usually accepted approximation for
bending magnet brightness turns out to be inconsistent even parametrically.

Preprint submitted to 18 July 2014



1 Introduction

Ultra-relativistic electrons accelerated through magnetic fields generate elec-
tromagnetic radiation, called Synchrotron Radiation (SR). Emission from SR
sources may range from far infrared (FIR) to X-ray frequencies. The use of
proper physical quantities and figures of merit enable their adequate char-
acterization and deep understanding. The properties of a SR source are
usually described using three quantities: the spectral flux, the maximum of
the angular spectral flux and the brightness [1]-[22]. Among these quantities
the brightness 1 has a very important role.

The physical meaning of brightness can be best understood by considering
the imaging of the source on any experimental sample. Typically, only a
small fraction of the photons in the beam can be effectively focused. The
brightness is an appropriate figure of merit for estimating the photon flux
density on the sample, and was originally defined with the help of tradi-
tional radiometry. Traditional radiometry is based on a geometrical optics
approach. The basic quantity in this discipline is the radiance, which mea-
sures a spectral photon flux per unit area per unit projection solid angle.
Since the radiance can be evaluated at any point along a photon beamline,
it is associated with specific locations within an optical system, including
an image plane where, usually, an experimental sample is placed. All other
radiometric units can be derived from the radiance integrating over area or
solid angle. Integrating over the solid angle yields a spatial flux. Integrating
over the area yields the angular flux. Integrating over both area and solid
angle yields total flux [23, 24]. In this picture, the radiance is the photon flux
density in phase space. In non-dissipative cases where Liouville theorem
holds, the radiance is an invariant quantity down the photon beamline.

The main issue with this concept stems from the fact that traditional ra-
diometry only provides a natural description of the properties of light from
incoherent sources. Second generation SR sources are characterized by poor
transverse coherence, and application of the concept of radiance to SR allows
for phase space analysis of the X-ray radiation. For these sources the bright-
ness is nothing more than the radiance. However, with the advent of third
generation SR sources, electron beams began to have ultra-small emittances
and quantities used in traditional radiometry needed to be generalized to SR
sources of arbitrary state of transverse coherence. The question then arises
whether it is possible to find a definition of brightness that, irrespective of
the state of coherence of the SR source, has all properties that one normally

1 What we really refer to, here and in the following, with the term ”brightness”
is actually ”the spectral brightness” or ”the brilliance”. For simplicity though, we
will call it ”brightness” throughout the text.

3



associates with it in the geometrical optics limit.

The basic question concerning the characterization of third generation SR
sources is the definition of brightness in terms of electromagnetic fields,
and their statistical properties (i.e on the basis of classical relativistic elec-
trodynamics and statistical optics). We begin our discussion with the gen-
eralization of the brightness definition first proposed by Kim [3, 4], which
is essentially the Wigner distribution (WD) [25] of the SR electric field. In
[3, 4], the characteristics of the odd harmonics field from undulator sources
in resonance approximation was analyzed in detail using the WD formal-
ism. The WD was explicitly derived both in the diffraction limited regime
and in the electron beam size- and divergence-dominated regime. After
Kim’s pioneering papers [3, 4] no further theoretical progress was made. In
particular, the considerations by Kim [3, 4] on bending magnet and wiggler
brightness in terms of the WD formalism were not further developed into a
satisfactory theory.

In literature, the brightness of a SR source is sometimes defined as the
Wigner distribution itself, i.e. as a phase space quasi-probability function
[3, 4, 16, 19]. As such, for SR sources of arbitrary state of transverse coherence,
it is not guaranteed to be positive. Moreover it is convenient to introduce a
figure of merit which always gives back a single, positive number and can
serve, at the same time, as a measure for the WD. In this article we shall
define the brightness for any synchrotron source as the maximum value of
the WD. Note that the brightness defined in this way is always a positive
quantity. We can regard it as a self-evident generalization of Kim’s choice of
the on-axis peak value of the WD as a figure of merit for the undulator case
but, surprisingly, we failed to find it in literature 2 .

In the following of this section we present an introductory discussion of
brightness of synchrotron radiation sources in general. Then, in section
3 we give a summary of results in literature, and an overview of novel
findings. In section 4 we discuss an analysis of undulator brightness, and
of the approximations proposed by Kim [3, 4]. In the limiting cases where
the geometrical optics treatment can still be applied, but only the electron

2 Several alternative definitions of brightness can be found in literature, see e.g.
[13, 19]. Some of them are formulated in terms of integrals of the squared WD.
Others keep to the definition of brightness as the on-axis value of the WD. We will
not consider them here, as these are in contrast with the concept of brightness in
the geometrical optics limit, which stems from classical radiometry and coincides
with the maximum flux density in phase space. Formulating the theory of bright-
ness in the language of Wigner distributions has only one guideline, a particular
correspondence principle, which is based on the assumption that the formalism
involved in the calculation of the brightness must include radiometry as a limiting
case.
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beam size or the divergence dominate on the diffraction size and angle we
find a significant numerical disagreement between exact and approximated
calculations. In section 5 we come to the new results and extend the WD
formalism to a satisfactory theory of bending magnet brightness.

2 Wigner distribution and SR sources

As already discussed, we will focus on the description of a SR source in terms
of WD. We will be interested in the case of an ultra relativistic electron beam
going through a certain magnetic system. We will discuss of an undulator
to illustrate our reasoning, but the considerations in this section, being fully
general, apply to any other magnetic system (wiggler, bending magnet) as
well. SR theory is naturally developed in the space-frequency domain, as one
is usually interested into radiation properties at a given position in space at
a certain frequency. In this article we define the relation between temporal
and frequency domain via the following definition of Fourier transform
pairs:

f̄ (ω) =

∞∫
−∞

dt f (t) exp(iωt)↔ f (t) =
1

2π

∞∫
−∞

dω f̄ (ω) exp(−iωt) . (1)

We call z the observation distance along the optical axis of the system and
~r fixes the transverse position of the observer. The contribution of the k-th
electron to the field depends on the transverse offset~lk and deflection angles
~ηk that the electron has at some reference point on the optical axis z e.g. the
center of the undulator, that we will take as z = 0. Moreover, the arrival
time tk at position z = 0 has the effect of multiplying the electric field in
space-frequency domain by a phase factor exp(iωtk), ω being the frequency.
Any fixed polarization component of the total field in the space frequency
domain, which is a scalar quantity, can therefore be written as

Ētot(z,~r, ω) =

Ne∑
k=1

Ē(~ηk,~lk,~r, z, ω) exp(iωtk) , (2)

where ~ηk, ~lk and tk are random variables, and Ne is the number of electrons
in the bunch. Note that the single-electron field Ē in Eq. (2) is a complex
quantity, and can be written as Ē = Ak exp(iφk), with Ak > 0 and φk real
numbers. It follows that the SR field at a fixed frequency and position is a
sum of many phasors, one for each electron, of the form Ak exp(iφk + iωtk).
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Elementary phasors composing the sum obey three important statistical
properties, that are satisfied in all SR problems of interest. First, random
variables tk are statistically independent of each other, and of variables ~ηk

and ~lk. This assumption follows from the properties of shot noise in a stor-
age ring, which is a fundamental effect related with quantum fluctuations.
Second, the amplitudes Ak have obviously finite mean 〈Ak〉 and finite sec-
ond moment 〈A2

k〉. Third, we assume that the electron bunch duration σT is
large enough so that ωσT � 1. Under these non-restrictive assumptions the
phases ωtk can be regarded as uniformly distributed on the interval (0, 2π).
Moreover, with the help of the central limit theorem, it can be demon-
strated that real and imaginary parts of Etot are distributed in accordance to
a Gaussian law. It follows that SR is Gaussian random process. Moreover,
since one deals with pulses of finite duration, the process is intrinsically
non-stationary 3 . An important consequence of the fact that the SR random
process can be considered Gaussian is that higher-order correlation func-
tions can be expressed in terms of the second order correlation function with
the help of the moment theorem [26].

As a result, the knowledge of the second-order correlation function in the
space-frequency domain is all we need to completely characterize the signal
from a statistical viewpoint. The following definition holds:

Γω(z,~r1,~r2, ω1, ω2) = 〈Ētot(z,~r1, ω1)Ē∗tot(z,~r2, ω2)〉 , (3)

where brackets 〈...〉 indicate ensemble average over electron bunches. For
any given function w

(
~ηk,~lk, tk

)
, the ensemble average is defined as

〈
w

(
~ηk,~lk, tk

)〉
=

∞∫
−∞

d~ηk

∞∫
−∞

d~lk

∞∫
−∞

dtkw
(
~ηk,~lk, tk

)
P
(
~ηk,~lk, tk

)
, (4)

where integrals in d~lk and d~ηk span over all offsets and deflections, and
P = P(~ηk,~lk, tk) indicates the probability density distribution in the joint
random variables ~ηk, ~lk, and tk. The already discussed independence of tk

from~lk and ~ηk allows to write P as

P
(
~ηk,~lk, tk

)
= f⊥

(
~lk, ~ηk

)
f (tk) . (5)

Here f is the longitudinal bunch profile of the electron beam, while f⊥ is the
transverse phase space distribution.

3 Non-stationarity may or may not be detected, depending on the the monochro-
mator bandwidth in the actual setup.
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Substituting Eq. (2) in Eq. (3) one has

Γω =

〈 Ne∑
m,n=1

Ē
(
~ηm,~lm, z,~r1, ω1

)
Ē∗

(
~ηn,~ln, z,~r2, ω2

)
exp [i(ω1tm − ω2tn)]

〉
.

(6)

Expansion of Eq. (6) gives

Γω =

Ne∑
m=1

〈
Ē
(
~ηm,~lm, z,~r1, ω1

)
Ē∗

(
~ηm,~lm, z,~r2, ω2

)
exp [i(ω1 − ω2)tm]

〉
+

∑
m,n

〈
Ē
(
~ηm,~lm, z,~r1, ω1

)
exp (iω1tm)

〉 〈
Ē∗

(
~ηn,~ln, z,~r2, ω2

)
exp (−iω2tn)

〉
.

(7)

With the help of Eq. (4) and Eq. (5) one sees that the ensemble average
〈exp (iωtk)〉 is essentially the Fourier transform 4 of the longitudinal bunch
profile function f , that is

〈
exp (iωtk)

〉
=

∞∫
−∞

dtk f (tk) exp(iωtk) ≡ f̄ (ω) . (8)

Using Eq. (8), Eq. (7) can be written as

Γω =

Ne∑
m=1

f̄ (ω1 − ω2)
〈
Ē
(
~ηm,~lm, z,~r1, ω1

)
Ē∗

(
~ηm,~lm, z,~r2, ω2

)〉
+

∑
m,n

f̄ (ω1) f̄ (−ω2)
〈
Ē
(
~ηm,~lm, z,~r1, ω1

)〉 〈
Ē∗

(
~ηn,~ln, z,~r2, ω2

)〉
, (9)

where it is interesting to note that f̄ (−ω2) = f̄ ∗(ω2) because f is a real
function. When the radiation wavelengths of interest are much shorter than
the bunch length we can safely neglect the second term on the right hand
side of Eq. (9) since the form factor f̄ (ω) goes rapidly to zero for frequencies
larger than the characteristic frequency associated with the bunch length:
think for instance, at a millimeter long bunch compared with radiation in
the Angstrom wavelength range 5 . Therefore we write

4 Eq. (8) coincides with our definition of temporal Fourier transform, Eq. (1), but it
will not change if one uses another convention for the Fourier Transform definition.
5 When the radiation wavelength of interested is comparable or longer than the
bunch length, the second term in Eq. (9) is dominant with respect to the first, because
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Γω =

Ne∑
m=1

f̄ (ω1 − ω2)
〈
Ē
(
~ηm,~lm, z,~r1, ω1

)
Ē∗

(
~ηm,~lm, z,~r2, ω2

)〉
= Ne f̄ (ω1 − ω2)

〈
Ē
(
~η,~l, z,~r1, ω1

)
Ē∗

(
~η,~l, z,~r2, ω2

)〉
. (10)

As one can see from Eq. (10) each electron is correlated just with itself: cross-
correlation terms between different electrons was included in the second
term on the right hand side of Eq. (9), which has been dropped.

On the one hand, for an electron bunch with rms duration σT the character-
istic scale of f̄ is given by 1/σT. On the other hand, in all our cases of interest
Ē has a much slower dependence on ω than 1/σT. As a result, Ē does not
vary appreciably on the characteristic scale of f̄ 6 . We can therefore simplify
Eq. (10) to

Γω(z,~r1,~r2, ω1, ω2) = Ne f̄ (ω1 − ω2)G(z,~r1,~r2, ω1) (11)

where

G(z,~r1,~r2, ω) ≡
〈
Ē
(
~η,~l, z,~r1, ω

)
Ē∗

(
~η,~l, z,~r2, ω

)〉
(12)

is known as cross-spectral density. Before proceeding we introduce, for
future reference, the notion of spectral degree of coherence, g, that can be
presented as a function of ~r1 and ~r2 as

g(~r1,~r2) =
G(~r1,~r2)[

G(~r1,~r1)G(~r2,~r2)
]1/2 =

G(~r1,~r2)[
〈|Ē(~r1)|2〉〈|Ē(~r2)|2〉

]1/2 , (13)

where, for notational simplicity, we did not indicate the dependence of the
single particle fields on ~η,~l, z and ω. The function g is normalized to unity
by definition, i.e. g(~r,~r) = 1.

Eq. (11) fully characterizes the system under study from a statistical view-
point. Correlation in frequency and space are expressed by two separate

it scales with the number of particles squared: in this case, analysis of the second
term leads to a treatment of Coherent Synchrotron Radiation (CSR) phenomena. In
this paper we will not be concerned with CSR and we will neglect the second term
in Eq. (9), assuming that the radiation wavelength of interest is shorter than the
bunch length. Also note that f̄ (ω1 − ω2) depends on the difference between ω1 and
ω2, and the first term cannot be neglected.
6 SR radiation expands into the bandwidth ∆ω ∼ ω and ∆ω ∼ ω/Nw for bending
magnet sources and undulator sources, respectively. Here Nw is the number of
undulator periods. In all cases of practical interest ωσT/Nw � 1.
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factors. In particular, spatial correlation is expressed by the cross-spectral
density function under non-restrictive assumptions on the SR bandwidth
and on the bunch duration.

Among all possible SR sources, there exists an important class called quasi-
homogeneous. Quasi-homogeneity is nothing but the spatial analogue of
quasi-stationarity. In general, quasi-homogeneous sources are particular
class of Schell’s model sources [27]. Schell’s model sources are defined by
the condition that there is some position down the beamline, which we will
call z = 0 without loss of generality, such that their cross-spectral density
(note that Eq. (12) is defined at any position z down the beamline) is of the
form

G(r1, r2) = 〈|Ē(~r1)|2〉1/2〈|Ē(~r2)|2〉1/2g(~r1 − ~r2) . (14)

Equivalently, one may simply define Schell’s model sources using the condi-
tion that the spectral degree of coherence depends on the positions across the
source only through the difference ∆~r = ~r1−~r2. Quasi-homogeneous sources
are Schell’s sources obeying the extra assumption that 〈|Ē(~r)|〉2 varies so
slowly with position that it is approximately constant over distances across
the source, which are of the order of the correlation length, which is the
effective width of g(∆~r). Because of this, for quasi-homogeneous sources we
are allowed to make the approximation

G(~r,∆~r) = I(~r)g(∆~r) , (15)

where now I(~r) ≡ 〈|Ē(~r)|〉2 is proportional to the intensity distribution at the
source. By definition, quasi-homogeneous synchrotron sources obey a very
particular kind of random process that is spatially ergodic. Qualitatively, a
given random process is spatially ergodic when all ensemble averages can
be substituted by 2D space averages. Remembering this property one can
derive the expression for the spectral degree of coherence

g(∆~r) ∼
∫

Ē(~r)Ē∗(~r + ∆~r)d~r , (16)

which is the 2D autocorrelation function of a particular realization of the
total electric field Ē(~r) calculated at the source position. From this we come
to the conclusion, to be used in the following of this section, that the 2D
Fourier transform of g(∆~r) is always a positive quantity 7 .

7 The proof is based on the autocorrelation theorem, which states that the Fourier
transform of the 2D autocorrelation function of Ē0(x, y) as function of variables θx,
θy is given by |w(θx, θy)|2. Here w(θx, θy) is the Fourier transform of Ē(x, y) as a
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For our purposes it is preferable to express the cross-spectral density in
symmetrized form. We therefore introduce the new variables ~r, given by

~̄r ≡ (~r1 + ~r2)/2 , (17)

together with the previously defined difference ∆~r

∆~r ≡ ~r1 − ~r2 . (18)

We then have the inverse relations

~r1 = ~r + ∆~r/2 (19)

and

~r2 = ~r − ∆~r/2 . (20)

If we now change variables in Eq. (12) according to Eq. (17) and Eq, (18), we
find that the general expression for the cross-spectral density can be written
as

G(~r,∆~r) = 〈Ē(~r + ∆~r/2)Ē∗(~r − ∆~r/2)〉 . (21)

Let us consider a certain phase space distribution for an electron beam with
a given transverse phase space distribution f⊥(~l, ~η), which is a function of
offset~l and deflection ~η. At the source position one can write

G
(
~r,∆~r

)
=

∫
d~l d~η f⊥

(
~l, ~η

)
Ē
(
~l, ~η,~r +

∆~r
2

)
Ē∗

(
~l, ~η,~r −

∆~r
2

)
. (22)

Aside for a normalization constantA, the inverse Fourier transform of the
cross-spectral density with respect to ∆x and ∆y can be written as:

W(~r, ~θ) = A

∫
d∆~r G(~r,∆~r) exp

(
−iω~θ · ∆~r/c

)
. (23)

This is the expression for the Wigner distribution in terms of the cross-
spectral density. We regard it as a distribution function defined over the

function of the same variables θx and θy.
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four dimensions (~r, ~θ) and parameterized by z. Let us now specialize the
expression in Eq. (23) to the case when the source is quasi-homogeneous.
Since in that case the cross-spectral density function G can be factorized
into the product of intensity I(~r) and spectral degree of coherence g(∆~r), the
Wigner distribution function also factorizes as

W(~r, ~θ) = I(~r)I(~θ) , (24)

having recognized that I(~θ) is proportional to the Fourier transform of the
spectral degree of coherence g(∆~r), and can be identified with the angular
distribution of radiation intensity. Since the distribution W is the product of
two positive quantities, never assumes negative values, and it can always
be interpreted as a phase space distribution. This analysis shows that quasi-
homogeneous sources can always be characterized in terms of geometrical
optics. It also shows that in this particular case the coordinates in phase
space,~r and ~θ, are separable. In the case of non quasi-homogeneous sources
one can still define W using Eq. (23). It can be shown that W always assumes
real values. However, the Wigner distribution is not always a positive func-
tion. As a consequence, it cannot always be interpreted as a phase space
distribution. Yet, the integral over ~r and ~θ can be shown to be positive, and
therefore the maximum of the Wigner distribution is also bound to be posi-
tive, so that we can take this value as a natural definition for the brightness
of SR sources.

The basic properties of the Wigner distribution include statements about its
2D projections. If we make use of Eq. (23) we obtain the following expression
for the (x, y) projection:

∫
d~θ W(~r, ~θ) =

A

∫
d~θ

∫
d∆~r exp

(
−iω~θ · ∆~r/c

)
〈Ē(~r + ∆~r/2)Ē∗(~r − ∆~r/2)〉 . (25)

Changing the order of integration and using the fact that the integral of the
exponential function essentially results in a Dirac δ-function according to

∫
d~θ exp

(
−iω~θ · ∆~r/c

)
= (2π)2δ

(
−
ω∆~r

c

)
(26)

we see that

∫
d~θ W(~r, ~θ) = (2π)2 c2

ω2A

〈∣∣∣Ē(~r)
∣∣∣2〉 . (27)
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In the quasi-homogeneous limit, as we just discussed, W can be interpreted
as photon distribution in phase space. Then, for consistency with this limit,
one should require that integrating the Wigner distribution function over
the solid angle dΩ = d~θ yields the photon spectral and spatial flux density:

∫
d~θ W(~r, ~θ) =

dṄph

dS(dω/ω)
=

I
e~

c
4π2

〈∣∣∣Ē(~r)
∣∣∣2〉 , (28)

where I is electron beam current, e is charge of the electron taken without
sign, c is the speed of light in vacuum and ~ is the reduced Planck constant.
Here we have used Parseval theorem, and included an additional factor two
on the right-hand side of Eq. (28), indicating that we use positive frequencies
only. Comparison of the requirement in Eq. (28) with the mathematical
property in Eq. (27) fixes univocally the normalization constantA as

A =
c

(2π)4

I
e~

(
ω
c

)2

. (29)

Note thatAdepends on the units chosen (in this case Gaussian units) and on
our definition of Fourier transformation (Eq. (1)). The Wigner distribution
W is also univocally defined as

W
(
~r, ~θ

)
=

c
(2π)4

I
e~

(
ω
c

)2 ∫
d∆~r G(~r,∆~r) exp

(
−iω~θ · ∆~r/c

)
. (30)

In the quasi-homogeneous asymptotic case, the brightness is a conserved
quantity for perfect optical systems, and can be interpreted as maximum
density of photon flux in phase space 8 .

When one needs to specify the Wigner distribution or the cross-spectral
density at any position down the beamline, one needs to calculate the field
at any position down the beamline. In order to do so, we first calculate the
field from a single relativistic electron moving along an arbitrary trajectory
in the far zone, and then we solve the propagation problem in paraxial
approximation. This last step allows calculation of the field at any position
by backward-propagation in free-space with the help of the paraxial Green’s
function, that is the Fresnel propagator.

Suppose we are interested in the radiation generated by an electron and
observed far away from it. In this case it is possible to find a relatively simple

8 In the more general case of non quasi-homogeneous sources, the brightness is
conserved only in those cases where the evolution equation for W follows Liouville
equation. This is noticeably the case for free-space.
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expression for the electric field [28]. We indicate the electron velocity in units
of c with ~β(t), the Lorentz factor (that will be considered fixed throughout
this paper) with γ, the electron trajectory in three dimensions with ~R(t) and
the observation position with ~R0 ≡ (z0,~r0). Finally, we introduce the unit
vector

~n =
~R0 − ~R(t)

|~R0 − ~R(t)|
(31)

pointing from the retarded position of the electron to the observer. In the
far zone, by definition, the unit vector ~n is nearly constant in time. If the
position of the observer is far away enough from the charge, one can make
the expansion

∣∣∣∣~R0 − ~R(t)
∣∣∣∣ = R0 − ~n · ~R(t) . (32)

We then obtain the following approximate expression for the the radiation
field in the frequency domain 9 :

~̄E(~R0, ω) =−
iωe
cR0

exp
[ iω

c
~n · ~R0

] ∞∫
−∞

dt ~n ×
[
~n × ~β(t)

]
exp

iω t −
~n · ~R(t)

c

 ,
(33)

where (−e) is the negative electron charge. Using the complex notation, in
this and in the following sections we assume, in agreement with Eq. (1), that
the temporal dependence of fields with a certain frequency is of the form:

~E ∼ ~̄E(z,~r, ω) exp(−iωt) . (34)

With this choice for the temporal dependence we can describe a plane wave
traveling along the positive z-axis with

~E = ~E0 exp
( iω

c
z − iωt

)
. (35)

In the following we will always assume that the ultra-relativistic approxi-
mation is satisfied, which is the case for SR setups. As a consequence, the

9 For a better understanding of the physics involved one can refer to the textbooks
[19, 28]. A different constant of proportionality in Eq. (33) compared to textbooks is
to be ascribed to the use of different units and definition of the Fourier transform.
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paraxial approximation applies too. The paraxial approximation implies a
slowly varying envelope of the field with respect to the wavelength. It is
therefore convenient to introduce the slowly varying envelope of the trans-
verse field components as

~̃E(z,~r, ω) = ~̄E(z,~r, ω) exp (−iωz/c) . (36)

Introducing angles θx = x0/z0 and θy = y0/z0, the transverse components
of the envelope of the field in Eq. (33) in the far zone and in paraxial
approximation can be written as

~̃E(z0,~r0, ω) =−
iωe
c2z0

∞∫
−∞

dz′exp [iΦT]
[(

vx(z′)
c
− θx

)
~ex +

(
vy(z′)

c
− θy

)
~ey

]
,

(37)

where the total phase ΦT is

ΦT = ω

[
s(z′)

v
−

z′

c

]
+
ω
2c

[
z0(θ2

x + θ2
y) − 2θxx(z′) − 2θyy(z′) + z(θ2

x + θ2
y)
]
. (38)

Here vx(z′) and vy(z′) are the horizontal and the vertical components of
the transverse velocity of the electron, x(z′) and y(z′) specify the transverse
position of the electron as a function of the longitudinal position,~ex and~ey are
unit vectors along the transverse coordinate axis. Finally, s(z′) is longitudinal
coordinate along the trajectory. The electron is moving with velocity ~v,
whose magnitude is constant and equal to v = ds/dt.

Eq. (37) can be used to characterize the far field from an electron moving on
any trajectory. When the single-electron fields inside the ensemble average
brackets 〈...〉 are specified at a certain position z1, the fields at any other
position z2 can be found by propagating forward or backward in free-space
according to the paraxial law

Ẽ
(
~η,~l, z2,~r2, ω

)
=

iω
2πc(z2 − z1)

∫
d~r1 Ẽ

(
~η,~l, z1,~r1, ω

)
exp

 iω
∣∣∣~r2 − ~r1

∣∣∣2
2c(z2 − z1)

 .
(39)

In particular, one may decide to backpropagate the field even at positions
well inside the magnetic structure under study. In this case, the field distri-
bution is obviously virtual in nature, because it is not actually there, but it
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fully characterizes the radiation field from a single electron with given off-
set and deflection. Within the paraxial approximation, single-electron fields
are fully characterized when they are known on a transverse plane at one
arbitrary position z. Because of this, all positions z are actually equivalent.
As we will see there can be, however, a privileged position z = zs where the
electric field assumes a particularly simple form: at this position, in many
cases of practical interest including undulator and bending magnet radia-
tion, the field wavefront from a single electron is simply plane 10 . Without
loss of generality one can set zs = 0 for simplicity and call this the source
position. Then, the relation between the field from a single electron at the
source Ẽ

(
~η,~l, 0,~r, ω

)
and the field in the far zone, Ẽ

(
~η,~l, z0, ~θ, ω

)
, follows

once more from Eq. (39):

Ẽ
(
~η,~l, 0,~r, ω

)
=

iz0ω
2πc

∫
d~θ Ẽ

(
~η,~l, z0, ~θ, ω

)
exp

(
−

iθ2z0ω
2c

)
exp

 iω~r · ~θ
c


(40)

Ẽ
(
~η,~l, z0, ~θ, ω

)
=

iω
2πcz0

exp
(

iθ2z0ω
2c

) ∫
d~r Ẽ

(
~η,~l, 0,~r, ω

)
exp

− iω~r · ~θ
c


(41)

We assume that a plane wave traveling along the positive z-axis can be
expressed as in Eq. (35). Then, the negative sign in the exponential factor
exp(−iωz/c) in Eq. (36) determines the sign of the exponential in Eq. (39)
and consequently the sign of the exponential that appears in the integrand
in Eq. (41), which is the solution of the propagation problem in the far zone.
Returning to the definition of Wigner distribution, we see that in order to be
able to give a physical interpretation to the WD variables θx and θy as angles
of plane-wave propagation modes we must choose the same (negative) sign
in the exponential that appear in Eq. (23) and in the integrand in Eq. (41).

If we insert Eq. (22) into Eq. (30) we will obtain the most general expression
for the Wigner distribution, accounting for a given phase space distribution
of the electron beam. There are practical situations when offset and deflec-
tion of an electron lead to the same offset and deflection of the radiation
beam from that electron. This is the case for undulator and bending magnet
setups without focusing elements. In such situations, the expression for the
Wigner distribution can be greatly simplified. The presence of an electron

10 In the undulator this position is just in the middle of the setup. In the bending
magnet case it is at the point of the trajectory tangent to the z axis.
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offset ~l shifts the single-electron field source, while a deflection ~η tilts the
source. Therefore

Ẽ
(
~l, ~η, 0,~r, ω

)
= Ẽ0

(
~r −~l

)
exp

[
iω~η ·

(
~r −~l

)
/c

]
(42)

where we set Ẽ0
(
~r
)
≡ Ẽ

(
0, 0, 0,~r, ω

)
. Note that, due to duality between source

and far zone plane, an electron offset tilts the single-electron far-zone field,
while a deflection shifts the beam angle offset according to:

Ẽ
(
~l, ~η, z0, ~θ, ω

)
= ẼF

(
~θ − ~η

)
exp

[
−iω~l · (~θ − ~η)/c

]
(43)

where we set ẼF

(
~θ
)
≡ Ẽ

(
0, 0, z0, ~θ, ω

)
.

From Eq. (42) one obtains

G
(
~r,∆~r

)
=

∫
d~l G0

(
~r −~l,∆~r

) ∫
d~η f⊥

(
~l, ~η

)
exp

(
iω~η · ∆~r/c

)
(44)

where G0(~r,∆~r) ≡ E0(~r + ∆~r/2)E∗0(~r − ∆~r/2).

A very useful addition theorem [3] can then be obtained from direct calcu-
lations:

W
(
~r, ~θ

)
=

∫
d~ld~η W0

(
~r −~l, ~θ − ~η

)
f⊥

(
~l, ~η

)
(45)

with W0 defined as the Wigner distribution associated to G0. This can be
summarized by saying that that electron offset and deflection correspond to
an offset in position and angle of the corresponding Wigner distribution W0,
and that the overall Wigner distribution W can be found by addition over
single-electron contributions. We will apply this knowledge to the special
cases of undulator and bending magnet sources respectively in section 4
and section 5. Before that, in the next section we will present a summary of
previous results and an overview of novel findings.
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3 Overview and early results

3.1 Undulators

It is helpful to start our investigations by examining the brightness for
quasi-homogenous sources. The simplest case study is the undulator source.
Here we take advantage of the particular but important situation of perfect
resonance, when the undulator field can be presented in terms of analyti-
cal functions. Moreover, we will consider the practical case of a Gaussian
electron beam, which yields further analytical simplifications. In the quasi-
homogeneous case of beam size- and divergence-dominated regime, the
undulator brightness at the fundamental harmonic is easily shown to be

B =
F

4π2εxεy
. (46)

where F is the total spectral photon flux, and εx,y are the rms geometrical
electron beam emittance in the horizontal and vertical directions. Usually
the electron beam waist is located in the middle of the undulator, where
εx,y = σx,yσx′,y′ , with σx,y the electron beam rms sizes and σx′,y′ the electron
beam rms divergences at that position. Therefore one obtains the well-
known expression

B =
F

4π2σxσyσx′σy′
. (47)

This result has, of course, a very simple physical interpretation in terms of
maximum density of photon spectral flux in phase space. In fact, in the beam
size- and divergence-dominated regime the photon beam can be modeled
as a collection of rays with the same phase space of the electron beam, and
also the photon beam has its waist in the middle of the undulator. Another
way of stating the same concept is by saying that the radiation source is
located in the middle of the undulator. One word of caution should be
spent commenting this last result. From beam dynamics considerations it is
known that, if focusing elements are absent, the beam size varies along the
undulator like

σ2
x,y(z) = σ2

x,y + z2σ2
x′,y′ , (48)

where −L/2 < z < L/2 is the distance from the waist, with L is the undulator
length. The average beam size along the undulator length is then
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〈σ2
x,y〉 = σ2

x,y +
L2

12
σ2

x′,y′ . (49)

Textbook [18] regards Eq. (49) as a clear evidence of the fact that our un-
dulator source possesses a finite longitudinal dimension: the size of this
extended source changes along the undulator, and this effect tends to in-
crease the effective source size and reduce the undulator brightness, as one
can see from the average beam size Eq. (49), which is larger than that at the
waist. However, this is a misconception because, according to the electrody-
namics of ultrarelativistic charged particles, the source size is not widened
at all, which is demonstrated by the fact that Eq. (47) for the brightness only
includes the electron beam size at the waist.

As discussed before, our source, placed in the middle of the undulator,
is obviously virtual in nature. However, it is no mathematical abstraction.
Synchrotron radiation is often used to measure the size of the electron
beam. For example, in the electron beam size-dominated regime, undulator
radiation can be used to form an image of the cross-section of the electron
beam. We can take a single focusing mirror of focal length f = z1/2 at
distance z1 from the source to form a 1 : 1 image at the same distance z1

downstream of the lens. We can set the object plane at the undulator center.
If, for example, the resolution is limited by diffraction effects only, the rms
size of the image will be equal to the rms of the electron beam size at the
waist, and it is not affected by variations of the parabolically shaped beta
function along the undulator. This image is also a visualization of the virtual
source.

We should remark that statistical optics is the only mean to deal, in general,
with the stochastic nature of SR. Only in those particular cases when SR
can be treated in terms of geometrical optics beamline scientists can take
advantage of ray-tracing techniques. One of these cases is described above
for the electron beam size- and divergence-dominated regime.

In all generality, in order to decide whether geometrical optics or wave op-
tics is applicable, one should separately compare the electron beam sizes
and divergences at the electron beam waist position 11 with the radiation
diffraction sizes and diffraction angles, which are quantities pertaining the
single-electron radiation. When at least the electron beam size or diver-
gence dominates, one can use a geometrical optics approach. As we have
seen, quasi-homogeneity is a necessary and sufficient condition for geomet-
rical optics to be used in the representation of any SR source. A source is

11 They could be actually compared at any position down the beamline. Here,
however, we present an analysis for the source position only, where the radiation
wavefront from a single electron is plane.
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quasi-homogeneous if and only if it is possible to factorize the cross-spectral
density G in the product of two factors separately depending on ~r and ∆~r.
For example, in the particular case when the electron beam size dominates
over diffraction, the cross-spectral density G (and hence also the Wigner
distribution) admits factorization, and the source can still be described with
the help of geometrical optics even if the divergence is dominated by diffrac-
tion effects: in that case, since the source is quasi-homogeneous, the Fourier
transform of the spectral degree of coherence g(∆~r) yields a diffraction lim-
ited intensity distribution in the far zone 12 .

According to our definition, when we can treat SR in terms of geometri-
cal optics, the brightness is always the maximum of the phase space den-
sity of the photon beam. In the beam size-dominated or beam divergence-
dominated limits, the undulator brightness can be determined analytically
yielding the following cases (see section 4 for details) :

• Beam divergence-dominated regime, for σ2
x′,y′ � o/L, σ2

x,y � oL. In this
case

B =
F

2σx′σy′λL
(50)

• Beam size-dominated regime, for σ2
x,y � oL, σ2

x′,y′ � o/L. In this case

B =
FL

2π2σxσyλ
(51)

Having dealt with quasi-homogeneous sources we now turn our attention to
diffraction limited undulator sources. In the case of a zero-emittance electron
beam, the undulator brightness can also be determined analytically yielding

B =
4
λ2 F . (52)

In literature it is often noted that the λ2/4 factor is the volume of a diffraction
limited beam in the photon phase space 13 . The numerical factor four is
dictated by the normalization condition Eq. (28) and by the axial symmetry
properties of undulator radiation at the fundamental harmonic. This point
is discussed more in detail in [19].

The following expression (originally proposed by Kim in [3]) is the usual
estimate of the undulator brightness:

12 This statement pertains the symmetry between spatial and angular domain, and
can be seen as the inverse of the van Cittert-Zernike theorem.
13 Although, strictly speaking, one cannot talk of phase space for a diffraction
limited beam.
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B =
F

4π2

1
[(σ2

x + σ2
r )(σ2

y + σ2
r )(σ2

x′ + σ
2
r′)(σ

2
y′ + σ

2
r′)]1/2

. (53)

Eq. (53) can be obtained by approximating the radiation from a single elec-
tron by a Gaussian laser mode with rms divergence and source size σr′ and
σr. Then, one can use the addition theorem to obtain the brightness for a
beam of electrons. The integral in Eq. (45), in this case, is a convolution of
two Gaussian functions. For large electron beam emittances, this expression
is in agreement with the geometrical optics limit pertaining to the beam
size- and divergence-dominated regime, Eq. (47). Once the electron sizes
and divergences are fixed, in Eq. (53) there are still two independent param-
eters, σr and σr′ . In [3], these two parameters are chosen in such a way that
the diffraction limit in Eq. (52) is satisfied. This leaves only one degree of
freedom to be fixed. In other words, according to Eq. (53), when the product
σrσr′ is fixed, there is only one adjustable parameter to be fitted to the exact
result for the brightness 14 in the beam divergence-dominated regime, Eq.
(50), and in the beam size-dominated regime, Eq. (51). In [3] the following
definition fixes both the degrees of freedom available in Eq. (53):

σr =

√
λL

4π
,

σr′ =

√
λ
L
. (54)

Such choice has also been adopted in some articles [6, 7] and books [16, 21].
The approximate Eq. (53), together with the definitions in (54), gives a
qualitative agreement with exact results in all geometrical optics limiting
cases, but detailed quantitative agreement is, in some case, rather poor. In
particular, it should be remarked that the approximate expression in Eq.
(53) overestimates the exact value of the brightness by eight times in the
beam divergence-dominated regime, Eq. (50), and underestimates it by two
times in the beam size-dominated regime, Eq. (51). However, it should be
noted that the choice of σr and σr′ in (54) is not the optimal choice 15 for the
approximation in Eq. (53). In fact, the previous remark indicates that larger

14 In the case of third generation light sources, one always hasσ2
x � σ2

r andσ2
x′ � σ2

r′ .
In this case, the geometrical optics limit is reached forσ2

y � σ2
r orσ2

y′ � σ2
r′ . In section

4.4 we will show that for both these asymptotes Eq. (53) is in disagreement with
the exact result.
15 In literature one can also find reasonable arguments in favor of the choice (54), see
e.g. [8]. The point here is that the exact expressions Eq. (50), Eq. (51) are novel results
that we could not find in literature. Because of this, only now we can optimize the
last degree of freedom in Eq. (53) by comparing the approximated expression with
the exact results.
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values of σr and smaller values of σr′ should be chosen. More quantitatively,
choosing

σr =

√
2λL
4π

,

σr′ =

√
λ
2L

(55)

we can obtain perfect numerical agreement with the exact result for the beam
size-dominated regime Eq. (51) and an overestimation of a factor four in the
beam divergence-dominated regime, Eq. (50). The choice of parameters in
(55) was first introduced in [5] and is used, nowadays, in most calculations
exploiting the approximate Eq. (53) [18, 19, 14].

3.2 Bending magnets

Up to this point our analysis followed, in its general lines, the one given
by Kim in [3]. As the next step we turn to consider the brightness from
bending magnets, which was not described, up to now, in a satisfactory
way within the formalism of the Wigner distribution. This problem is still
under discussion from the early days of SR theory [1, 2, 3, 6, 9], and it is
reflected in the fact that many textbooks devoted to SR theory, like e.g. [18],
do not discuss the brightness from bending magnets. Other books like [17]
discuss only the geometrical limit, and [22] presents a qualitative treatment.
Only [19, 21] try to give a complete analysis of the problem. Part of the
difficulty of applying the concept of brightness to the bending magnet case
can be traced back to attempts using a mixture of intuitive geometrical optics
and wave optics considerations, instead of exact results as was done in the
undulator case. A typical example of such intuitive description can be found
in [21]: ”To calculate the bending magnet brightness we need to consider
the effective phase space which the photon flux is being emitted taking into
account of both the finite electron and photon beam sizes and divergences.
First, there is no need to consider any horizontal angle effects as the light
is emitted smoothly over the full horizontal 2π radians”. A quantitative
definition of bending magnet brightness according to [21] is then given by

B =
dF
dθx

1
(2π)3/2ΣxΣyΣy′

, (56)

where dF/dθx is the photon flux per unit horizontal angle (on the bending
plane). The effective horizontal and vertical source size and effective vertical
divergence are then calculated to be
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Σx =

√
σ2

x + σ2
r ,

Σy =
√
σ2

y + σ2
r ,

Σy′ =
√
σ2

y′ + σ
2
r′ , (57)

where the vertical opening angle σr′ may be determined from the equal-
ity (2π)1/2σr′(dF/dΩ)|θy=0 = dF/dθx, (dF/dΩ)|θy=0 being the on-axis photon flux
density per unit solid angle [21]. Since, usually, only the horizontal polariza-
tion component of SR radiation from a bending magnet is important, here
we discuss SR beam brightness only for the Ex electric field component.

Using this method, considering the horizontally-polarized component of the
field one finds that σr′ = 0.67/γ at the critical wavelength λ = λc = 2πR/γ3,
where R is the radius of curvature of the electron orbit in the bending
magnet 16 . Similarly to the undulator case, the angular divergence and
source size for the radiation emitted by a single electron is chosen to sat-
isfy 2πσrσr′ = λ/2. It is instructive to examine this expression in diffraction
limited case. From Eq. (56) we then find

B =
2
λ

dF
dθx

1
√

2πσr

=
4
λ2

dF
dθx

√

2πσr′ . (58)

If the horizontal opening angle of the beamline, that is the half-angle sub-
tended by the aperture in horizontal direction θa, is larger than σr′ , then
the flux increases proportionally to θa. However, in the limit for θa � σr′

the brightness becomes independent of the beamline opening angle. It is
often noted that the factor λ2/4 is the minimal phase space volume of a
diffraction limited beam. Therefore one can summarize by saying that SR
emitted from a bending magnet within a solid angle of order σ2

r′ occupies
the minimal phase space volume λ2/4. The physical interpretation of the
effect mentioned above can be found, among other references, in the review
paper [12], where the brightness of the radiation from a bending magnet
is described in the language of geometrical optics. This language is intrin-
sically inadequate to describe the focusing of diffraction-limited radiation
from a bending magnet. In fact, this physical phenomenon fully pertains
wave optics. It is however possible to use geometrical optics reasoning and
obtain an intuitive understanding of the situation. Later on in this work
we will show that such intuitive understanding is in qualitative agreement

16 Our definition of critical wavelength does not match the conventional definition
introduced in textbooks, see e.g. [17]. The numerical factor (our critical wavelength
is 3/2 times longer) has been chosen so that this is a convenient combination to
be used in section 5 for dimensional analysis of SR from a bending magnet in the
space frequency domain.
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with an analysis fully based on wave optics. A complication in determining
the brightness is the correlation between the longitudinal position of the
source along the bending magnet and the (horizontal) angle of observation
in the far zone. An important parameter that is required to calculate the
brightness is the source area. In general, citing [12] almost literally: ”there
are three contributions to the horizontal source size and these are (1) the
intrinsic size of the electron beam itself (in our notation σx); (2) the projected
(observed) size due to the large horizontal sweep angle θa, leading to an
extended source (equal to the sagitta Rθ2

a/8 ); and (3) the diffraction limited
source size. We can estimate the diffraction limited source size as λ/θa”. The
effective source size is then found by adding the three sizes in quadrature,
thus

Σx =
[
σ2

x + (Rθ2
a/8)2 + λ2/θ2

a

]1/2
. (59)

Finally, it is worth emphasizing that if the horizontal opening angles θa is
larger than the diffraction angle σr′ , the projected source size increases more
rapidly (∼ θ2

a) than the flux (∼ θa) [12].

In literature one can often find that the brightness is strictly linked to trans-
verse coherence properties of the radiation and that the coherent flux Fcoh

can be defined as

Fcoh =
λ2

4
B . (60)

Note that the common understanding that the coherence flux available after
spatial filtering can always be written as Eq. (60) is erroneous. For exam-
ple, as we discussed above, the brightness of the radiation from a bending
magnet in the diffraction limited case is constant when θa is larger than the
diffraction angle σr′ . However, in this situation the coherent flux increases
proportionally to the horizontal opening angle θa. In fact, the entire photon
flux collected from a diffraction limited source is fully transversely coher-
ent. A Young’s double pinhole interferometer can be used for demonstrating
this fact. In the case of a diffraction limited source, the interference pattern
recorded by the interferometer is always characterized by a 100% fringe
contrast.

The physical meaning of brightness can be best understood by considering
the imaging of the source on an experimental sample. Radiation is usually
concentrated by using a wide-aperture focusing optical system. The bright-
ness is a figure of merit that quantifies how well a SR beam can be focused.
For this purpose one considers an ideal optical system. In fact, in general,
the maximum photon flux density onto the image plane is altered by optical
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elements along the setup. We may interpret the brightness B as the theoret-
ical maximum concentration of the SR photon flux on the image-receiving
surface where, usually, the sample is placed.

The source size can be affected by the presence of a finite electron beam. It is
often noted that the coherent part of the total flux can be ultimately focused
down to a spot-size of dimension λ2/4. Such consideration thus leads, at
least qualitatively, to the relation between brightness and coherent fraction
of total flux given by Eq. (60). It is clear that even a fully coherent beam
can be of ‘bad quality’ in the sense that a only small fraction of photons in
the beam can be focused to a spot-size of dimension λ2/4. This is the case
when the radiation source is characterized by a complicated wavefront,
which has an effect similar to optics abberation, when there is a departure
of the far field wavefront from the ideal spherical form. Then, one cannot
reach an effective focusing on the sample even in the diffraction limited
case. It is well-known that, in general, there are two different characteristics
of the radiation beam. The first one is the degree of transverse coherence
ξ = Fcoh/F, which reflects the statistical properties of radiation fields [15].
The second one is the well-known M2 factor, which is widely used in the
laser community to quantify how well a deterministic laser beam can be
focused [29]. The diffraction-limited photon beam from an undulator has an
M2 factor close to unity and Eq. (60) is correct. At variance, the diffraction-
limited photon beam from a bending magnet has an M2 factor close to unity
only within a solid angle of about σ2

r′ . The brightness is a useful figure of
merit that incorporates, simultaneously, both the statistical properties and
the wavefront qualities of the radiation pulse.

When the electron beam has zero emittance we are dealing with perfectly
coherent wavefronts. Intuitively, in this situation one would apply methods
from wave optics in order to solve the image formation problem. At vari-
ance, in literature it is often discussed an estimation of the source size for
the case of diffraction limited radiation from a bending magnet based on
geometrical optics [1, 2, 6, 9, 12]. A situation where one deals with a similar
problem is in the calculation of a laser beam focus through a lens, when
severe aberrations are present. Although the laser beam is coherent, when
diffraction effects are negligible compared to aberration effects, the beam fo-
cusing can be calculated with the help of geometrical optics considerations.
In the geometrical optics limit, the wave equation can be replaced with the
Eikonal equation, which should be solved for surfaces of equal phase. Once
the function of equal phase is known, one can apply usual ray-tracing tech-
niques remembering that rays are, at any point, normal to the surface with
equal phase. The similarity between the two situations is highlighted by the
essential feature of a diffraction limited SR beam from a bending magnet:
at beamline opening angles θa � σr′ wavefront ‘aberrations’ are present in

24



the sense discussed above 17 , and are severe, meaning that M2
� 1. There-

fore, a geometrical optics approximation, leading in particular to ray-tracing
techniques, can be applied to the analysis of the image formation problem.

Before proceeding we should make a few remarks concerning the termi-
nology used in relation to brightness treatments. The theory of brightness
for a bending magnet is much more difficult than that for an undulator.
One can now see a net distinction between the geometrical optics limit in
the framework of statistical optics when one discusses about an incoherent
(i.e. quasi-homogeneous) SR source and the geometrical optics limit in the
framework of coherent Fourier optics, when one discusses about highly
‘aberrated’ beams radiated from a single electron in the bending magnet
setup. An example where terminology is not accurately used can be found
in [3]: ”Let us now turn to a more rigorous derivation of the source bright-
ness of the synchrotron radiation due to a single electron. ... According to
Eq. (31), photons are emitted incoherently in the tangential direction at each
point of the trajectory”. It should be clear that one can talk about ‘incoher-
ently emitted’ photons only in the framework of statistical optics, when one
deals with SR as random process. In the case of a single electron case we are
always dealing with coherently emitted photons at each point of the trajec-
tory. Actually, the discussion in [3] must be understood as an application
of the geometrical optics approximation to the bending magnet radiation
from a single electron in the case of large open angle, i.e when wavefront
‘aberrations’ effects are dominant compared to diffraction effects.

Up to this point our analysis of bending magnet brightness has followed
that given in reviews [2, 12] and books [19, 21] on SR theory. It is now in-
structive to consider our approach, and examine its results in the diffraction
limited case. With our definition of brightness we do not need to worry
about how to account for the effect of SR beam ‘aberrations’. In fact, the es-
sential feature of our method is that we derive the brightness of a diffraction
limited SR beam from the expression for the maximum Wigner distribution.
Clearly, the brightness defined in this way automatically includes a factor
that characterizes the possibility of focusing the SR beam.

Let us indicate with B0 the brightness given by the approximated expression
Eq. (58). Mathematically, our calculation is based on Eq. (30). One obtains
that the bending magnet brightness in the diffraction limited case is given
by B0 times a function which contains the only variable λc/λ. In particular,
at λ = λc the exact result for B = max(W) is

17 In the particular case of bending magnet radiation from a single electron, for a
beamline opening angle θa � σr′ , departure of the far field wavefront from the
ideal spherical form can be considered as a coma-like aberration.
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B = 1.90B0 . (61)

The approximated result that can be obtained from Eq. (58) is naturally
different from the exact one, although the difference is not large. However,
the fact remains that, at variance with the approximated case for undulator
brightness, the usual estimate for the brightness of radiation from a bending
magnet does not coincide with the exact result in the limit for a zero beam
emittance. The best way to avoid this kind of difficulties is to use the Wigner
function formalism as in the undulator case. Only in this way it is possible
to give an expression for the brightness of radiation from a bending magnet
that is logically consistent and a directly applicable formulation that can be
used by SR beamline scientists.

The most serious objection to approximation in Eq. (56) is that this expression
does not include the electron beam divergence in the horizontal direction.
In fact, this is in contrast with results obtained within the Wigner function
formalism. In this respect, let us examine Eq. (56) in the following limiting
case of beam divergence-dominated regime:

σ2
x � σ2

r ,
σ2

y � σ2
r ,

σ2
x′ � σ2

r′ ,
σ2

y′ � σ2
r′ . (62)

Eq. (56) simplifies to

B =
dF
dθx

1
(2π)3/2σ2

rσy′
, (63)

which can also be written as

B = B0
σr′

σy′
. (64)

Here B0 is given, as before, by Eq. (58). The contrast with the result obtained
by exploiting the Wigner function formalism can be seen by a straightfor-
ward application of Eq. (30), which yields, in the same notations (at λ = λc):

B = 2.45B0
σr′

σx′

σr′

σy′
. (65)

The horizontal electron beam divergence is a problem parameter. We de-
duced this result by applying a rigorous mathematical method, without any
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intuitive arguments. An intuitive way of understanding this property is to
recall that due to wavefront ‘aberrations’, one has an M2 factor close to unity
only when considering radiation from a single electron emitted around the
axis within a solid angle of about σ2

r′ . Suppose that the electron beam has
a divergence characterized by σ2

x′ � σ2
r′ and σ2

y′ � σ2
r′ . In this case, from

geometrical considerations it is evident that only a photon flux of order of

(
dF
dΩ

)
|θy=0

σ2
r′
σr′

σx′

σr′

σy′
(66)

can, in principle, be focused down to area an area of order λ2. Therefore,
the maximum photon flux density in phase space is proportional to the
ratio of the flux in (66) and an effective phase space volume of order λ2. We
thus deduced the parametric dependence of the bending magnet brightness
in the limiting case (62) by means of intuitive arguments, which are in
agreement with the rigorous mathematical derivation of Eq. (65) found
within the Wigner function formalism.

One can see that on the one hand the intuitively reasonable idea that there
is ”no need to consider any horizontal angle effects as the light is emitted
smoothly over full horizontal angle of 2π radians” [21] can lead to incorrect
results. On the other hand, however, other intuitive arguments are in agree-
ment with the Wigner function formalism. Only the existence of a rigorous,
exact mathematical method guarantees a well-defined physical meaning for
the brightness of a bending magnet.

Another argument that disqualifies Eq. (56) as an approximation for bending
magnet brightness follows from another comparison with exact results. In
the beam size and divergence-dominated regime when σ2

x � σ2
r , σ2

y � σ2
r ,

σ2
y′ � σ2

r′ and at arbitrary beam divergence in horizontal direction Eq. (56)
yields:

B =
dF
dθx

1
(2π)3/2σxσyσy′

. (67)

This last expression can be written as

B = B0
σr

σx

σr

σy

σr′

σy′
. (68)

Let us now consider rigorous calculations with the help of the Wigner func-
tion formalism. As we discussed above, the beam size- and divergence-
dominated regime is the simplest geometrical optics asymptote for the un-

27



dulator case. On the contrary, for a bending magnet, it is the most com-
plicated case to be treated analytically. Intuitively we certainly expect that
in this asymptotic limit there should be a competition between effects re-
lated with partial coherence (since σ2

x � σ2
r ) and what we called ‘aberration’

effects (since σ2
x′ � σ2

r′). Detailed mathematical analysis confirms such ex-
pectation. It can be seen that in this case, depending on the specific ratio
between horizontal beam size and divergence, the brightness is described
using functions with completely different parametric dependence. In partic-
ular, Eq. (68) turns out to be parametrically inconsistent when the condition
(σx′/σr′)2

� σx/σr is satisfied.

It is interesting to see that intuitive and rigorous approaches coincide, at
least in the limit when

σ2
x � σ2

r ,
σ2

y � σ2
r ,

σ2
y′ � σ2

r′ ,

σy′ � σ2
r′ . (69)

In fact, in this quasi-homogeneous case of beam size-dominated regime,
which is typical for SR facilities in the X-ray wavelength range, from our
definition of brightness we find

B =

(
dF
dΩ

)
|θy=0

1
2πσxσy

. (70)

With the help of simple algebra one can show that the brightness approxi-
mated by Eq. (56) actually coincides with Eq. (70).

3.3 Discussion

Although we can always find the brightness by a rigorous mathematical
method following the Wigner function approach, it is sometimes possible
to get exact results such as Eq. (70) without any calculation. The reasoning
leading to such result is based on the fact that in the beam size-dominated
regime the brightness is the product of the maximum angular flux density
from a single electron and the maximum electron density at the source
position. In other words, as already discussed, in the particular case of
a quasi-homogeneous source, the brightness can always be interpreted in
terms of geometrical optics, and the coordinates in phase space are separable
(see Eq. (24)). The brightness is therefore a product of two positive quantities,
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Eq. (70). The expression for the photon angular flux density radiated by a
single electron in a bending magnet is well known and can be found in any
textbook devoted to SR theory.

The arguments we have just given for the bending magnet case can be ap-
plied to the undulator case as well. Assuming a beam size-dominated regime
and remembering the definition of brightness in the quasi-homogeneous
limit as the maximum of the phase space photon flux density, one gets im-
mediately that Eq. (70) gives the exact result Eq. (51). With this, we point out
an interesting fact about the angular flux density dF/dΩ for the undulator
radiation. If one calculates the total flux F integrating over the solid angle,
one obtains the relation max(dF/dΩ) = (L/λ)(F/π), where max(dF/dΩ) is the
on axis angular flux density in the diffraction limited case.

We can generalize the method for finding an exact result without any calcula-
tions to the asymptotic case where only the beam divergence is dominating.
From the above analysis it is not hard to see that the brightness in this limit
is given by the product of the maximum angular flux density of the electron
beam and the maximum photon flux density radiated from a single electron
at the source position. In other words, when conditions (62) hold, for the
divergence-dominated case we obtain in analogy with Eq. (70):

B = max
(

dF
dS

)
1

2πσx′σy′
, (71)

where max(dF/dS) is the maximum photon flux density on the source in the
diffraction limited case.

With Eq. (71) we can calculate the bending magnet brightness in the beam
divergence-dominated regime at any wavelength. All we need is an explicit
expression for dF/dS. In contrast with the function dF/dΩ in Eq. (70), which
is well-known, dF/dS function is much less known. In the undulator case, to
the authors’ knowledge, the only paper dealing with this issue is [30]. For
the bending magnet case, we failed to find, in literature, an expression for
dF/dS. An explicit formula for dF/dS is derived in section 5 of this article.

The previous analysis of the electron beam size- or divergence-dominated
regime suggests an interesting question, whether it is always possible, in the
geometrical optics limit, to deduce exact results for brightness without any
calculations. The answer is negative. We could predict Eq. (70) and Eq. (71)
based on intuitive grounds, and careful mathematical analysis confirms the
expectation both for undulator and bending magnet cases. Let us now con-
sider the case when electron beam size and divergence dominate. Following
intuitive arguments, the brightness should be proportional to the maximum
of the electron beam density in phase space. From the analysis done above
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it is clear that this expectation is confirmed in the undulator case (see Eq.
(47)). However, as described in section 5, for a bending magnet in the beam
size- and divergence-dominated regime the brightness is never inversely
proportional to the product σxσx′ . The theory of brightness for a bending
magnet is much more difficult than that for an undulator, and only our exact
mathematical method automatically includes all features that describe the
possibility of focusing the SR beam.

4 Undulator brightness

We now focus on particular realizations of SR sources of practical interest. In
particular, in this section we consider the theory of brightness for undulator
sources. Traditionally, all textbooks devoted to SR theory start discussing
the characteristics of radiation from dipole magnets. Only after a detailed
study of this case they deal with other advanced topics like undulators. In
this way, the discussion follows the historical development of the subject,
where undulators are presented as a logical extension of dipole magnets.
However, the theory of bending magnet radiation is much more difficult
than that of undulators. Therefore, here we choose to discuss undulators
first. We take advantage of the particular but important situation of per-
fect resonance, when the polarization direction does not depend on the
observation angle and simply reproduces the polarization direction of the
undulator field. In the far zone, undulator radiation from a single electron
exhibits a finite divergence and a spherical wavefront centered in the mid-
dle of the setup. In contrast, bending magnet radiation is emitted over the
entire horizontal angle of 2π radians and, moreover, the state of polarization
of the radiation depends on the observation angle and does not exhibit an
ideal spherical wavefront in the far zone. These difficulties are reflected in
the fact that bending magnet brightness was never described, up to now,
in a satisfactory way within the Wigner distribution formalism. In particu-
lar, in the usually accepted approximations, the description of the bending
magnet brightness turns out to be inconsistent even qualitatively. At vari-
ance, the analysis of undulator brightness given by Kim was based from
the very beginning on the Wigner distribution formalism. This is reflected
in the fact that the approximations he uses for describing the brightness are
parametrically consistent with all exact results. However, here we report
numerical disagreement between exact results and approximated results in
three geometrical optics limits where the brightness is nothing more than
the maximum of the radiance, which is the photon flux density in phase
space.
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4.1 Radiation field in the space-frequency domain

We consider a planar undulator, so that the transverse velocity of an electron
can be written as

~v⊥(z) = −
cK
γ

sin (kwz)~ex , (72)

where kw = 2π/λw with λw the undulator period and K the undulator pa-
rameter

K =
λweHw

2πmec2 , (73)

me being the electron mass and Hw being the maximum of the magnetic field
produced by the undulator on the z axis.

We will assume, for simplicity, that the resonance condition with the funda-
mental harmonic is satisfied. In this way, our treatment leads to an analytical
description of undulator radiation at the source position, i.e. in the middle
of the undulator, at z = 0. The resonance condition with the fundamental
harmonic is given by

ω
2γ2c

(
1 +

K2

2

)
=

2π
λw

. (74)

A well-known expression for the angular distribution of the first harmonic
field in the far-zone (see Appendix A for a detailed derivation) can be
obtained from Eq. (37). Such expression is axis-symmetric, and can therefore
be presented as a function of a single observation angle θ, where

θ2 = θ2
x + θ2

y , (75)

θx and θy being angles measured from the undulator z-axis in the horizontal
and in the vertical direction. One obtains the following distribution for the
slowly varying envelope of the electric field:

Ẽ(z0, θ) =−
KωeL
2c2z0γ

AJJ exp
[
i
ωz0

2c
θ2

]
sinc

[
ωLθ2

4c

]
, (76)

where the field is polarized in the horizontal direction. Here L = λwNw is
the undulator length and Nw the number of undulator periods. Finally, AJJ
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Fig. 1. 3D Intensity distribution at the beam waist location I/Imax, as a function of
x/
√
oL and y/

√
oL.

is defined as

AJJ = Jo

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)
, (77)

Jn being the n-th order Bessel function of the first kind. Eq.(76) describes a
field with spherical wavefront centered in the middle of the undulator. Eq.
(40) can now be used to calculate the field distribution at the virtual source
yielding

Ẽ(0, r) = i
Kωe
2c2γ

AJJ

[
π − 2Si

(
ωr2

Lc

)]
, (78)

where Si(z) =
∫ z

0
dt sin(t)/t indicates the sin integral function and r = |~r| is

the distance from the z axis on the virtual-source plane. Note that Ẽ(0, r) is
axis-symmetric. Eq. (192), that has been already presented in [30], describes
a virtual field with a plane wavefront. Let us compare this virtual field with
a laser-beam waist. In laser physics, the waist is located in the center of the
optical cavity. In analogy with this, in our case the virtual source is located
in the center of the undulator. Both in laser physics and in our situation
the waist has a plane wavefront and the transverse dimension of the waist
is much longer than the wavelength. Note that the phase of the wavefront
in Eq. (192) is shifted of −π/2 with respect to the spherical wavefront in
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the far zone. Such phase shift is analogous to the Guoy phase shift in laser
physics. Finally, in laser physics, the Rayleigh range for a laser beam is
presented in the form zR = (ω/c)w2

o , wo being the radius of the beam at the
location of the waist (i.e. at that position along z where the wavefront is
flat). This is defined, for example, by requiring that the intensity on the edge
of an aperture of radius wo be one fourth of the intensity at the center of
the radiation spot. In the undulator source case, the definition given above
amounts to wo = 0.9(cL/ω)1/2 and zR = 0.8L ' L. In the case of a laser beam
the Rayleigh range is related to the resonator geometrical factor. In analogy
with this, in the case of an undulator source the Rayleigh range is related to
the undulator geometrical factor. The relative intensity at the virtual source
is plotted in Fig. 1.

Eq. (76) and Eq. (192) can be generalized to the case of a particle with a
given offset ~l and deflection angle ~η with respect to the longitudinal axis,
assuming that the magnetic field in the undulator is independent of the
transverse coordinate of the particle. Although this can be done using Eq.
(37) directly, it is sometimes possible to save time by getting the answer
with some trick. For example, in the undulator case one take advantage of
the following geometrical consideration [30], which are in agreement with
rigorous mathematical derivation. First, we consider the effect of an offset
~l on the transverse plane, with respect to the longitudinal axis z. Since the
magnetic field experienced by the particle does not change, the far-zone field
is simply shifted by a quantity ~l. Eq. (76), can be immediately generalized
by systematic substitution of the transverse coordinate of observation, ~r0

with ~r0 −
~l. This means that ~θ = ~r0/z0 must be substituted by ~θ −~l/z0, thus

yielding

Ẽ
(
z0,~l, ~θ

)
=−

KωeL
2c2z0γ

AJJ exp

iωz0

2c

∣∣∣∣∣∣~θ − ~l
z0

∣∣∣∣∣∣
2 sinc


ωL

∣∣∣∣~θ − (
~l/z0

)∣∣∣∣2
4c

 . (79)

Let us now discuss the effect of a deflection angle ~η. Since the magnetic field
experienced by the electron is assumed to be independent of its transverse
coordinate, the trajectory followed is still sinusoidal, but the effective un-
dulator period is now given by λw/ cos(η) ' (1 + η2/2)λw. This induces a
relative red shift in the resonant wavelength ∆λ/λ ∼ η2/2. In practical cases
of interest we may estimate η ∼ 1/γ. Then, ∆λ/λ ∼ 1/γ2 should be com-
pared with the relative bandwidth of the resonance, that is ∆λ/λ ∼ 1/Nw,
Nw being the number of undulator periods. For example, if γ = 103, the red
shift due to the deflection angle can be neglected in all situations of practical
relevance. As a result, the introduction of a deflection angle only amounts
to a rigid rotation of the entire system. Performing such rotation we should
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account for the fact that the phase factor in Eq. (79) is indicative of a spheri-
cal wavefront propagating outwards from position z = 0 and remains thus
invariant under rotations. The argument in the sinc(·) function in Eq. (79),
instead, is modified because the rotation maps the point (z0, 0, 0) into the
point (z0,−ηxz0,−ηyz0). As a result, after rotation, Eq. (79) transforms to

Ẽ
(
z0, ~η,~l, ~θ

)
= −

KωeLAJJ

2c2z0γ
exp

iωz0

2c

∣∣∣∣∣∣~θ − ~l
z0

∣∣∣∣∣∣
2 sinc


ωL

∣∣∣∣~θ − (
~l/z0

)
− ~η

∣∣∣∣2
4c


(80)

Finally, in the far-zone case, we can always work in the limit for l/z0 � 1, that
allows one to neglect the term ~l/z0 in the argument of the sinc(·) function,
as well as the quadratic term in ωl2/(2cz0) in the phase. Thus Eq. (80) can be
further simplified, giving the generalization of Eq. (76) in its final form:

Ẽ
(
z0, ~η,~l, ~θ

)
=−

KωeLAJJ

2c2z0γ
exp

[
i
ω
c

(
z0θ2

2
− ~θ ·~l

)]
sinc


ωL

∣∣∣∣~θ − ~η∣∣∣∣2
4c

 . (81)

The expression for the field at virtual source, Eq. (192), should be modified
accordingly. Namely, one has to plug Eq. (81) into Eq. (40), which gives

Ẽ
(
0, ~η,~l,~r

)
=−

iKω2eLAJJ

4πc3γ

∫
d~θ exp

[
i
ω
c
~θ ·

(
~r −~l

)]
sinc


ωL

∣∣∣∣~θ − ~η∣∣∣∣2
4c


(82)

yielding

Ẽ
(
0, ~η,~l,~r

)
= i

Kωe
2c2γ

AJJ exp
[
i
ω
c
~η ·

(
~r −~l

)] π − 2Si


ω

∣∣∣∣~r −~l∣∣∣∣2
Lc




(83)

as final result. The meaning of Eq. (83) is that offset and deflection of the
single electron motion with respect to the longitudinal axis of the system
result in a transverse shift and a tilting of the waist plane. The combination
(~r −~l ) in Eq. (83) describes the shift, while the phase factor represents the
tilting of the waist plane.
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To sum up, the diffraction size of the undulator radiation beam is about
√
oL � o. This means that the radiation from an ultra-relativistic electron

can be interpreted as generated from a virtual source, which produces a
laser-like beam. In principle, such virtual source can be positioned every-
where down the beam, but there is a particular position where it is similar,
in many aspects, to the waist of a laser beam. In the case of an undulator
this location is the center of the insertion device, where virtual source ex-
hibits a plane wavefront. For a particle moving on-axis, the field amplitude
distribution at the virtual source is axially symmetric, Eq. (192). When the
particle offset is different from zero, the laser-like beam is shifted. When the
particle also has a deflection, the laser-like beam is tilted, but the wavefront
remains plane. Then, since radiation from a given electron is correlated just
with itself, it follows that radiation from an electron beam is an incoherent
collection of laser-like beams with different offsets and deflections.

For a filament electron beam of current I, the angular spectral flux density
in the direction (θx, θy) can be written as

dF
dΩ

=
dṄph

dΩ(dω/ω)
=

I
e~

cz2
0

4π2 |Ẽ|
2 , (84)

where dṄph/(dω/ω)dΩ is the number of photons per unit time per unit
solid angle per relative frequency bandwidth, and Ẽ is the slowly varying
envelope of the electric field produced by a single electron in a planar
undulator at the resonance wavelength in the space-frequency domain, Eq.
(76). Eq. (84) can be directly deduced from Eq. (28) considering that dS/z2

0 =

dΩ. It can be shown from that the maximum value of |Ẽ|2 as a function of θx

and θy is reached on-axis, for θx = θy = 0. The angular spectral flux on-axis
is given by

max
(

dF
dΩ

)
=

I
e
αK2A2

JJ
L2

4λ2γ2 , (85)

whereα = e2/(~c) is the fine structure constant. The angle-integrated spectral
flux F = dṄph/(dω/ω) is defined as

F =

∫
dF
dΩ

dθxdθy . (86)

If we substitute Eq. (84) in Eq. (86) we obtain

F =
I
e
παK2A2

JJ
Nw

2(1 + K2/2)
. (87)
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From Eq. (87) and Eq. (85) one derives the following useful relation between
the on-axis angular spectral flux and the angle integrated spectral flux

max
(

dF
dΩ

)
=

F
π

L
λ
. (88)

4.2 Geometrical properties of undulator source

The results presented above for our undulator source analysis is far from
trivial. As a matter of fact, our results are in contrast with literature. Let
us consider as cardinal example the idea that the calculation of the undu-
lator brightness needs to take into account depth-of-field effects (i.e. the
contribution to the apparent source size from different poles). This idea can
be found, for example, in [18] and is a misconception originating from the
analysis of the undulator source based on intuitive geometrical arguments
regarded as self-evident. For example, in the textbook [18] one can find:
”The actual photon brightness is reduced from the diffraction limit due to
betatron motion of the particles, transverse beam oscillation in the undula-
tor, apparent source size on axis and under an oblique angle. All of these
effects tend to increase the source size and reduce brightness. The particle
beam cross section varies in general along the undulator. We assume here
for simplicity that the beam size varies symmetrically along the undulator
with a waist in its center. From beam dynamics it is then known that, for
example, the horizontal beam size varies like σ2

x = σ2
x(0) + σ2

x′(0)z2, where
σx(0) is the beam size at the waist, σx′(0) the divergence of the beam at the
waist and −L/2 ≤ z ≤ L/2 the distance from the waist. The average beam
size along the undulator length L is then” given by Eq. (49). ”Similarly,
due to an oblique observation angle θ with respect to the (y, z)-plane or ψ
with respect to the (x, z)-plane we get a further additive contribution θL/6
to the apparent beam size. Finally, the apparent source size is widened by
the transverse beam wiggle in the periodic undulator field. This oscillation
amplitude is rw = λwK/(2πγ). Collecting all contributions and adding them
in quadrature, the total effective beam-size parameters are given by

σ2
t,(x,y) = σ2

r + σ2
x,y(0) +

(
λwK
2πγ

)2

+
1

12
σ2

x′,y′(0)L2 +
1

36
(θ2, ψ2)L2 ,

σ2
t,(x′,y′) = σ′2r + σ2

x′,y′(0) , (89)

where the particle beam sizes can be expressed by the beam emittance and
betatron function as σ2

x,y = εx,yβx,y, σ2
x′,y′ = εx,y/βx,y, and the diffraction limited
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beam parameters are σr =
√

2λL/(4π) and σr′ =
√
λ/(2L)” 18 .

We stress that our criticism is not only focused on the quantitative aspects the
source size analysis in [18], but rather on a contradiction with fundamental
facts from classical electrodynamics. In order to better see this, consider an
optical setup performing a 1:1 imaging, where we set the object plane at the
undulator center. The intensity distribution in the image plane is given by
a convolution of the intensity from a single electron, I0, with the electron
density distribution in the object plane (which we consider Gaussian, as
before):

I(x, y) ∼

∞∫
−∞

dlx

∞∫
−∞

dlyI0(x − lx, y − ly) exp

− l2
x

2σ2
x
−

l2
y

2σ2
y

 . (90)

Here I0(x, y) ∼ [π − 2Si(ω(x2 + y2)/(cL))]2 is the radiation intensity from a
single electron on the source (see Eq. (83)). Eq. (90) follows from statistical
averaging over electron offsets and deflection angles. In fact, tilt angles are
small compared to unity and, therefore, the source size is insensitive to the
angular beam distribution. It is easy to see that the first two terms in Eq. (89)
for the source size are related with the approximation of the convolution Eq.
(90) introduced by Kim [3]. However, the last two terms in Eq. (89), which
describe a source size widening due to depth-of-field effects, depend on the
angular beam distribution and observation angle, and should not be there.
They are rather the result of the misconception discussed above.

There is another objection that could be made to the analysis in [18], related
with the third term in Eq. (89). Under the resonance approximation it is
logically inconsistent to present a term of order of 1/Nw in the expression
for undulator source size. In fact, on the one hand the radiation diffraction
size for a single electron is order of

√
oL. On the other hand the electron

wiggling amplitude is given by rw = (K/γ)λw/(2π). In particular, at the
fundamental harmonic follows that

r2
w

oL
=

K2

πNw(1 + K2/2)
� 1 , (91)

where we used the resonance condition Eq. (74). This inequality holds in-
dependently of the value of K, because under the resonance approximation
Nw � 1. Thus, the electron wiggling amplitude is always much smaller than
the radiation diffraction size. It follows that under the resonance approxi-
mation the third term in Eq. (89) should be neglected.

18 Here we have not followed Wiedemann’s original notations and definitions.
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Note that the first-principle computer codes (see e.g. [31]) have been used
quite successful to model advanced SR sources and beamlines without spe-
cific analytical simplifications. Results may be obtained using numerical
techniques alone, starting from the Lienard-Wiechert expression for the
electromagnetic field (in the case of [31] in the space-frequency domain) us-
ing only the ultrarelativistic approximation. Codes can also be used to treat
the case of 1:1 imaging of an undulator source. It is instructive to reconsider
the problem of undulator source size prediction by means of numerical
simulations alone, which play the same role of an experiment. We might
consider two cases at fixed electron beam size:

• The usual case with matched beta-function β0 ∼ L, and additionally σ2
x =

ε0β0, σ2
x′ = ε0/β0, σ2

x � σ2
r .

• A case with a tenfold increase in emittance and a tenfold decrease in beta
function i.e. ε = 10ε0 and β = β0/10.

Of course one is free to choose other numerical cases as well. One can
check that results of simulations confirm our prediction that source image
is insensitive to the electron beam divergence. In both cases, with graphical
accuracy, we find that the distribution at the image plane is the same, in
contrast with the prediction [18] of source size widening.

4.3 Wigner distribution and undulator sources

We now turn to the main topic of this study, namely the analysis of the
brightness of SR sources. In this section we apply the considerations de-
veloped in section 2 to the case of an undulator source at resonance. First
we calculate the Wigner distribution for a filament electron beam, that is a
beam with zero emittance. As second step we take into account the more
general case when the electron beam has a finite phase space distribution.

According to the definition in Eq. (30), the Wigner distribution in the case
of an electron beam with zero emittance is given by

W0(~r, ~θ) =
c

(2π)4

I
e~

(
ω
c

)2 ∫
d∆~r G0(~r,∆~r) exp

(
−iω~θ · ∆~r/c

)
(92)

where G0 = Ẽ(~r + ∆~r/2)Ẽ∗(~r − ∆~r/2) is the diffraction-limited cross-spectral
density and Ẽ(~r) is defined by Eq. (192). The peak value of W0 as a function of
~r and ~θ is reached on-axis for ~r = 0 and ~θ = 0. Accordingly, we can compute
the undulator brightness. For our diffraction-limited regime at resonance
this can be done analytically [3]
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B = max(W0) =
λ
2

2

F , (93)

where F is the angle-integrated spectral flux defined by Eq. (87). Here we
have only used the axial symmetry of the electric field radiated by a single
electron in an undulator at resonance, Eq. (192). In particular this symmetry
yields the relation Ẽ(∆~r/2)Ẽ∗(−∆~r/2) = |Ẽ(∆~r/2)|2. It is reasonable to expect
that Eq. (93) is valid for any radiation beam with axial symmetric field
distribution. One can easily show that this is indeed the case. One typical
example when this fact is verified, is for a Gaussian beam.

The Wigner distribution W(~r, ~θ) for an electron beam with finite emittance
can be presented as a convolution product between the electron phase space
distribution f⊥(~l, ~η) and the Wigner distribution for a filament beam W0(~r, ~θ)
according to Eq. (45) [3]. Note that, as remarked before, Eq. (45) has no full
generality and can be used only in the case when focusing elements are
excluded from consideration 19 .

In the following we will make consistent use of dimensional analysis, which
allows one to classify the grouping of dimensional variables in a way that is
most suitable for subsequent study. Normalized units in the undulator case
will be defined as

~̂η =
~η
√
o/L

~̂θ =
~θ
√
o/L

~̂r =
~r
√
oL

~̂l =
~l
√
oL

. (94)

We assume that the motion of electrons in the horizontal and vertical di-
rections are completely uncoupled. Additionally we assume a Gaussian
distribution of the electron beam in phase space. These two assumptions
are practically realized, with good accuracy, in storage rings. For simplicity,
we also assume that the minimal values of the beta-functions in horizon-
tal and vertical directions are located at the middle of the undulator, at

19 This result can be applied in the case of an undulator without focusing
quadrupoles, but not in the case one is interested in calculating the brightness,
e.g. the brightness of SR from an XFEL setup, where the undulator is embedded in
a FODO lattice.
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z = 0. Then, at that position, the transverse phase space distribution can be
expressed as

f̂⊥ = f~̂l

(
~̂l
)

f~̂η
(
~̂η
)

= fηx(η̂x) fηx(η̂y) flx(l̂x) flx(l̂y) (95)

with

fηx(η̂x) =
1

√
2πDx

exp
(
−
η̂2

x

2Dx

)
, fηy(η̂y) =

1√
2πDy

exp

− η̂2
y

2Dy

 ,
flx( l̂x) =

1
√

2πNx
exp

(
−

l̂2
x

2Nx

)
, fly( l̂y) =

1√
2πNy

exp

− l̂2
y

2Ny

 .
(96)

Here

Dx,y =
σ2

x′,y′

o/L
, Nx,y =

σ2
x,y

oL
, (97)

Parameters Nx,y will be called beam diffraction parameters, are analogous
to Fresnel numbers and correspond to the normalized square of the electron
beam sizes, whereas Dx,y represent the normalized square of the electron
beam divergences.

We begin by writing the expression for the cross-spectral density at the
virtual source:

G
(
~̂r,∆~̂r

)
=

∫
d~̂η exp

(
i~̂η · ∆~̂r

)
f~̂η

(
~̂η
) ∫

d~̂l f~̂l

(
~̂l
)

Ẽ

~̂r +
∆~̂r
2
−
~̂l

 Ẽ∗
~̂r − ∆~̂r

2
−
~̂l

 ,
(98)

where the field is defined by Eq. (192). It should be noted that the indepen-
dent variable in Eq. (192) isωr2/(Lc), and corresponds to r̂2 in dimensionless
units. Thus, the characteristic transverse range of the field at the source in
dimensionless units is of order of unity. One sees that the cross-spectral
density is the product of two separate factors. The first is the Fourier trans-
form of the distribution of the electrons angular divergence. The second is
the convolution of the transverse electron beam distribution with the four-
dimensional function Ẽ(~̂r + ∆~̂r/2)Ẽ∗(~̂r − ∆~̂r/2). In fact, after the change of

variables ~φ = ~̂r −~̂l we have
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G
(
~̂r,∆~r

)
=

1

2π
√

NxNy
exp

[
−

(∆x̂)2Dx

2

]
exp

[
−

(∆ŷ)2Dy

2

]

×

∞∫
−∞

dφx

∞∫
−∞

dφy exp

−
(
φx − x̂

)2

2Nx

 exp

−
(
φy − ŷ

)2

2Ny


×Ẽ

(
φx +

∆x̂
2
, φy +

∆ŷ
2

)
Ẽ∗

(
φx −

∆x̂
2
, φy −

∆ŷ
2

)
. (99)

It is instructive to examine this expression in the geometrical optics asymp-
totes. Let us start with beam size- and divergence-dominated regime. In Eq.
(99) the range of the variable φx,y is effectively limited up to values |φx,y| ∼ 1.
In fact φx,y enters the expression for Ẽ. It follows that at values larger than
unity the integrand in Eq. (99) is suppressed. Moreover, in the beam size-
and divergence-dominated regime one has Nx,y � 1 and Dx,y � 1, so that
we can neglect φx,y in the exponential functions in Nx,y, while from the ex-
ponential in Dx,y follows that ∆x̂ � 1 and ∆ŷ � 1 can be neglected in the
field Ẽ. As a result we obtain

G =
1

2π
√

NxNy
exp

(
−

Dx∆x̂2

2
−

Dy∆ŷ2

2

)
exp

(
−

x̂2

2Nx
−

ŷ2

2Ny

)

×

∞∫
−∞

dφx

∞∫
−∞

dφy|Ẽ(φx, φy)|2 (100)

or, in dimensional units,

G =
1

2πσxσy
exp

−ω2σ2
x′∆x2

2c2 −

ω2σ2
y′∆y2

2c2

 exp
(
−

x2

2σ2
x
−

y2

2σ2
y

) ∫
d~r |Ẽ(~r)|2 .

(101)

One can obtain the Wigner distribution W from the above expression for G
by means of Eq. (30)

W(~r, ~θ) =
1

(2π)2σxσyσx′σy′
exp

− θ2
x

2σ2
x′
−

θ2
y

2σ2
y′

 exp
(
−

x2

2σ2
x
−

y2

2σ2
y

)
×

c
(2π)2

I
e~

∫
d~r |Ẽ(~r)|2 . (102)

The peak value of the Wigner distribution is reached on-axis and is given
by
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B = max(W) =
F

(2π)2σxσyσx′σy′
, (103)

where F is the spectral flux

F =
dṄph

dω/ω
=

c
(2π)2

I
e~

∫
d~r |Ẽ(~r)|2 (104)

radiated by an electron beam with current I in the undulator.

Let us now consider the beam divergence-dominated regime, that is when
Dx,y � 1 � Nx,y. From an analysis of the exponential functions in Dx,y in
Eq. (99) follows that ∆x̂� 1, ∆ŷ� 1 can be neglected in the expression for
the field Ẽ. Then, since Nx,y � 1, it follows that the distributions exp[−(φx −

x̂)2/(2Nx)] and exp[−(φy − ŷ)2/(2Ny)] are respectively sharply peaked about
φx = x̂ and φy = ŷ. Hence, we can approximate

G = exp
(
−

Dx∆x̂2

2

)
exp

(
−

Dy∆ŷ2

2

)
|Ẽ(x̂, ŷ)|2 . (105)

Finally, from Eq. (30) follows an expression for W in dimensional units:

W(~r, ~θ) =
1

2πσx′σy′
exp

(
−
θ2

x

2σ2
x′

)
exp

− θ2
y

2σ2
y′

 c
(2π)2

I
e~
|Ẽ(~r)|2 . (106)

where Ẽ(~r) is the radiation field in Eq. (192). The peak value of Wigner
distribution is reached on-axis and given by

B = max(W) =
1

2πσx′σy′
max

(
dF
dS

)
, (107)

where

max
(

dF
dS

)
=

c
(2π)2

I
e~
|Ẽ(0)|2 (108)

is the maximum photon flux density on the source in the diffraction limited
case. A straightforward integration of dF/dS over the source area gives the
total flux in Eq. (87). From Eq. (192) and Eq. (108) one derives the following
relation between on-axis flux density and total flux
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max
(

dF
dS

)
= F

π
λL

. (109)

With this we also point out that in the beam divergence-dominated regime
the brightness can be written as

B =
F

2σx′σy′λL
. (110)

A third interesting limiting case can be considered. In the beam size-dominated
regime Dx,y � 1� Nx,y, Eq. (99) can be simplified as follows. We can neglect
φx,y in the exponential functions in Nx,y. Moreover, the range of variables
∆x̂ and ∆ŷ is effectively limited up to values of order of unity because they
enter the expression for the electric field Ẽ. It follows that, when Dx,y � 1,
the exponential functions in Dx,y can be replaced with unity and we obtain
the following expression for the cross-spectral density in dimensional units

G =
1

2πσxσy
exp

(
−

x2

2σ2
x

)
exp

(
−

y2

2σ2
y

)
×

∞∫
−∞

dx′
∞∫

−∞

dy′Ẽ
(
x′ +

∆x
2
, y′ +

∆y
2

)
Ẽ∗

(
x′ −

∆x
2
, y′ −

∆y
2

)
.

(111)

The Wigner distribution in Eq. (30) can therefore be written as

W(~r, ~θ) =
1

2πσxσy
exp

(
−

x2

2σ2
x

)
exp

(
−

y2

2σ2
y

)
c

(2π)4

I
e~

(
ω
c

)2

×

∫
d∆~r exp

(
−i
ω
c
~θ · ∆~r

) ∫
d~r′Ẽ(~r′ + ∆~r/2)Ẽ∗(~r′ − ∆~r/2) . (112)

Some simplification may be obtained by rewriting the electric field on the
source, Ẽ(~r), in the terms of the far field Ẽ(~θ). In fact, inserting Eq. (40) into
Eq (112), performing the integration and rearranging yields 20 :

W(~r, ~θ) =
1

2πσxσy
exp

(
−

x2

2σ2
x
−

y2

2σ2
y

)
cz2

0

(2π)2

I
e~
|Ẽ(~θ)|2 , (113)

20 If we write Ẽ(r) as the integral in Eq. (40), after substitution in Eq. (112) we can
present results of integration over ∆~r and ~r′ in terms of a Dirac δ-function and
evaluate all integrals analytically.
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where Ẽ(~θ) is the radiation field from Eq. (76). The peak value of the Wigner
function is given by

B = max(W) =
1

2πσxσy
max

(
dF
dΩ

)
, (114)

where max(dF/dΩ) is the maximum of the angular photon flux given by Eq.
(88).

4.4 Third-generation SR source approximation

Generally, calculation of undulator source brightness in the case of partial
coherent radiation involves very complicated and time-expensive evalu-
ations. In fact, one needs to find the maximum of a Wigner distribution
which is function of four variables (x, y, θx, θy) and depends on four dimen-
sionless problem parameters (Nx,y, Dx,y). In some particular cases, however,
the brightness can be determined analytically. In section 4.3 we have seen
how exact results can be obtained for the diffraction-limited case and in
geometrical optics limits.

We now focus our discussion on third-generation SR sources. In this case we
can consider Nx � 1 and Dx � 1 still retaining full generality concerning the
values of Ny and Dy, due to the small coupling coefficient between horizontal
and vertical emittance. Exploitation of the extra parameters Nx � 1 and
Dx � 1 specializes our theory to the case of third-generation sources.

With this in mind we simplify the Wigner distribution calculations begin-
ning with the expression for the cross-spectral density at the virtual source,
Eq. (99). In Eq. (99) the range of the integration variable φx is effectively
limited up to values |φx| ∼ 1. In fact, φx enters the expression for the field Ẽ.
It follows that at values larger than unity the integrand in Eq. (99) is sup-
pressed. Then, since Nx � 1, we can neglect φx in the exponential function.
Moreover Dx � 1, and from the exponential function in Dx follows that
∆x̂ � 1 can be neglected in the expression for the field Ẽ. As a result, Eq.
(99) is factorized in the product of horizontal cross-spectral density Gx(x̂,∆x̂)
and a vertical cross-spectral density Gy(ŷ,∆ŷ):

G(x̂, ŷ,∆x̂,∆ŷ) = Gx(x̂,∆x̂)Gy(ŷ,∆ŷ) , (115)

where
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Gx =
1

√
2πNx

exp
(
−

Dx∆x̂2

2

)
exp

(
−

x̂2

2Nx

)
, (116)

Gy =
1√

2πNy
exp

(
−

Dy∆ŷ2

2

) ∞∫
−∞

dφx

∞∫
−∞

dφy exp
[
−

(φy − ŷ)2

2Ny

]
×Ẽ

(
φx, φy +

∆ŷ
2

)
Ẽ∗

(
φx, φy −

∆ŷ
2

)
. (117)

Therefore, the Wigner distribution in dimensional units for an arbitrary state
of coherence in the vertical direction can be written as

W(x, y, θx, θy) =
1

√
2πσxσx′σy

exp
(
−

x2

2σ2
x

)
exp

(
−
θ2

x

2σ2
x′

)
c

(2π)4

I
e~
ω
c

×

∞∫
−∞

d∆y exp
(
−i
ω
c
θy∆y

)
exp

−ω2σ2
y′∆y2

2c2


×

∞∫
−∞

dx′
∞∫

−∞

dy′ exp
[
−

(y′ − y)2

2σ2
y

]
Ẽ
(
x′, y′ +

∆y
2

)
Ẽ∗

(
x′, y′ −

∆y
2

)
(118)

It is instructive to check this expression in the case of (vertical) beam size-
and (vertical) divergence-dominated regime. Since Dy � 1, one can neglect
∆y in the expression for the amplitude of the electric field. Moreover, Ny � 1
and the exponential function exp[−(y′ − y)2/(2σ2

y)] is smoothly varying in
the region of integration of importance. Therefore, we can take it out of the
integral sign, and Eq. (118) yields back Eq. (102) and Eq. (103) as it must be.

Some other limiting forms of Eq. (118) are of interest, and will be discussed
here. In the diffraction-limited regime for the vertical direction one has
Ny � 1 and Dy � 1. The distribution 1/(

√
2πσy) exp[−(y′ − y)2/(2σ2

y)] is
sharply peaked about y′ = y, and can be approximated by a Dirac δ-function.
Moreover, the variable ∆y′ enters the expression for the electric field Ẽ,
and in the region of integration of importance the exponential function in
∆y2 can be replaced by unity. Finally, the field has the symmetry property
Ẽ(x, y) = Ẽ(x,−y). Therefore, on-axis, Eq. (118) can be simplified to

B = W(0, 0, 0, 0) =
F

2πσxσx′

( 2
λ

)
. (119)
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This exact result coincides with the result expected with the help of the
approximate formula Eq. (53).

Let us now consider the beam divergence-dominated regime. When Ny �

1 � Dy the variable ∆y can be neglected in the expression for the field and
the exponential function in Ny, multiplied by 1/

√
2πNy, can be approxi-

mated by a Dirac δ-function under the convolution integral in Eq. (117).
Therefore, the expression for the Wigner distribution on-axis can be simpli-
fied as

W(0, 0, 0, 0) =

√
2π

σxσx′σy′

I
e~

c
(2π)4

∞∫
−∞

dx′
∣∣∣Ẽ(x′, 0)

∣∣∣2 (120)

where Ẽ(x, y) is the radiation field in Eq. (192). Accounting for Eq. (109) the
brightness may be written as

B = max(W) = W(0, 0, 0, 0) =

 F

πσxσx′σy′
√
λL

 1
4

∞∫
−∞

dφS2
0(φ) (121)

where the dimensionless field distribution S0 is defined by

S0(φ) =
1
π

[π − 2Si(φ2)] (122)

The expression in the first parenthesis in Eq. (121) represents the brightness
expected by the estimate in Eq. (53) with the parameter choice in (55). The
number

1
4

∞∫
−∞

dφS2
0(φ) ' 0.35 (123)

represents the disagreement between the exact expression and the estimated
maximum of the photon flux density in the phase space.

A second geometrical optics limit for third generation SR sources is the beam
size-dominated regime, when Dy � 1 � Ny. The Wigner distribution Eq.
(118) can be simplified following the same line of reasoning as for Eq. (112).
From the analysis of the exponential function in Ny in Eq. (117) follows that
we can take it out from under the integral overφy. Moreover, the exponential
function in Dy can be replaced by unity and Eq. (118) can be written on-axis
as
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W(0, 0, 0, 0) =
1

√
2πσxσx′σy

c
(2π)4

I
e~
ω
c

×

∞∫
−∞

d∆y

∞∫
−∞

dx′
∞∫

−∞

dy′ Ẽ
(
x′, y′ +

∆y
2

)
Ẽ∗

(
x′, y′ −

∆y
2

)
. (124)

If we write the electric field amplitude Ẽ(x, y) as the integral in Eq. (40), we
can present result of the integration over x′,y′ and ∆y in Eq. (124) as Dirac
δ-functions. Performing the integration and rearranging yields:

W(0, 0, 0, 0) =
1

√
2πσxσx′σy

I
e~

cz2
0

(2π)3

∞∫
−∞

dθx|Ẽ(θx, 0)|2 , (125)

where the expression for the far field Ẽ(θx, θy) is given in Eq. (76). Accounting
for Eq. (88) the brightness can be written as

B = max(W) = W(0, 0, 0, 0)

=

 F

2
√

2π2σxσx′σy

√
L
λ

 1

π
√

2

∞∫
−∞

dφ sinc2(φ2/4)] , (126)

where sinc(φ2/4) is the dimensionless far field distribution. The factor in
square brackets represents the brightness expected by the estimate in Eq.
(53) with the parameter choice in (55). The number

1

π
√

2

∞∫
−∞

dφ sinc2(φ2/4)] =
4
3

√
2
π
' 1.06 (127)

represents, instead, the disagreement between the exact expression and the
maximum photon flux density in the phase space.

Thus we have found that the exact result in Eq. (126) is naturally different
from the estimate in Eq. (53), although the difference is not large. The differ-
ence between the value found in Eq. (127), which is close to unity and that
in Eq. (123), which is quite different from unity, is striking. One can observe
that this difference is in close relation with other comparisons between the
estimate in Eq. (53) and exact results. In fact, Eq. (53) coincides with the
exact result Eq. (114) in the limit for Dx,y � 1 � Nx,y and at the same time
was proven to overestimate the exact result by four times in the limit for
Nx,y � 1� Dx,y.
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Fig. 2. Geometry for the analysis of bending magnet brightness.

Fig. 3. Standard geometry for the analysis of synchrotron radiation from a bending
magnet.

5 Bending magnet brightness

Consider a single relativistic electron moving on a circular orbit and an
observer as sketched in Fig. 2. It is worth to underline the difference be-
tween the geometry depicted in Fig. 2 and the geometry used in most SR
textbooks for the treatment of bending magnet radiation depicted in Fig. 3.
The observer in Fig. 3 is assumed to be located in a vertical plane tangent
to the circular trajectory at the origin, at an angle θ above the level of the
orbit. In other words, in this geometry the z axis is not fixed, but depends on
the observer’s position. Note that the geometry of the electron motion has a
cylindrical symmetry, with the vertical axis going through the center of the
circular orbit. Because of this symmetry, in order to calculate spectral and
angular photon distributions, it is not necessary to consider an observer at
a more general location. However, since the wavefront is not spherical, this
way of proceeding can hardly help to obtain the phase of the field distribu-
tion on a plane perpendicular to a fixed z axis. This is required, for instance,
if one needs to calculate the Wigner distribution, as in our case.
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5.1 Radiation field in space-frequency domain

We can use Eq. (37) to calculate the far zone field of radiation from a rela-
tivistic electron moving along an arc of a circle. Assuming a geometry with
a fixed z axis as in Fig. 2, we can write the transverse position of the electron
as a function of the curvilinear abscissa s as

~r(s) = −R (1 − cos(s/R)) ~ex (128)

and

z(s) = R sin(s/R) (129)

where R is the bending radius.

Since the integral in Eq. (37) is performed along z we should invert z(s) in
Eq. (129) and find the explicit dependence s(z):

s(z) = R arcsin(z/R) ' z +
z3

6R2 (130)

so that

~r(z) = −
z2

2R
~ex , (131)

where the expansion in Eq. (130) and Eq. (131) is justified, once again, in the
framework of the paraxial approximation.

With Eq. (37) we obtain the radiation field amplitude in the far zone:

~̃E =
iωe
c2z0

∞∫
−∞

dz′eiΦT

(z′ + Rθx

R
~ex + θy~ey

)
(132)

where

ΦT = ω

θ2
x + θ2

y

2c
z0

 +

 1
2γ2c

+
θ2

x + θ2
y

2c

 z′

+
(
θx

2Rc

)
z′2 +

( 1
6R2c

)
z′3

]
. (133)
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One can easily reorganize the terms in Eq. (133) to obtain

ΦT = ω

θ2
x + θ2

y

2c
z0

 − Rθx

2c

(
1
γ2 +

θ2
x

3
+ θ2

y

)
+

(
1
γ2 + θ2

y

)
(z′ + Rθx)

2c
+

(z′ + Rθx)3

6R2c

]
. (134)

With redefinition of z′ as z′ + Rθx under integral we obtain the final result
[10], [33], [34]:

~̃E =
iωe
c2z0

eiΦseiΦ0

∞∫
−∞

dz′
(z′

R
~ex + θy~ey

)
× exp

{
iω

[
z′

2γ2c

(
1 + γ2θ2

y

)
+

z′3

6R2c

]}
, (135)

where

Φs =
ωz0

2c

(
θ2

x + θ2
y

)
(136)

and

Φ0 = −
ωRθx

2c

(
1
γ2 +

θ2
x

3
+ θ2

y

)
. (137)

In standard treatments of bending magnet radiation, the phase term exp(iΦ0)
is absent. In fact, the horizontal observation angle θx is always equal to
zero in the reference system sketched in Fig. 3. The reason for this is that
most textbooks focus on the calculation of the intensity radiated by a single
electron in the far zone, which involves the square modulus of the field
amplitude but do not analyze, for instance, situations like source imaging.

Our next goal is to evaluate the integral in Eq. (135). It is convenient to
introduce dimensionless geometrical quantities

~̂θ =
~θ

(o/R)1/3

~̂r =
~r

(Ro2)1/3 , (138)

and the dimensionless parameter
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ξ =
(
λc

λ

)2/3

. (139)

If we then go through the algebra we can simplify Eq. (135) to

~̃E(z0,
~̂θ) = −

2eγξ1/2

√
3cz0

exp[iΦs] exp
[
−

iθ̂x

2

(
ξ +

θ̂2
x

3
+ θ̂2

y

)]
×

{
~ex

[
(ξ + θ̂2

y)K2/3

(1
3

(ξ + θ̂2
y)3/2

)]
−i~ey

[
(ξ + θ̂2

y)1/2θyK1/3

(1
3

(ξ + θ̂2
y)3/2

)] }
, (140)

where K1/3 and K2/3 are the modified Bessel functions. Eq (140) is equivalent
to Eq. (135), but is expressed in a more suitable form for calculating the
field distribution at the virtual source, which is assumed to be located in the
(x, y)-plane, perpendicular to the circular trajectory at the origin (see Fig. 2).
After substitution of Eq. (140) in Eq. (40) we can write result in terms of the
Airy functions

Ẽx

(
~̂r
)

= −
ieγ2ξ

cR
24/3

√
3

×

∞∫
−∞

dθ̂y exp[2iŷθ̂y](ξ + θ̂2
y)K2/3

[1
3

(ξ + θ̂2
y)3/2

]
Ai

[ 1
22/3 (ξ − 2x̂ + θ̂2

y)
]
(141)

and

Ẽy

(
~̂r
)

= −
eγ2ξ

cR
24/3

√
3

×

∞∫
−∞

dθ̂y θ̂y exp[2iŷθ̂y]K1/3

[1
3

(ξ + θ̂2
y)3/2

]
Ai

[ 1
22/3 (ξ − 2x̂ + θ̂2

y)
]
. (142)

The integral in Eq. (141) and Eq. (142) must be calculated numerically.

Computational results of the intensity distribution of horizontal and vertical
polarization components in the 1:1 image plane by perfect thin lens [32] are
presented in Fig.4. Due to phase differences of the bending magnet radiation
in the far zone from a spherical wavefront, the wavefront is aberrated. For
a single electron this aberration appears when the horizontal aperture is
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Fig. 4. Intensity profiles for the virtual source I/Imax, as a function of x/(R1/3o2/3)
and y/(R1/3o2/3) for the horizontal (left plot) and vertical (right plot) polarization
components.

compatible with the natural opening angle σr′ , and it becomes severe as the
horizontal aperture increases further.

Up to this point we considered an electron moving along a circular trajec-
tory that lies in the (x, z)-plane and following a path through origin of the
coordinate system sketched in Fig. 2, tangent to the z axis. The phase differ-
ence in the fields will be determined by the position of the observer position
and by the electron trajectory. Let us now discuss the bending magnet ra-
diation from a single electron with arbitrary angular deflection and offset
with respect to the nominal orbit. Such an expression was first calculated,
starting from the Lienard-Wiechert fields, in [33].

The meaning of horizontal and vertical deflection angles ηx and ηy is clear
once we specify the electron velocity

~v(s) = v
[
− sin

( s
R

+ ηx

)
cos(ηy)~ex + sin(ηy)~ey + cos

( s
R

+ ηx

)
cos(ηy)~ez

]
,

(143)

so that the trajectory can be expressed as a function of the curvilinear abscissa
s as

x(s)~ex + y(s)~ey + z(s)~ez =[
lx + R cos

( s
R

+ ηx

)
cos(ηy) − R cos(ηx) cos(ηy)

]
~ex

+
[
ly + s sin(ηy)

]
~ey

+
[
R sin

( s
R

+ ηx

)
cos(ηy) − R sin(ηx) sin(ηy)

]
~ez

(144)
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Here we have introduced, also, an arbitrary offset (lx, ly, 0) in the trajectory.
Using Eq. (144) an approximated expression for s(z) can be found:

s(z) = z +
z3

6R2 +
z2ηx

2R
+

zη2
x

2
+

zη2
y

2
(145)

so that

~v(z) =
(
−

vz
R

+ vηx

)
~ex +

(
vηy

)
~ey (146)

and

~r(z) =

(
−

z2

2R
+ ηxz + lx

)
~ex +

(
ηyz + ly

)
~ey . (147)

It is evident that the offsets lx and ly are always subtracted from x0 and
y0 respectively: a shift in the particle trajectory on the vertical plane is
equivalent to a shift of the observer in the opposite direction. With this in
mind we introduce angles θ̄x = θx − lx/z0 and θ̄y = θy − ly/z0 to obtain

~̃E =
iωe
c2z0

∞∫
−∞

dz′eiΦT

(
z′ + R(θ̄x − ηx)

R
~ex + (θ̄y − ηy)~ey

)
(148)

and

ΦT = ω

 θ̄2
x + θ̄2

y

2c
z0

 +
ω
2c

(
1
γ2 +

(
θ̄x − ηx

)2
+

(
θ̄y − ηy

)2
)

z′

+

(
ωθ̄x

2Rc

)
z′2 +

(
ω

6R2c

)
z′3 . (149)

One can easily reorganize the terms in Eq. (149) to obtain

ΦT = ω

 θ̄2
x + θ̄2

y

2c
z0

 − ωR(θ̄x − ηx)
2c

×

(
1
γ2 + (θ̄y − ηy)2 +

(θ̄x − ηx)2

3

)
+

(
1
γ2 + (θ̄y − ηy)2

)
ω

(
z′ + R(θ̄x − ηx)

)
2c
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+
ω

(
z′ + R(θ̄x − ηx)

)3

6R2c
. (150)

Redefinition of z′ as z′ + R(θ̄x − ηx) gives the result

~̃E =
iωe
c2z0

eiΦseiΦ0

∞∫
−∞

dz′
(z′

R
~ex + (θ̄y − ηy)~ey

)
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{
iω

[
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2γ2c

(
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)
+

z′3

6R2c

]}
, (151)

where

Φs =
ωz0

2c

(
θ̄2

x + θ̄2
y

)
(152)

and

Φ0 = −
ωR(θ̄x − ηx)

2c

(
1
γ2 + (θ̄y − ηy)2 +

(θ̄x − ηx)2

3

)
. (153)

In the far zone we can neglect terms in lx/z0 and ly/z0, which leads to

~̃E =
iωe
c2z0

eiΦseiΦ0

∞∫
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dz′
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R
~ex +

(
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× exp
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(
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(
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)2
)

+
z′3

6R2c
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, (154)

where

Φs =
ωz0

2c

(
θ2

x + θ2
y

)
(155)

and

Φo ' −
ωR(θx − ηx)

2c

(
1
γ2 + (θy − ηy)2 +

(θx − ηx)2

3

)
−
ω
c

(lxθx + lyθy) . (156)

Note that Eq. (154) and Eq. (135) satisfy the equality in Eq. (43). Therefore,
also in the bending magnet case the statistical average can be simplified to
the convolution integral Eq. (45).
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5.2 Wigner distribution and bending magnet sources

We first calculate the brightness for a filament beam and, as a second step,
we account for a finite phase space distribution for the electron beam. The
Wigner distribution in the case of an electron beam with zero emittance
is given by Eq. (92), where Ẽ(~r) is related to the electric field radiated by
a single electron in a bending magnet, Eq. (141), where we now restrict
our attention to the horizontal polarization component. According to Eq.
(92) and Eq. (141), the Wigner distribution in the diffraction-limited case
is a function of four geometrical variables x̂, ŷ, θ̂x, θ̂y and one parameter
ξ = (λc/λ)2/3. We can compute the bending magnet brightness numerically,
as a function of these variables. The peak value of the Wigner distribution

at ξ = 1 as a function of ~̂r and ~̂θ is reached for x̂ = 1.15, ŷ = 0, θ̂x = 0 and
θ̂y = 0. Therefore, the expression for the brightness is given by

B = max(W0) = W0(1.15, 0, 0, 0) = 0.59
[ 4
λ2

I
e
α
]

(157)

and, according to the usual normalization, it yields a number of photons per
relative bandwidth per unit time per unit area per unit solid angle. Apart
from a numerical factor, it equals the theoretical maximum concentration
of the photon flux on the sample on the basis of qualitative arguments. The
number of photons with λ ∼ λc emitted from a formation length ∼ R/γ per
unit time can be estimated as (I/e)α. This radiation concentrates around the
axis within a solid angle of about σ2

r′ and, as a result, it has an M2 factor close
to unity. In literature it is often noted that the coherent flux from radiation
with an ideal wavefront can be ultimately focused down to a spot-size of
dimension λ2/4. It is clear that the numerical factor 0.59 is related with the
particular choice of wavelength, and will be different for different choices
of ξ.

The analysis of the effects of a finite electron beam emittance can be made
using the same approach as in section 4. The calculations are easier if we
make use of dimensionless variables and parameters for the electron beam
distribution. Normalized units in the bending magnet case are given by Eq.
(138) and its analogues

~̂η =
~η

(o/R)1/3

~̂l =
~l

(Ro2)1/3 . (158)
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As for the undulator case, in order to make our analysis treatable we assume
a Gaussian distribution of the electron beam in the transverse phase space,
which can be factorized at the position of the virtual source (at z = 0). In this
case, the electron beam distribution at the source position can be expressed
as in Eq. (95) and Eq. (96). In the bending magnet case, the dimensionless
parameters Nx,y and Dx,y are given by

Nx,y =
σ2

x,y

(Ro2)2/3 ,

Dx,y =
σ2

x′,y′

(o/R)2/3 . (159)

We are now in the position to calculate the cross-spectral density at the vir-
tual source by taking advantage of our dimensionless analysis. The expres-
sion for the cross-spectral density G is in Eq. (99), where now dimensionless
variables and parameters are given by Eq. (138), Eq. (158) and Eq. (159).
The expression for the two polarization components of the electric field, Eq.
(141) and Eq. (142), allow for an explicit calculation of G(~̂r,∆~̂r). The final
step consists in the calculation of the Wigner distribution W. The relation
between W and G is expressed by the transformation in Eq. (30), so that

W =
c

(2π)4

I
e~

(R
o

)2/3 ∫
d∆~̂r exp(−i~̂θ · ∆~̂r)G(~̂r,∆~̂r) . (160)

The integral in Eq. (160) is a function of four dimensionless variables
x̂, ŷ, θ̂x, θ̂y, and five dimensionless parameters Nx,y, Dx,y, and ξ. In or-
der to calculate the brightness we need to find the maximum of the Wigner
distribution. Suppose that the maximum of W is reached at ~̂r = ~̂rM and
~̂θ = ~̂θM. Then one has

B =
c

(2π)4

I
e~

(R
o

)2/3

f
(
~̂θM,~̂rM,Nx,Ny,Dx,Dy, ξ

)
, (161)

where f is the integral in Eq. (160). Here we have, at last, a well-defined pro-
cedure for computing the brightness from a bending magnet source. Thus,
in principle, we have solved the problem of determining the brightness of
a given SR setup. In particular, in the geometrical optics limits, when pa-
rameters Nx,y or Dx,y are large, calculations become simple and it is possible
to calculate the brightness analytically. When the parameters Nx,y and Dx,y

are order of unity the situation becomes more complicated, and must be
solved numerically. We will not further pursue the matter of determining
the brightness with the help of numerical techniques. For the discussion of
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the next section 5.3 attention will be restricted to the geometrical optics limit
only.

5.3 Geometrical optics limit

It is our purpose here to demonstrate how a straightforward application of
Eq. (161) yields analytical expressions for the brightness in several geomet-
rical optics limits. We begin our analysis of geometrical optics asymptotes
with the beam divergence-dominated regime, for Nx,y � 1� Dx,y, and with
the beam size-dominated regime for Dx,y � 1� Nx,y.

Before proceeding, however, we should first make a few remarks to discuss
the choice of these examples. In fact, in section 4.3 we considered the beam
size- and divergence-dominated regime as the simplest geometrical optics
asymptote for the undulator case. In contrast with this, in the bending mag-
net case the beam size- and divergence-dominated regime, corresponding to
Nx,y � 1 and Dx,y � 1, is the most complicated situation for analytical treat-
ment. On intuitive grounds we certainly expect that in this asymptotic limit
there is a competition between effects related with partial coherence (since
Nx,y � 1) and what we called ‘aberration’ effects (since Dx,y � 1), and care-
ful mathematical analysis confirms such expectation. Given its complexity,
we will discuss this asymptote only as a final example.

From a mathematical viewpoint there are two differences between the bend-
ing magnet case and the undulator case. The first difference stems from the
fact that the range of the variables φx,y in Eq. (99) is effectively limited up
to values |φx,y| ∼ 1 in the undulator case. In fact, φx,y enters the expression
for electric field Eq. (192), and at values larger than unity the integrand
in Eq. (99) is suppressed. Therefore, when Nx,y � 1 we can neglect φx,y in
the exponential functions under the integral. At variance, in the bending
magnet case the expression for the field is given by Eq. (141) and Eq. (142),
and the range of the variable φx in Eq. (99) is not limited. Therefore, Eq.
(99) cannot be simplified by neglecting φx in the exponential function in Nx

under the integral sign only based on the assumption Nx � 1. The second
difference can be found in the fact that, in the undulator case for Dx,y � 1,
from the exponents in Dx,y in Eq. (99) follows that ∆x� 1 and ∆y� 1, and
can be neglected in the expression for the field. In contrast with this, in the
bending magnet case, from the expression for the electric field on the source
position (Eq. (141) and Eq. (142)) it is clear that there are strong oscillations
with a decreasing ‘local period’ along the x direction. Thus, it can be seen
that ∆x cannot be ignored at Dx � 1, and the integral in Eq. (99) cannot be
simplified to an integral of the flux density over the source surface, as was
done for the undulator case, Eq. (102).
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Let us now consider the beam divergence-dominated regime for Nx,y � 1�
Dx,y. From the analysis of the exponential functions in Dx,y in Eq. (99) follows
that these functions have a significant magnitude only when |∆x| . 1/

√
Dx

and |∆y| . 1/
√

Dy. Then, since Nx,y � 1, it follows that the distributions
exp[−(φx − x̂)2/(2Nx)] and exp[−(φy − ŷ)2/(2Ny)] are sharply peaked about
φx = x̂ and φy = ŷ, respectively. The integrals along the x axis and the y axis
in Eq. (99), including the two polarization components for the field Ẽx,y(x̂, ŷ)
given by Eq. (141) and Eq. (142), can therefore be simplified by the same
line of thought as for the undulator case. However, the important difference
with the undulator case is that now the inequality Nx � 1 � Dx cannot be
called upon for ignoring ∆x̂, thus approximating the exponential function in
Nx, multiplied by 1/

√
2πNx, with a Dirac δ-function under the integral sign

at any point x̂ and ŷ of the source surface. In fact, based on the expressions
for the electric field amplitude at the source position, Eq. (141) and Eq. (142),
we might argue that the exponential function in Nx, multiplied by 1/

√
2πNx,

can be approximated by a Dirac δ-function and ∆x̂ can be neglected only if
√

Nx and 1/
√

Dx are small compared to the ‘local period’ of oscillation of the
field along the x axis. This requirement (at fixed Nx, Dx) would set an upper
limit on the x-coordinate when the integrand can be simplified as described
above.

The situation can be summarized by saying that the asymptotic expression
for the Wigner distribution in the beam divergence-dominated regime in Eq.
(106) can be used in the bending magnet case at least in the region where
x̂ . 1 and ŷ . 1. This is in contrast with the undulator case, when Eq. (106)
can be used at any point on the source plane. According to Eq. (141), for the
horizontal polarization component in the diffraction-limited case, the peak
value of the square modulus of the electric field amplitude on the source
at ξ = 1 is reached at ŷ = 0 and x̂ = 1.54 (see Fig. 4). This point is well
within the region of applicability of Eq. (106) for Nx,y � 1� Dx,y. Thus, the
expression for the brightness of the horizontal polarization component is
given by 21 :

B = max(W) =
1

2πσx′σy′
max

(
dF
dS

)
, (162)

where

max
(

dF
dS

)
=

I
e~

c
4π2 |Ẽ(1.54, 0)|2 (163)

21 The similarity with the corresponding Eq. (107) for the undulator case is striking
here.

58



is the maximum photon flux density for the horizontal polarization com-
ponent of the field of the bending magnet source in the diffraction-limited
case. For λ = λc Eq. (162) can also be written as

B = 0.76 ·
[

4
λ2

I
e
α
σr′

σx′

σr′

σy′

]
, (164)

where σr′ is the so-called ‘vertical opening angle’ [21] introduced already
in section 3. At λ = λc = 2πR/γ3 one finds, for the horizontal polarization
component, that σr′ = 0.67/γ. The numerical factor is related with the par-
ticular choice of wavelength, and will be different for different choices of ξ,
while the parametric dependence in square brackets remains unchanged.

A second, simple limiting case can now be considered. In the beam size-
dominated regime, when Dx,y � 1 � Nx,y, Eq. (99) can be simplified fol-
lowing the same line of reasoning as in the case of an undulator. The only
difference is in the region of applicability of this simplification. We start
asserting the simplifications that can be made and examining their impli-
cations. Variables ∆x̂ and ∆ŷ in Eq. (99) are effectively limited up to values
|∆x̂| ∼ 1 and |∆ŷ| ∼ 1, if we limit the observation angles up to |θ̂x| ∼ 1,
|θ̂y| ∼ 1. Therefore, the exponential functions in Dx,y in Eq. (99) can be re-
placed with unity. Moreover Nx,y � 1, so that we can neglect φx,y in the
exponential function in Nx,y. The Wigner distribution can therefore be writ-
ten as Eq. (112). The integral in this equation can be simplified by rewriting
the electric field at the source, Eq. (141) and Eq. (142), in the terms of the far
field given by Eq. (140). In fact, inserting Eq. (43) into Eq. (112), performing
integration and rearranging yields Eq. (113), where now the electric field
amplitude in the far zone is given by Eq. (140).

A formal way to understand this simplification procedure is the following.
The Wigner distribution W is proportional to the two-dimensional Fourier
transform of the cross-spectral density G, and the coordinates θ̂x,y can be in-
terpreted as reduced spatial frequencies. Suppose now that we have |θ̂x| ∼ 1.
The significant values of ∆x̂ in the integral correspond, then, to an argument
of the electric field amplitude Ẽ of order of unity. This is because the reduced
‘local period’ of the electric field amplitude oscillations is of order of unity
near the origin and decreases along the x axis. In the case when spatial fre-
quencies are of order unity, the main contribution to the integral comes from
the region near ∆x̂ = 0 and φx = 0, and its width is of order |∆x̂| ∼ 1, |φx| ∼ 1.
Since the function exp[−(φx − x̂)2/(2Nx)] is smoothly varying in this region
we can replace it by exp[−x̂2/(2Nx)], and take it out the integral sign. We can
also replace the exponential function in Dx,y with unity, and the integral is
then approximately given by Eq. (112).
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Up to now, for our calculations we used the Wigner distribution method at
the virtual source position. From the discussion concerning the beam size-
dominated regime for bending magnet sources, it is obvious that such choice
is not convenient in this asymptotic. In contrast to the beam divergence-
dominated regime, the approximation procedure described above is not
straightforward, and involves a number of subtleties. Calculations of W
can be performed in two different ways, both consistently leading to the
same result, and a comparison between the different calculation procedures
is instructive. The approximation procedure in the beam size-dominated
regime is easily understood if, instead of the virtual source, one uses the far
zone for calculating W. This approach also offers an opportunity to easily
find the condition for applicability of the approximation made.

As explained in section 2, the standard way of deriving the expression for
the Wigner distribution makes use of the expression for the cross-spectral
density G. In this way, our problem is reduced to the calculation of the cross-
spectral density in the far zone. It can be interesting to explore the properties
of the cross-spectral density and see that an explicit expression in the far
zone can be derived from Eq. (99), describing G at the source position, by
symmetry under the duality transformations:

(θ̂x, θ̂y) −→ (x̂, ŷ) ,
(∆x̂,∆ŷ) −→ (∆θ̂x,∆θ̂y) ,
Nx,y −→ Dx,y

Dx,y −→ Nx,y (165)

The cross-spectral density G in the far zone is therefore given by

Ĝ
(
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)
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2π
√

DxDy
exp
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−
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2
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 exp

−
(
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×Ẽ
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2
, φy +
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 Ẽ∗
φx −

∆θ̂x

2
, φy −

∆θ̂y

2

 ,
(166)

where the amplitude of the electric field Ẽ(θ̂x, θ̂y) in the far zone is given
by Eq. (140). Note that the mathematical rule that we just gave to calculate
the cross-spectral density in the far zone differs from the usual approach,
where the angular and the position representations of the field, Ẽ(~r) and
Ẽ(~θ) are related via a spatial Fourier transform and the fields are given in
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the form of angular spectrum of plane waves. In that way, the statistical
properties of an ensemble of fields at the source position is fully reflected
in the ensemble of the angular spectrum amplitudes, and the cross-spectral
density is a measure of the correlation between the fields of the plane-
wave modes propagating at ~θ − ∆~θ and ~θ + ∆~θ. However, the correlation
between plane waves is a purely mathematical quantity that depends, for
example, on the normalization convention used. In contrast with this, in our
approach we do not make any use of spatial Fourier transforms, because
the angular and the position representations of the field are related via the
Fresnel propagation Eq. (40) and Eq. (41). The field propagation in free space
is a physical process, and does not depend on the definition of the spatial
Fourier transform.

We now return to our quantitative discussion concerning the beam size-
dominated example. If Dx,y � 1, we can replace the exponential functions in
Dx,y multiplied by 1/

√
2πDx,y with Dirac δ-functions, so that the expression

for G in the far zone, Eq. (166), can be approximated with

G = exp
[
−

(∆θ̂x)2Nx

2

]
exp

− (∆θ̂y)2Ny

2


×Ẽ

θ̂x +
∆θ̂x

2
, θ̂y +

∆θ̂y

2

 Ẽ∗
θ̂x −

∆θ̂x

2
, θ̂y −

∆θ̂y

2

 . (167)

In order to proceed it is necessary to determine the behavior of the Ẽ(θ̂x, θ̂y)
along the horizontal axis. Notice that in the far zone, according to Eq. (140),
the module of the electric field does not depend on θ̂x, while its phase varies
as θ̂3

x at θ̂x � 1. Consequently, Eq. (167) depends on ∆θ̂x only through the
phase, and one can further approximate the phase as ∼ θ̂2

x∆θ̂x. If Nx � 1,
because of the exponential function exp(−Nx∆θ̂2

x/2) in Eq. (167), the region
of ∆θ̂x for which G is large is near the point ∆θ̂x = 0, and its width is of order
1/
√

Nx. Suppose we have θ̂2
x �

√
Nx. We can then approximate θ̂x

2
∆θ̂x � 1,

and consequently the phase factor in Eq. (140) is about equal to unity. We
thus obtain

G = exp
(
−
ω2σ2

x∆θ
2
x

2c2

)
exp

−ω2σ2
y∆θ

2
y

2c2

 exp
[
i
ω
c

(
θx∆θxz0 + θy∆θyz0

)]
×|Ẽ(θx, θy)|2 . (168)

In the geometrical optics limit, the cross-spectral density at the source posi-
tion can be written in the form of Eq. (15), meaning that variables ~r and ∆~r
are separable. However, according to Eq. (168), in the far zone there is no
separation of variables ~θ and ∆~θ in G, even in the geometrical optics limit.
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This is contrast with the traditional definition of cross-spectral density in
the far zone as a correlation function between plane-wave modes. The non-
separability in Eq. (168) is a consequence of the fact that in our definition
of cross-spectral density, Eq. (166), we use the complete field amplitudes in
the far zone, which include a spherical phase factor.

The condition for the applicability of Eq. (168) is θ̂2
x �

√
Nx for Dx,y � 1 �

Nx,y. For our purposes it is preferable to express the Wigner distribution at
the source position in terms of the cross-spectral density in the far-zone. The
field at z = 0 is related to the field in the far zone by Eq. (41). Inserting this
expression into Eq. (30), one finds

W =
cz2

0

(2π)4

I
e~

(
ω
c

)2 ∫
d∆~θ exp

(
i
ω
c
~r · ∆~θ

)
exp

(
−i
ωz0

c
~θ · ∆~θ

)
×G(~θ,∆~θ) . (169)

If we now substitute Eq. (168) in Eq. (169) we obtain Eq. (113) as must be,
but with the alternate derivation above we specified more precisely the
conditions of applicability of Eq. (113).

Let us finally investigate the more complicated beam size- and divergence-
dominated regime. Formally we shall consider the limiting case when the
dimensionless parameters of the electron beam distribution Nx,y and Dx,y

are much larger than unity. However, even at Dx,y � 1 and Nx,y � 1 we
have to distinguish between two limiting expressions for the brightness of a
bending magnet, at variance with the single result obtained for undulators.
In fact, for bending magnets, the dimensionless parameter Dx/

√
Nx plays

an important role, and one should additionally consider two limiting cases
for Dx/

√
Nx much smaller or much larger than unity. To explore the nature

of this extra parameter, we begin by noting that another situation where
a similar parameter exists was already discussed above, when treating the
condition of applicability for the approximation of the Wigner distribution
in the beam size-dominated regime. From that case one can show that the
condition θ̂x

2
∆θ̂x � 1 is a consequence of the small ‘aberration’ influence

within a window centered in the far zone at an angle θ̂x with a horizontal
opening angle ∆θx. In fact, the electron motion in a bend has cylindrical
symmetry with the vertical axis going through the center of the circular
orbit. Therefore, an observer on-axis (Fig. 3) receives as much radiation
from an electron with horizontal deflection angle θ̂x as an observer looking
at an electron with zero deflection angle from an angle θ̂x. It follows that the
existence of the parameter Dx/

√
Nx is a consequence of the small ‘aberration’

influence within a window placed in the far zone about the z-axis, with a
horizontal opening angle ∆θ̂x ∼ 1/

√
Nx. Finally, it is worth emphasizing

that the horizontal opening angle 1/
√

Nx is the angular dimension of a
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coherent area in the far zone. Therefore, one can summarize the previous
observations by saying that the SR emitted within a solid angle of about
1/(
√

Nx
√

Ny) is fully transversely coherent and additionally, at

Dx
√

Nx
� 1 , (170)

has an M2 factor close to unity. Such fraction of radiation can be ultimately
focused down to a spot size of dimension of aboutλ2. In light of this, one sees
that Dx/

√
Nx is an important problem parameter that is required in order to

calculate the bending magnet brightness in the beam size- and divergence-
dominated regime. In particular, based on this intuitive reasoning we expect
that in the asymptotic limit Eq. (170) the brightness should be proportional
to the coherent solid angle 1/(

√
Nx

√
Ny) ∼ 1/(σxσy), but should not depend

on the electron beam divergence in the horizontal direction, even when
Dx � 1. In the following we will demonstrate that rigorous mathematical
analysis confirms such expectation.

We begin by approximating the expression for the cross-spectral density
in the far zone, Eq. (166), in the limiting case for Dx,y � 1 and Nx,y �

1. Suppose that condition Eq. (170) is satisfied. From the analysis of the
exponential functions in Nx,y in Eq. (166) follows that ∆θx and ∆θy can be
neglected in the expression for the field. Thus, the cross-spectral density
is a product of two separate factors. The first is the Fourier transform of
the transverse electron beam distribution. The second is the convolution of
the electron beam angular distribution with the two dimensional function
|Ẽ(φx, φy)|2, which is proportional to the angular intensity distribution of the
radiation. Moreover, the range of the variableφy in this convolution integral
is effectively limited up to values |φy| ∼ 1. In fact, φy enters the expression
for the modulus of the electric field (see Eq. (140)), and at values larger than
unity the integrand in the convolution is suppressed. It follows that when
Dy � 1 we can neglectφy in the exponential function exp[−(φy− θ̂y)2/(2Dy)]
under the integral sign. Eq. (166) is therefore approximated by

G = exp
(
−

Nx∆θ̂2
x

2

)
exp

−Ny∆θ̂2
y

2


×

1

2π
√

DxDy
exp

− θ̂2
y

2Dy


∞∫

−∞

dφx

∞∫
−∞

dφy exp

− (φx − θ̂x)2

2Dx

 |Ẽ(φx, φy)|2 .

(171)

Since
∫

dφy|Ẽ(φx, φy)|2 does not depend on φx, we can take it out from under
the integral over φx. If we now substitute this expression in the definition
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of the Wigner distribution, Eq. (169) and perform the integral over ∆θ̂x,y we
obtain in dimensional units

W(x, y, θx, θy) =
1

(2π)3/2σxσyσy′
exp

(
−

x2

2σ2
x

)
exp

(
−

y2

2σ2
y

)
exp

− θ2
y

2σ2
y′

 dF
dθx

(172)

where

dF
dθx

=
dNph

dθx(dω/ω)
=

I
e~

cz2
0

(2π)2

∞∫
−∞

dθy|Ẽ(θx, θy)|2 = constant (173)

is the photon flux per unit time per unit horizontal angle per relative spectral
bandwidth. The brightness approximated by Eq (56) coincides with the
maximum of W in Eq. (172) in the case when Dx,y � 1 and Nx,y � 1 and at
arbitrary electron beam divergence in horizontal direction (i.e. at arbitrary
Dx). Now we demonstrated that the condition for validity of Eq. (172) is Eq.
(170).

Let us now consider the asymptotic case opposite to (170):

Dx
√

Nx
� 1 . (174)

Up to now, for our calculations in the beam size- and divergence-dominated
regime (Nx,y � 1 and Dx,y � 1) we used the Wigner function method in
the far zone. In the asymptotic case (174) it is more convenient to use the
virtual source for calculating W. The cross-spectral density at the virtual
source position is given by Eq. (99). From the analysis of the exponential
function in Dx,y in Eq. (99) follows that ∆x̂ and ∆ŷ can be neglected in
the expression for the field. Thus, the cross-spectral density is a product
of two separate factors. The first is the Fourier transform of the angular
electron beam distribution. The second is the convolution of the electron
beam spatial distribution with the two dimensional function |Ẽ(φx, φy)|2,
which is proportional to the intensity distribution of the radiation from a
single electron at the source position. The range of the variable φy in the
convolution integral is effectively limited up to values |φy| ∼ 1, because φy

enters the expression for module of electric field Eq. (141). Therefore, when
Ny � 1 we can neglect φy in the exponential function exp[−(φy − ŷ)2/(2Ny)]
under the convolution integral. The approximation of Eq. (99) is then given
by
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G =
1

2π
√

NxNy
exp

[
−

(∆x̂)2Dx

2

]
exp

[
−

(∆ŷ)2Dy

2

]
exp

(
−

ŷ2

2Ny

)

×

∞∫
−∞

dφx

∞∫
−∞

dφy exp
[
−

(φx − x̂)2

2Nx

]
|Ẽ(φx, φy)|2 , (175)

where Ẽ is the radiation field in Eq. (141). Since
∫

dφy|Ẽ(φx, φy)|2 depends
on φx, we cannot take it out from under the integral. If we substitute this
approximation of G in the definition of the Wigner function Eq. (160) and
perform the prescribed integration we obtain the following result in dimen-
sional units

W(x, y, θx, θy) =
1

(2π)2σxσx′σyσy′

I
e~

c
(2π)2

× exp
(
−
θ2

x

2σ2
x′

)
exp

− θ2
y

2σ2
y′

 exp
(
−

y2

2σ2
y

)

×

∞∫
−∞

dx′
∞∫

−∞

dy′ |Ẽ(x′, y′)|2 exp
[
−

(x − x′)2

2σ2
x

]
(176)

Comparing Eq. (175) and Eq. (176) one can see that in the beam size- and
divergence-dominated regime, depending on the specific ratio between hor-
izontal beam size and divergence, the Wigner distribution is described using
functions with completely different parametric dependence. The brightness
approximated by Eq. (56) does not coincide with the maximum of W in
the case when condition (174) is satisfied. Finally, we should note that the
usually accepted approximation for bending magnet brightness turns out
to be parametrically inconsistent not only in the intermediate geometrical
optics asymptote when the beam divergence dominates over the diffraction
angle, but also in the ‘simplest’ geometrical optics asymptotic case when
both beam size and beam divergence dominate over diffraction size and
diffraction angle.

6 Conclusions

This document discusses the relation between statistical optics and the elec-
tromagnetic theory of SR radiation. A basic problem pertaining this relation
is the definition of the SR brightness in terms of electromagnetic fields and
their statistical properties. We consider the brightness defined with the help
of a Wigner distribution. We propose a mathematical scheme and formulate
a novel theory of SR brightness defined as the maximum of the Wigner
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distribution.

Formulating the theory of brightness in the language of Wigner distributions
has only one guideline, a particular correspondence principle. The concep-
tual foundation of this correspondence principle is based on the assumption
that the formalism involved in the calculation of brightness must include
radiometry as a limiting case. We use the classical definition of radiance
to obtain a correct proportionality factor in the definition of brightness. In
this way, in the geometrical optics limit, the brightness can be represented
as the maximum value of the radiance. In classical radiometry the maxi-
mum of the radiance is the maximum of the photon flux density in phase
space. Since the correspondence principle is integrated once and for all in
the very foundation of our theory, one expects to eliminate the necessity of
its recurrent application to every individual problem.

We compute various geometrical optics limits according to our definition
of brightness, and we compare results with expectations from theories cur-
rently used in literature. In many cases we find a significant disagreement
between exact calculations of the maximum photon flux density in phase
space and the usually accepted approximations for undulator and bending
magnet brightness.
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Appendix A. Undulator radiation in resonance approximation. Far zone.

Calculations pertaining undulator radiation are well established. see e.g.
[19]. In this appendix we present a simple derivation of the frequency rep-
resentation of the radiated field produced by an electron in an undulator.
For the electron transverse velocity we assume

vx(z) = −cθs sin(kwz) = −
cθs

2i
[
exp(ikwz) − exp(−ikwz)

]
. (177)

Here kw = 2π/λw, andλw is the undulator period. Moreover,θs = K/γ, where
K is the deflection parameter defined as

K =
eλwHw

2πmec2 , (178)

me being the electron mass at rest and Hw being the maximal magnetic field
of the undulator on axis.

We write the undulator length as L = Nwλw, where Nw is the number of
undulator periods. With the help of Eq. (37) we obtain an expression, valid
in the far zone:

~̃E =
iωe
c2z0

L/2∫
−L/2

dz′exp [iΦT] exp
[
i
ωθ2z0

2c

] [
K
γ

sin (kwz′)~ex + ~θ

]
.

(179)

Here

ΦT =

(
ω

2cγ̄2
z

+
ωθ2

2c

)
z′ −

Kθx

γ
ω

kwc
cos(kwz′) −

K2

8γ2

ω
kwc

sin(2kwz′) ,

(180)

where the average longitudinal Lorentz factor γ̄z is defined as

γ̄z =
γ

√
1 + K2/2

. (181)

The choice of the integration limits in Eq. (179) implies that the reference
system has its origin in the center of the undulator.
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Usually, it does not make sense to calculate the intensity distribution from
Eq. (179) alone, without extra-terms (both interfering and not) from the other
parts of the electron trajectory. This means that one should have complete
information about the electron trajectory and calculate extra-terms to be
added to Eq. (179) in order to have the total field from a given setup.
Yet, we can find particular situations for which the contribution from Eq.
(179) is dominant with respect to others. In this case Eq. (179), alone, has
independent physical meaning.

One of these situations is when the resonance approximation is valid. This
approximation does not replace the paraxial one, based on γ2

� 1, but it is
used together with it. It takes advantage of another parameter that is usually
large, i.e. the number of undulator periods Nw � 1. In this case, the integral
in dz′ in Eq. (179) exhibits simplifications, independently of the frequency
of interest due to the long integration range with respect to the scale of the
undulator period.

In all generality, the field in Eq. (179) can be written as

~̃E = exp
[
i
ωθ2z0

2c

]
iωe
c2z0

×

L/2∫
−L/2

dz′
{

K
2iγ

[
exp (2ikwz′) − 1

]
~ex + ~θ exp (ikwz′)

}

× exp
[
i
(
C +

ωθ2

2c

)
z′ −

Kθx

γ
ω

kwc
cos(kwz′) −

K2

8γ2

ω
kwc

sin(2kwz′)
]
.

(182)

Here ω = ωr + ∆ω, C = kw∆ω/ωr and

ωr = 2kwcγ̄2
z , (183)

is the fundamental resonance frequency.

Using the Anger-Jacobi expansion:

exp
[
ia sin(ψ)

]
=

∞∑
p=−∞

Jp(a) exp
[
ipψ

]
, (184)

where Jp(·) indicates the Bessel function of the first kind of order p, to write
the integral in Eq. (182) in a different way:
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~̃E = exp
[
i
ωθ2z0

2c

]
iωe
c2z0

∞∑
m,n=−∞

Jm(u)Jn(v) exp
[ iπn

2

]

×

L/2∫
−L/2

dz′ exp
[
i
(
C +

ωθ2

2c

)
z′
]

×

{
K

2iγ
[
exp (2ikwz′) − 1

]
~ex + ~θ exp (ikwz′)

}
exp [i(n + 2m)kwz′] ,

(185)

where 22

u = −
K2ω

8γ2kwc
and v = −

Kθxω
γkwc

. (186)

Up to now we just re-wrote Eq. (179) in a different way. Eq. (179) and Eq. (185)
are equivalent. Of course, definition of C is suited to investigate frequencies
around the fundamental harmonic but no approximation is taken besides
the paraxial approximation.

Whenever

C +
ωθ2

2c
� kw , (187)

the first phase term in z′ under the integral sign in Eq. (185) is varying
slowly on the scale of the undulator period λw. As a result, simplifications
arise when Nw � 1, because fast oscillating terms in powers of exp[ikwz′]
effectively average to zero. When these simplifications are taken, resonance
approximation is applied, in the sense that one exploits the large parameter
Nw � 1. This is possible under condition (187). Note that (187) restricts the
range of frequencies for positive values of C independently of the obser-
vation angle θ, but for any value C < 0 (i.e. for wavelengths longer than
or = c/ωr) there is always some range of θ such that Eq. (187) can be applied.
Altogether, application of the resonance approximation is possible for fre-
quencies around ωr and lower than ωr. Once any frequency is fixed, (187)
poses constraints on the observation region where the resonance approxima-
tion applies. Similar reasonings can be done for frequencies around higher
harmonics with a more convenient definition of the detuning parameter C.

Within the resonance approximation we further select frequencies such that

22 Here the parameter v should not be confused with the velocity.
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|∆ω|
ωr
� 1 , i.e. |C| � kw . (188)

Note that this condition on frequencies automatically selects observation
angles of interest θ2

� 1/γ2
z . In fact, if one considers observation angles

outside the range θ2
� 1/γ2

z , condition (187) is not fulfilled, and the inte-
grand in Eq. (185) exhibits fast oscillations on the integration scale L. As a

result, one obtains zero transverse field, ~̃E = 0, with accuracy 1/Nw. Under
the constraint imposed by (188), independently of the value of K and for
observation angles of interest θ2

� 1/γ2
z , we have

|v| =
K|θx|

γ
ω

kwc
=

(
1 +

∆ω
ωr

) 2
√

2K
√

2 + K2
γ̄z|θx| . γ̄z|θx| � 1 . (189)

This means that, independently of K, |v| � 1 and we may expand Jn(v) in
Eq. (185) according to Jn(v) ' [2−n/Γ(1 + n)] vn, Γ(·) being the Euler gamma
function

Γ(z) =

∞∫
0

dt tz−1 exp[−t] . (190)

Similar reasonings can be done for frequencies around higher harmonics
with a different definition of the detuning parameter C. However, around
odd harmonics, the before-mentioned expansion, together with the appli-
cation of the resonance approximation for Nw � 1 (fast oscillating terms in
powers of exp[ikwz′] effectively average to zero), yields extra-simplifications.

Here we are dealing specifically with the first harmonic. Therefore, these
extra-simplifications apply. We neglect both the term in cos(kwz′) in the
phase of Eq. (182) and the term in ~θ in Eq. (182). First, non-negligible terms
in the expansion of Jn(v) are those for small values of n, since Jn(v) ∼ vn, with
|v| � 1. The value n = 0 gives a non-negligible contribution J0(v) ∼ 1. Then,
since the integration in dz′ is performed over a large number of undulator
periods Nw � 1, all terms of the expansion in Eq. (185) but those for m = −1
and m = 0 average to zero due to resonance approximation. Note that
surviving contributions are proportional to K/γ, and can be traced back to
the term in~ex only, while the term in ~θ in Eq. (185) averages to zero for n = 0.
Values n = ±1 already give negligible contributions. In fact, J±1(v) ∼ v.
Then, the term in ~ex in Eq. (185) is v times the term with n = 0 and is
immediately negligible, regardless of the values of m. The term in ~θ would
survive averaging when n = 1, m = −1 and when n = −1, m = 0. However,
it scales as ~θv. Now, using condition (188) we see that, for observation angles
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of interest θ2
� 1/γ2

z , |~θ| |v| ∼ (
√

2 K /
√

2 + K2 ) γ̄zθ2
� K/γ. Therefore, the

term in ~θ is negligible with respect to the term in ~ex for n = 0, that scales as
K/γ. All terms corresponding to larger values of |n| are negligible.

Summing up, all terms of the expansion in Eq. (184) but those for n = 0 and
m = −1 or m = 0 give negligible contribution. After definition of

AJJ = J0

(
ωK2

8kwcγ2

)
− J1

(
ωK2

8kwcγ2

)
, (191)

that can be calculated at ω = ωr since |C| � kw, we have

~̃E = −
Kωe

2c2z0γ
AJJ exp

[
i
ωθ2z0

2c

] L/2∫
−L/2

dz′ exp
[
i
(
C +

ωθ2

2c

)
z′
]
~ex ,

(192)

yielding the well-known free-space field distribution:

~̃E(z0, ~θ) = −
KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

[
L
2

(
C +

ωθ2

2c

)]
~ex ,

(193)

where sinc(·) ≡ sin(·)/(·). Therefore, the field is horizontally polarized and
azimuthal symmetric.
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