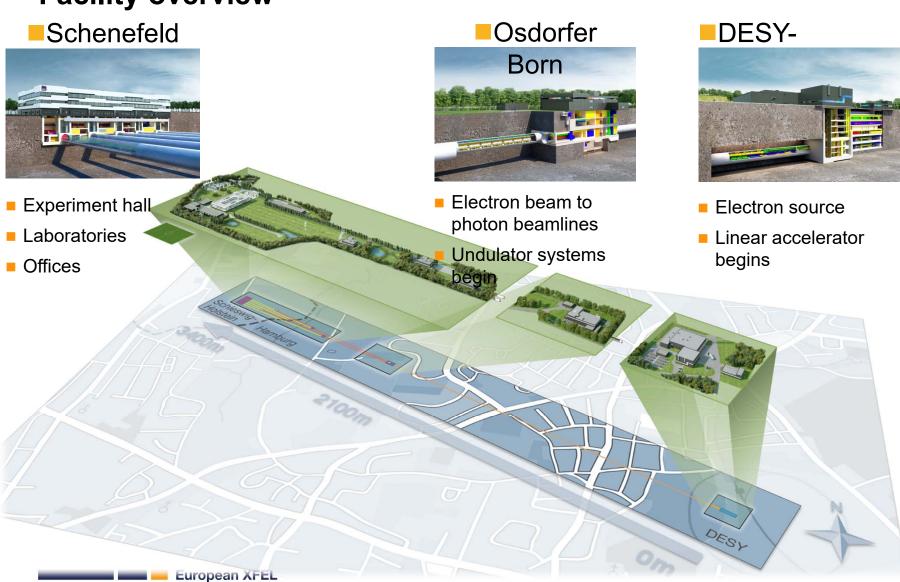


# Management of undulators production and commissioning for the European XFEL

Suren Karabekyan

**Argonne National Laboratory** 

October 14th, 2019

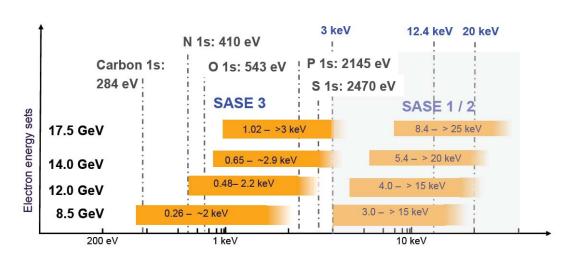

European XFEL

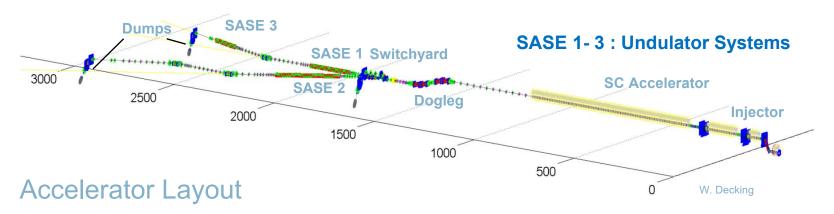
Suren Karabekyan, ANL, October 14th, 2019

### **Outline**

- Project overview
- Project management aspects
- Experience
  - Planning
  - Execution
- Lessons learned

## **Facility overview**





### **Undulator Systems**

|                           | SASE1/2      | SASE3      |
|---------------------------|--------------|------------|
| λ <sub>u</sub> [mm]       | 40           | 68         |
| Operational Gap           | 10-20        | 10-25      |
| Range [mm]                |              |            |
| K-Range                   | 3.9–1.65     | 9.3-4      |
| Radiation Wavelength Rang |              |            |
| @ 17.5 GeV                | 0.147-0.040  | 1.22-0.27  |
| @ 14.0 GeV                | 0.230-0.063  | 1.90-0.42  |
| @ 12.0 GeV                | 0.310-0.0828 | 2.44-0.621 |
| @ 8.5 GeV                 | 0.625-0.171  | 5.17-1.15  |
| Number of Segments        | 35           | 21         |
| System Length [m]         | 213.5        | 128.1      |

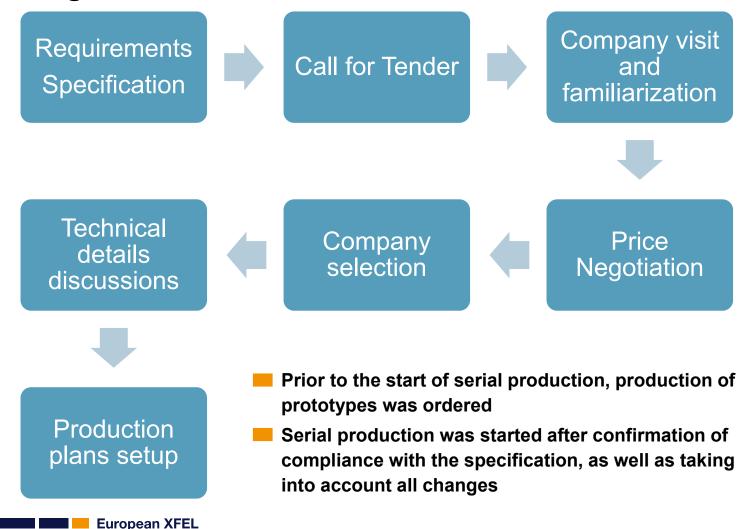
**European XFEL** 

### Photon Energy Range



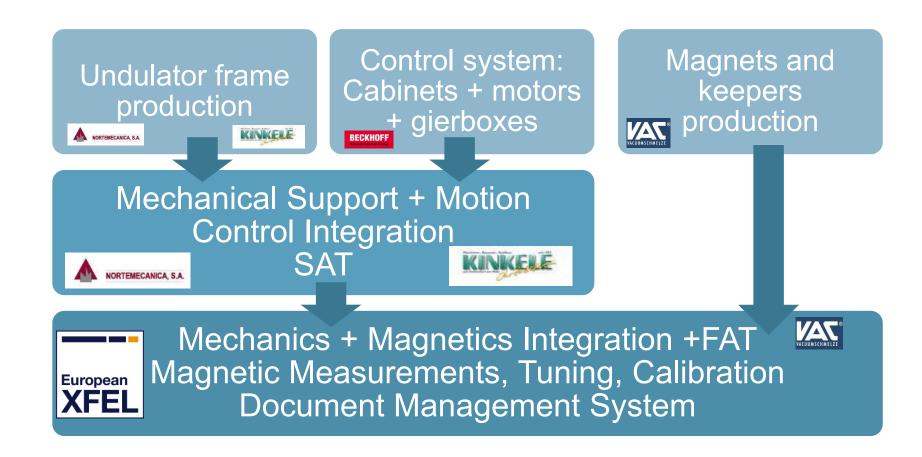


**Repetition rate:** < 27000 pulses/ sec


# **Undulators Production Project Planning**



#### 12 countries are participating in the European XFEL project


- Looking for the possibility of in-kind contribution
- Selection of partners
- Project coordination
  - Laboratory visits, technical discussions
  - Specifications
  - Instructional documentation
  - Meetings organization
  - Weekly videoconferences
  - Preparations for using Electronic Document Management System (EDMS)
  - Documentation process introduction
  - Archiving

# **Undulators Production Ordering Process Flow**



### **Production Process Flow**

**European XFEL** 



### **Serial Production of Undulator Segments:**

### **External Production in Industry**

**Mechanical Support Systems** 















VACUUMSCHMELZE









Magnetic Structuress





### **Production at European XFEL in Hall 5**

**New Undulator Segments** 

3 climatized Magnetic Labs

**Assembly Area for** Magnetic Structures

Segments waiting for Magnetic

Measurements

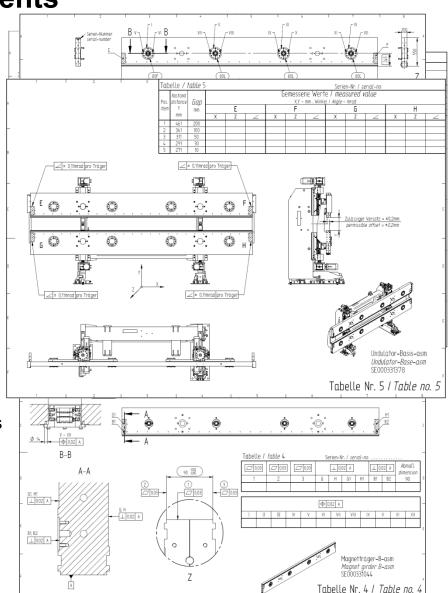
Measured and tuned **Segments** 



**Incoming Magnetic** Structures from VAC

#### Steps @ XFEL.EU:

- **Mounting of magnetic** structures
- **Local Control System** Commissioning
- Magnetic Measurements & **Tuning**
- Documentation. **Preparation for** Installation


#### Schedule:

- Total Time ≈ 2 Years (starting Oct/12)
- Scheduled End: Oct / End 2014
- → 3 Magnetic Labs needed running in parallel
- 3 Weeks/Undulator

Hall 5 was rapidly filled up. Assembled and tuned undulators were stored in a hall, outside of DESY premises .

**Quality Plan - Undulator Segments Process Specification - FAT** 

- Test of welding seams
- Surface Treatment documentation
- Non-Conformance, Change Management
- Factory Acceptance Test (FAT)
  - Support Frame Quality, App, (Table 1)
  - Support Frame with Drives, (Table 2)
  - Girder Quality, (Tables 3 & 4)
  - Final Test of Support System, (Table 5)
  - Undulator-Checklist: Flawless Operation
- Certificates and Dimensional Control documents
  - Inspection Reports
  - Laser Tracker Reports



European XFEL

## **Quality Plan - Undulator Segments Process Specification – SAT**

- The SAT should demonstrate the full operability of the support structure under full magnetic forces. This includes:
  - Dimensional precision of the girder mounting
  - Precision of the guiding system
  - Angular alignment and distortion of the girders on the basis of the reference surfaces when subject to magnetic forces
- These measurements are a proof of the final state. The following measurements need to be done as a function of the gap:
  - Transverse girder position (z). Max offset: ± 0.25mm
  - Girder inclination on both ends on the Top and bottom girders using a precise frame spirit level
    - ▶ Max. Tilt of a magnet girder without magnet structure: ± 0.11mrad
    - ▶ Max. Tilt of a magnet girder with magnet structure: ± 0.20mrad

ilt nur für die Magnetträger MT

Skizze 1

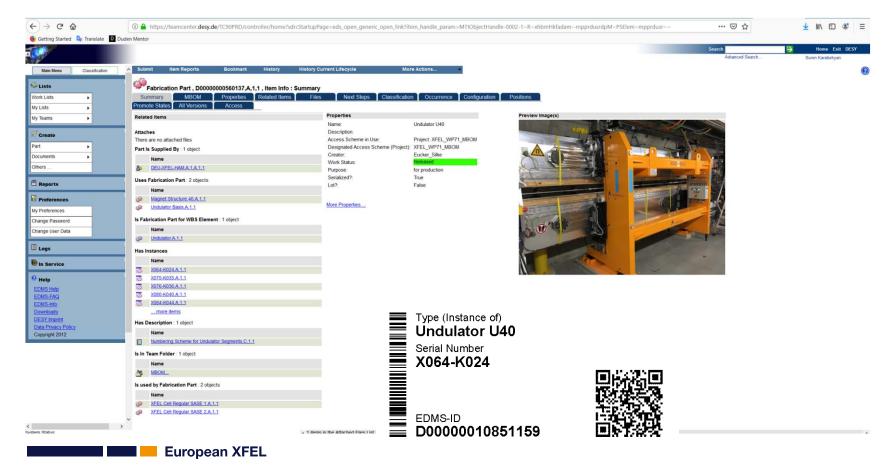
Quality Plan - Undulator Segments Testing of Control Components

- For the magnetic commissioning of the undulator it was necessary to bring it into the magnetic measurement hutch.
- Control of all undulators introduced to the hutch can be carried out using the same rack
- It was decided to commission the undulator with the assigned control rack.
- During this commissioning, a complete set of tests was carried out.
- The hardware related errors was about 5% of the system



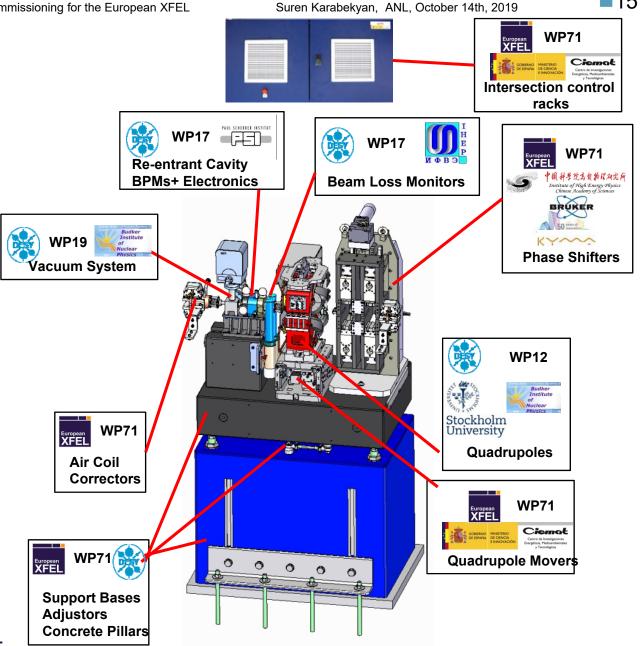
# Quality Plan for XFEL Undulator Segments Documentation and Archiving

- EDMS schooling → upload rights of the documents to the companies
- Archiving all documents, protocols, certificates into the EDMS
- Supervising and controlling by the XFEL responsible




#### SASE 1 - XTD 2 10.10.2019 21:00:04 (CE(S)T)

| XFEL Cell Regular SASE 1                                       | Cell01.SA1           | Cell02.SA1           | Cell03.SA1           | Cell04.SA1           | Cell05.SA1           | Cell06.SA1           | Cell07.SA1           | Cell08.SA1           | Cell09.SA1           | Cell10.SA1           | Cell11.SA1           | Cel    |
|----------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------|
|                                                                | M.                   | **                   |                      |                      |                      |                      |                      |                      |                      |                      |                      |        |
| Undulator U40<br>XFEL Diagnostics Undulator                    |                      |                      | X069-K029            | X062-K022            | X008-N006            | X044-K004            | X002-K002            | X064-K024            | X058-K018            | X050-K010            | X045-K005            |        |
| XFEL-Undulatorkammer                                           | XFEL-Undu-Kammer-010 | XFEL-Undu-Kammer-035 | XFEL-Undu-Kammer-019 | XFEL-Undu-Kammer-047 | XFEL-Undu-Kammer-062 | XFEL-Undu-Kammer-051 | XFEL-Undu-Kammer-048 | XFEL-Undu-Kammer-058 | XFEL-Undu-Kammer-049 | XFEL-Undu-Kammer-056 | XFEL-Undu-Kammer-061 | XFEL-L |
| Aircoil Big SASE 1+3                                           |                      |                      | 0102                 | 0123                 | 0132                 | 0131                 | 0130                 | 0134                 | 0133                 | 0135                 | 0125                 |        |
| Aircoil Small                                                  |                      |                      | 0020                 | 0030                 | 0031                 | 0032                 | 0021                 | 0022                 | 0023                 | 0024                 | 0025                 |        |
| XFEL Intersection Start SASE<br>XFEL Intersection Regular SASE | 1084                 | <u>1024</u>          | <u>I015</u>          | <u>I017</u>          | <u>1085</u>          | <u>1079</u>          | <u>1060</u>          | <u>1088</u>          | <u>1063</u>          | <u>1076</u>          | <u>1057</u>          |        |
| Phase Shifter                                                  |                      |                      | PS070-I010           | PS076-I016           | PS063-I003           | PS067-I007           | PS071-I011           | PS068-I008           | PS074-I014           | PS066-I006           | PS085-I025           |        |
| BLM: Beam Loss Monitor                                         | XFEL BLM 0069        | XFEL BLM 0076        | XFEL BLM 0121        | XFEL BLM 0086        | XFEL BLM 0096        | XFEL BLM 0087        | XFEL BLM 0077        | XFEL BLM 0078        | XFEL BLM 0088        | XFEL BLM 0099        | XFEL BLM 0089        | XF     |
| BLM: Beam Loss Monitor                                         | XFEL BLM 0160        | XFEL BLM 0081        | XFEL BLM 0122        | XFEL BLM 0091        | XFEL BLM 0097        | XFEL BLM 0092        | XFEL BLM 0082        | XFEL BLM 0083        | XFEL BLM 0093        | XFEL BLM 0098        | XFEL BLM 0094        | XF     |
| XQA Quadrupole with Chamber                                    | QA.2241.SA1          | QA.2247.SA1          | QA.2253.SA1          | QA.2259.SA1          | QA.2266.SA1          | QA.2272.SA1          | QA.2278.SA1          | QA.2284.SA1          | QA.2290.SA1          | QA.2296.SA1          | QA.2302.SA1          | 2      |
| XQA Quadrupole Magnet                                          | XQA084               | XQA079               | XQA016               | XQA063               | XQA096               | XQA060               | XQA107               | XQA062               | XQA061               | XQA031               | XQA104               |        |
| Quadrupole Chamber                                             | FEL VQ3 074          | FEL VQ3 057          | FEL VQ3 070          | FEL VQ3 043          | FEL VQ3 067          | FEL VQ3 071          | FEL VQ3 066          | FEL VQ3 052          | FEL VQ3 054          | FEL VQ3 072          | FEL VQ3 050          | E      |
| BPM and Pumping Unit                                           | FMB 114 2013 PU      | FMB 037 2013 PU      | FMB 031 2013 PU      | FMB 034 2013 PU      | FMB 029 2013 PU      | FMB 024 2013 PU      | FMB 047 2013 PU      | FMB 050 2013 PU      | FMB 023 2013 PU      | FMB 019 2013 PU      | FMB 039 2013 PU      | FME    |
| BPME: Beam Position Monitor E                                  | FMB 114 2013         | FMB 037 2013         | FMB 031 2013         | FMB 034 2013         | FMB 029 2013         | FMB 024 2013         | FMB 047 2013         | FMB 050 2013         | FMB 023 2013         | FMB 019 2013         | FMB 039 2013         | E      |
| Pumping Unit                                                   | FEL VU2 022          | FEL VU2 001          | FEL VU2 031          | FEL VU2 034          | FEL VU2 029          | FEL VU2 024          | FEL VU2 009          | FEL VU2 010          | FEL VU2 075          | FEL VU2 019          | FEL VU2 002          | E      |
| Ion getter pump                                                | 301266107            | 301266109            | 301266803            | 301268603            | 301266110            | <u>301268604</u>     | 301266802            | 301268605            | 301268615            | 301268508            | 301267603            |        |
| Quadrupole Mover                                               | Q032-R029            | Q033-R030            | Q092-H045            | Q093-H046            | Q014-R011            | Q015-R012            | Q037-R034            | Q036-R033            | Q042-R039            | Q043-R040            | Q087-H040            |        |
| BPM Support                                                    | MI47964              | MI47911              | MI47907              | MI47960              | MI47963              | MI47920              | MI47974              | MI47971              | MI47970              | MI47972              | MI47969              |        |
| I-Section Table                                                | MI47889              | MI47829              | MI47820              | MI47822              | MI47890              | MI47884              | MI47865              | MI47893              | MI47868              | MI47881              | MI47862              |        |
| Height Adjustment Unit                                         | HeightAdjust-Lot-01  | Heig   |
| Turn Buckle                                                    | TurnBuckle-Lot-01    | Tur    |
| Tilt Safety Device                                             | TiltSafety-Lot-01    | Till   |
| I-Section Pedestal                                             | ISecPedestal-Lot-01  | ISec   |


# **Quality Plan - Undulator Segments Documentation and Archiving**

- All Related Items are linked
- Easy access to the database and all related items using QR code



### Intersection

- **Undulator System** Group is responsible for the following components: Quadrupole Mover, Phase Shifter, Air coils, Support basies, Intersection Control Racks,
- 9 companies were producing the intersection
- Factory and Site acceptance tests have been requested

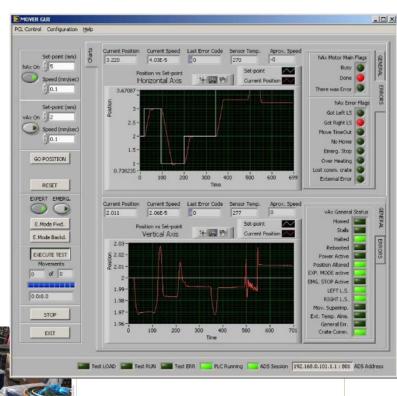


1/39

## **Quality Plan - Intersection Components In-Kind Contribution Case**

- Quadrupole Movers and Intersection Control Racks have been produced in Spain
- Collaborating institute Ciemat
- Ciemat organized the call for tenders in Spain
- For each product three companies were qualified
- Each company produced one prototype
- After the comparison of the prototypes a vendor was selected
- Documentation by Ciemat
  - Technical specification
  - Validation test
  - EPLAN
- Documentation for FAT
- EDMS archiving

European XFEL


Technical Specifications for the Supply of the Intersection Control Racks (ICRs) for the European XFEL

## Validation test for the XFEL Intersection Control Rack (ICR)

Cristina Vázguez Vélez 25/07/2012 Draft v.05 C. PLC control signals directly related to motion control... C.2 MOVER DRIVERS CONFIGURATION C.3 PHASE SHIFTER DRIVER CONFIGURATION C.4 AXES BRAKE CONTROL TEST C.5. MOVER AXIS CONTROL TEST C.6 PHASE SHIFTER AXIS CONTROL TEST C.7 SIGNAL INTEGRITY TEST D. Safe stop procedure under Emergency Stop and power failures.... D.1 MOVER AXIS SAFE STOP TEST D.2 PHASE SHIFTER AXIS SAFE STOP TEST APPENDIX A: LVDT Cablibration Assembly Electrical Diagram .... APPENDIX B: ICR Validation Protocol Tests Checklist. APPENDIX C: EPLAN ICR Electrical Diagram (electronic)...

## **Quality Plan - Intersection Components In-Kind Contribution Case - SAT**

- Air conditioned and thermo stabilized hutch (XFEL)
- Infrastructure, granite stone, requesting hardware (XFEL)
- Supervisory Control And Data Acquisition (SCADA) program was created by Ciemat
- After delivery to XFEL the SAT was organized by Ciemat



ELECTRICAL DIAGRAM
INTERSECTION CONTROL RACK

## **Quality Plan - Intersection Components** In-Kind Contribution Case - EDMS

- Archiving of the documents in EDMS by Ciemat
  - Declaration of CE comformity
  - Manufacture report
  - Calibration report
  - Reception report
  - Validation test report

Reception Report

ICR ID. Ref: 1005-P003

| Done   | Action                                                        | Checking/A  |
|--------|---------------------------------------------------------------|-------------|
| Y      | Visual cleanness and integrity (ICR surface)                  | When action |
| Y      | Check shock sensors integrity                                 | When action |
| Y      | Check cable hoses, feedthrough and grommets integrity         | When action |
| Y      | Check external hoses external connectors integrity            | When action |
| Y      | Check key operation (if it is the case)                       | When action |
| Y      | Check door opening/closing                                    | When action |
| Y      | Check door hinge fixations                                    | When action |
| Y      | Visual cleanness and integrity (ICR interior)                 | When action |
| Y      | Validation report & declaration of conformity attached and OK | When action |
| Y      | Check ICR ID reference on box and all documents attached      | ID          |
| Y      | Check shock sensors ID on Validation report                   | ID          |
| Person | Pablo Concha                                                  |             |
| Date   | 12.02.2014                                                    |             |
| Sign.  | PC                                                            |             |

Hereby declarate that the following equipment has been designed, menufactured and verified according to application Directives.

| EQUIPO:<br>EQUIPMENT         | 1005-P003     |  |
|------------------------------|---------------|--|
| Nº ASUNTO:<br>SUBJECT №      | CE 14914      |  |
| CLIENTE:<br>CUSTOMER         | CIEMAT        |  |
| INSTALACIÓN:<br>INSTALLATION | X-FEL EUROPEO |  |

Pine

DECLARACION DE CONFORMIDAD "CE" DECLARATION OF CONFORMITY "CE"

PINE EQUIPOS ELECTRICOS, S.A. Pol. Ugaldeguren II, Pab.9 - I 48170 ZAMUDIO (VIZCAYA) Declara por la presente que los equipos abajo relacionados han side diseñados, fabricados y verificados de acuerdo a las Directivas de aplicación.

DIRECTIVAS APLICADAS:

ZAMUDIO A 20 DE ENERO DE 2014

Contact: (+34) 914962561

Calibration Report ICR ID. Ref: 1005-P003 Contact: (+34) 944520565 A1 POWER SUPPLY CALIBRATION rint ICR ID reference on componen

**A2 POWER SUPPLY CALIBRATION** N1 LVTD DRIVER CALIBRATION djust N1 to 12mA (Ch.1 disconnected) en action done Adjust micrometer position for 12mA (Ch.1 connected) Adjust V1 potentiometer to 16mA (1mm displacement) Adjust N2 to 12mA (Ch.2 disconnected) A1 (mm) When action done Adjust micrometer position for 12mA (Ch.2 connected)
Adjust V2 potentiometer to 16mA (1mm displacement)

ICR ID. Ref: 1005-P003 Switch on PC CIEMAT Swith on Emergency Stop Button (EMS) Platform and rearm EMS Buttor Connect W02 to EMS Platform

onnect W03 Ethernet Cable to Beckhoff PLC

"Validation\_ICR.exe" on PC CIEMAT

nnect W05 to Phase Shifter sarm all MCB protections

heck Mover is attached to granite table ape cables W04-W07 together & connect W04 to I-onnect W05 to Mover

Validation Report

en action done earm MCB protections in this order: Q1,Q2, F1, F2, F3, F4 & F5 en action done en action done

**European XFEL** 

When action done

# **Quality Plan - Undulator System Undulator system test setup**

- The system is controlled by a central control node (CCN), which is located about 1 km away from the undulator system
- CCN communicates with the undulator cells over optical fibers
- Media converter racks are used to convert signals from copper carriers to optical fiber carriers and vice versa



- It was obvious that all components should be tested before installation in the tunnel
- An undulator system test setup with 4 cells was built in the undulator hall
- It was used for developing the global control system software three years ahead of the installation of the system in the tunnel.

### **Lessons learned**

- Beckhoff control system integration in companies
- Wiring on the undulator frame
- Male types plug for the phase shifter stepping motor
- Cabling issues in the tunnel
- Every piece of hardware must be tested before installation in the tunnel