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Abstract 
Users beam-time at modern FEL sources is an extreme-

ly valuable commodity. Moreover, maximization of FEL 
up-time must always be performed accounting for strin-
gent requirements on the photon pulse characteristics. 
These may vary widely depending on the Users requests, 
which poses challenges to parallel operation of high-
repetition rate facilities like the European XFEL. There-
fore, both model free or model-dependent optimization 
schemes, where the model might be given, or provided by 
machine-learning approaches, are of high importance for 
the overall efficiency of FEL facilities. In this contribu-
tion we review our previous activities and we report on 
current efforts and progress in FEL optimization schemes 
at the European XFEL. Finally, we provide an outlook of 
future developments. 

INTRODUCTION 
Automatic optimization of accelerator performance is 

part of the daily operation procedures at the European 
XFEL [1,2] and other FEL facilities, e.g. [3-5]. The dedi-
cated tools help to tune machines performance faster and 
more efficient (multidimensional optimization) in com-
parison to manual tuning. However, the tuning of the 
large-scale facilities as the European XFEL remains a 
time-consuming procedure. Moreover, the best machine 
performance is usually achieved for the most explored 
operation modes, see Fig. 1, which also points to the im-
portance of optimization procedures. Figure 1 shows 
dependence of the photon energy against the photon pulse 
energy for the hard X-Ray undulator SASE1. The colour 
shows number of machine files – a snapshot of the ma-
chine in a stable state. As it can be seen, one of the most 
frequently used photon energy is around 9–9.3 keV, where 
the maximum photon pulse energy was around 2.7 mJ. At 
longer wavelengths, for example 8 keV the maximum 
photon pulse energy was half as much. 

 
Figure 1: EuXFEL SASE1 performance statistics. 

Taking into account high pressure on the machine 
availability for parallel multi-user operation, the European 
XFEL is looking for more automation of optimization 
procedures and new effective approaches to speed up the 
machine performance tuning. 

The analysis of the collected optimization logs per-
formed by OCELOT Optimizer [6] shows that one of the 
problems is the high dimensionality of parameter space 
that needs to be explored in the optimization process. For 
example, 446 unique devices have been used in optimiza-
tions at the European XFEL to maximize the SASE pulse 
energy within the last 2.5 years [2]. Although the frequen-
cy of use of a particular set of devices varies. It can still 
give an indication of how complex the tuning is. Another 
obstacle to fast and efficient machine tuning is that hy-
perparameters of optimization algorithms and set of de-
vices which need to tune specific physical parameters, 
e.g. beam matching, are not always optimally selected, 
which also affect efficiency. In this paper we will consider 
the current state of optimization methods used in the Eu-
ropean XFEL, and possible ways to overcome the prob-
lems discussed. 

MODEL-FREE OPTIMIZATION 
The main tool for a model-free SASE optimization in 

the European XFEL is the OCELOT Optimizer. It is the 
next generation of the SASE optimizer developed for 
FLASH [6] but with the possibility of creating/modifying 
an objective function by the operator. Each optimization 
is logged including an objective function and actuator 
changes during optimization and can be analyzed after-
wards. The tool was deployed in the EuXFEL control 
room at the beginning of 2017. Since then we collected 
experience of more than 6000 optimizations (Fig. 2). 
More details of OCELOT optimizer statistics analysis can 
be found in [2]. 

 
Figure 2: OCELOT optimizer statistics. 

As it was mentioned above high dimensionality of the 
parameter space is one of the problems for fast FEL ma-
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chine tuning. Recently, the Extremum Seeking method 
[7, 8] was added to a family of other optimization algo-
rithms in the OCELOT optimization toolbox [9]. One of 
the features of the algorithm from the optimizing point of 
view is the smooth change of actuator’s parameters (this 
can be an essential advantage for tuning of mechanical 
devices) and the ability to find an extremum in parameter 
space with many (>10) dimensions, one of the examples 
of such an optimization is SASE maximization with 16 
simultaneously tweaked phase-shifters (Fig. 3). More 
details and examples of optimizations at European XFEL 
can be found in [9]. 

 
Figure 3: Extremum Seeking simultaneous optimization 
of 16 phase-shifters gaps [9]. 

A new version (v1.1) of the optimization toolbox was 
developed and deployed to the control room in June 2019, 
taking into account the proposals outlined in [2]. One of 
the main changes is the extension of command line inter-
face (CLI) capabilities of the tool. The CLI offers a flexi-
ble way of using all the functions of the Optimizer with-
out GUI restrictions. For example, the ability to connect a 
physical accelerator model to an optimization algorithm 
or run an optimization sequence. Also, the number of 
logged control channels in the new version was consider-
ably increased mainly by adding channels about machine 
conditions to allow in the future to use ML methods for 
choosing the most effective optimization setups for par-
ticular machine condition. 

Use of a Physics Model in Optimizations 
FEL performance maximization in the European XFEL 

usually includes tuning of the orbit with correctors and 
optimizing bunch compression by tweaking RF settings as 
well as beam matching with quadrupoles in dedicated 
sections. One of the advantages of the model-independent 
optimization is the flexibility when an operator can apply 
optimization for any set of devices and any objective 
function. However, the flexibility has drawbacks: often 
chosen actuators as well as hyperparameters for the opti-
mization algorithm (e.g. initial step size, number of itera-
tions etc) to tune in particular the accelerator section is 
nearly random. In general, that affects the effectiveness of 
the optimization. From another side, a physical model of 
an accelerator can be used to define the most effective 

setup for the optimization, e.g. hyperparameters and/or 
most effective sets of actuators. 

One example is the beam matching with help of the be-
ta mismatch parameters [10] and mismatch phases tuning 
instead of tweaking quadrupoles directly. The advantage 
of this approach is that only 4 parameters with well-
defined boundaries are required to tune a certain matching 
accelerator section with several quadrupoles. In this case, 
the optimization procedure looks as shown in Fig. 4. To 
convert the mismatch parameters into quadrupole 
strengths and vice versa, a physical accelerator model 
based on the OCELOT beam dynamics module is 
used [11, 12]. We tested this approach to tune a matching 
section in front of the SASE1 undulator. The result of 
such an optimization is shown on Fig. 5. The set of quad-
rupoles was chosen to cover a range of beta mismatch 
parameters 𝑀 / 1, 2  and phases 𝜓 / 90, 90 . 

A similar approach can be applied for orbit tuning using 
the amplitude and angle of the orbit distortion instead of 
tweaking corrector’s strengths. 

 
Figure 4: Optimization procedure for tuning beta mis-
match parameters and phases. 

 
Figure 5: Optimization SASE pulse energy with beta-
mismatch parameters 𝑀 /  and mismatch phases 𝜓 /  in 
matching section in front of SASE1 undulator, number 
iteration is 25. 

Sequence of Optimizations 
The ability to launch a sequence of optimizations (Ac-

tions) was proposed for the first time in [6]. But due to 
technical reasons it was not implemented but the efforts 
were aimed at a single optimization that affects the exist-
ing capabilities of the OCELOT graphical interface. 
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Reliability and efficiency of the model-free optimiza-
tions have raised the question of applying optimization 
sequences without an operator intervention, increasing the 
level of automation of optimization procedures. As a first 
step we tested the capability of a new software to run 
predefined optimization sequence. One of the preliminary 
results is shown in Fig. 6, where two optimizations in a 
row were used to optimize the SASE pulse energy by 
aircoils. In addition, the software monitors the status of 
the machine, and in the event of a beam shutdown, the 
optimization is paused. 

 
Figure 6: Sequence of optimization with aircoils in SA-
SE2 undulator. 

MODEL-DEPENDENT OPTIMIZATION  
Model-based optimization methods use/build a regres-

sion model that predicts performance. The regression 
model may be provided, for example, either by a physi-
cal/mathematical model or by fitting the previously col-
lected data, for example, with help of ML methods. 

If the construction of a mathematical model to predict 
FEL performance on the real FEL facility with hundreds 
of free parameters - the task is extremely difficult, then a 
physical model of the multi-stage bunch formation system 
can be mathematically described [13]. This algorithm was 
implemented in OCELOT and was used in simulations to 
optimize compression scenarios with taking into account 
collective effects for the European XFEL accelerator [14]. 
The peculiarity of the algorithm is its fast convergence. 
Only a few iterations (<10) are required to obtain a com-
pression scenario with the desired beam parameters. It is 
also planned to implement and test this approach on the 
accelerator. 

Another example of a model-dependent optimization 
which is in operation at the European XFEL is a statistical 
optimization of the launch orbit to the SASE1 undulator. 
The method proposed in [15] was implemented in OCE-
LOT under the name ‘Adaptive Feedback’. Details can be 
found in [1]. Here, the regression model is not provided 
by physics or ML methods but rather by simple statistical 
analysis of synchronously collected data of the orbit and 
the SASE pulse energy. The best trajectories in terms of 
maximum pulse energy are averaged and used as a golden 
orbit by the orbit feedback. That moves the beam quickly 

to its best trajectory and thus it pushes the pulse energy to 
its maximum. 

OUTLOOK AND ML METHODS 
Model-free optimization methods were widely used 

during commissioning and further in daily operation of 
the European XFEL. A model-based method such as the 
adaptive orbit feedback proved to be extremely useful and 
more advantageous compared to purely empirical meth-
ods. 

Recently, new approaches have been developed with 
the aim to reduce tuning time. One of them is the Bayesi-
an optimization utilizing Gaussian process [4, 16, 17] that 
allows to find the extremum of an objective function 
faster than, for example, the Nelder-Mead algorithm [18]. 
The version of the Bayesian optimization described in [4] 
was included to a family of optimization methods of the 
Optimizer but not yet tested at the European XFEL. 

The other approach uses a combination of two methods: 
a machine learning technique, which suggests a working 
point close to the global minimum based on the previous-
ly collected data, and a model-independent optimization, 
which explores the proposed area and makes final optimi-
zation [19]. 

A third approach, which we can note, is virtual diagnos-
tics, which is not directly related to the optimization, but 
can be used to get additional information about the elec-
tron and/or photon beams properties, which in turn can be 
used for machine or experiment performance optimization 
[20,21].  

The approaches described are promising, but the lack of 
infrastructure to collect, process, cleanse and analyse 
these large volumes of data is one of the main obstacles to 
integrating these methods into the accelerator control 
systems for daily use. The importance of the problem has 
been recognized and the high level control teams are 
making efforts to create a more user-friendly control room 
environment for machine learning applications, for exam-
ple, see [22]. 

CONCLUSION 
We present the status of the existing optimization pro-

cedures used at the European XFEL accelerator, as well as 
new approaches including test results. 

A new version of the OCELOT Optimizer was recently 
launched. The main difference are the advanced features 
of the command line interface, which allow us to perform 
various types of optimizations in script mode. Thus, we 
are now able to run an optimization sequence without 
operator intervention and use the physical accelerator 
model to determine hyperparameters in some types of 
optimizations. 
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