NIKASSEL RSITÄ E

Ultrafast Photoelectron Circular Dichroism Changes in 1-lodo-2-Methylbutane

V. Music^{1,2}, P. Schmidt², G.Hartmann², F. Allum³, S. Bari⁴, T. M. Baumann¹, R. Boll¹, G. Brenner⁵, M. Brouard³, M. Burt³, P. Demekhin², S. Doerner⁴, A. Ehresmann², B. Erk⁵, P.Grychtol¹, D. Heathcote³, L. Inhester⁴, A. Knie², J. Lee³, M. Larsson⁸, Z. Li⁴, B. Manschwetus⁵, M. Meyer¹, L. Marder², R. Mason³, H. Otto², C. Passow⁵, D. Ramm⁵, D. Rolles⁶, K. Schubert⁴, L. Schwob⁴, R. Thomas⁸, C. v. Korff-Schmising⁹, C. Vallance³, R. Wagner¹, V. Zhaunerchyk⁷, and M. Ilchen^{1,2}

- (1) University of Kassel, Germany Deutsches Elektronen-Synchrotron DESY, Germany (5)
- (2) European XFEL GmbH, Germany (6) Kansas State University, USA

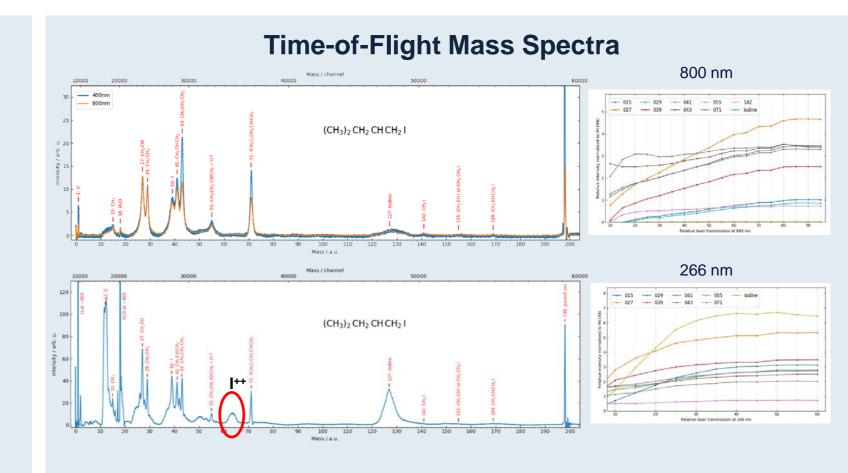
(3) University of Oxford, UK (7) University of Gothenburg, Sweden

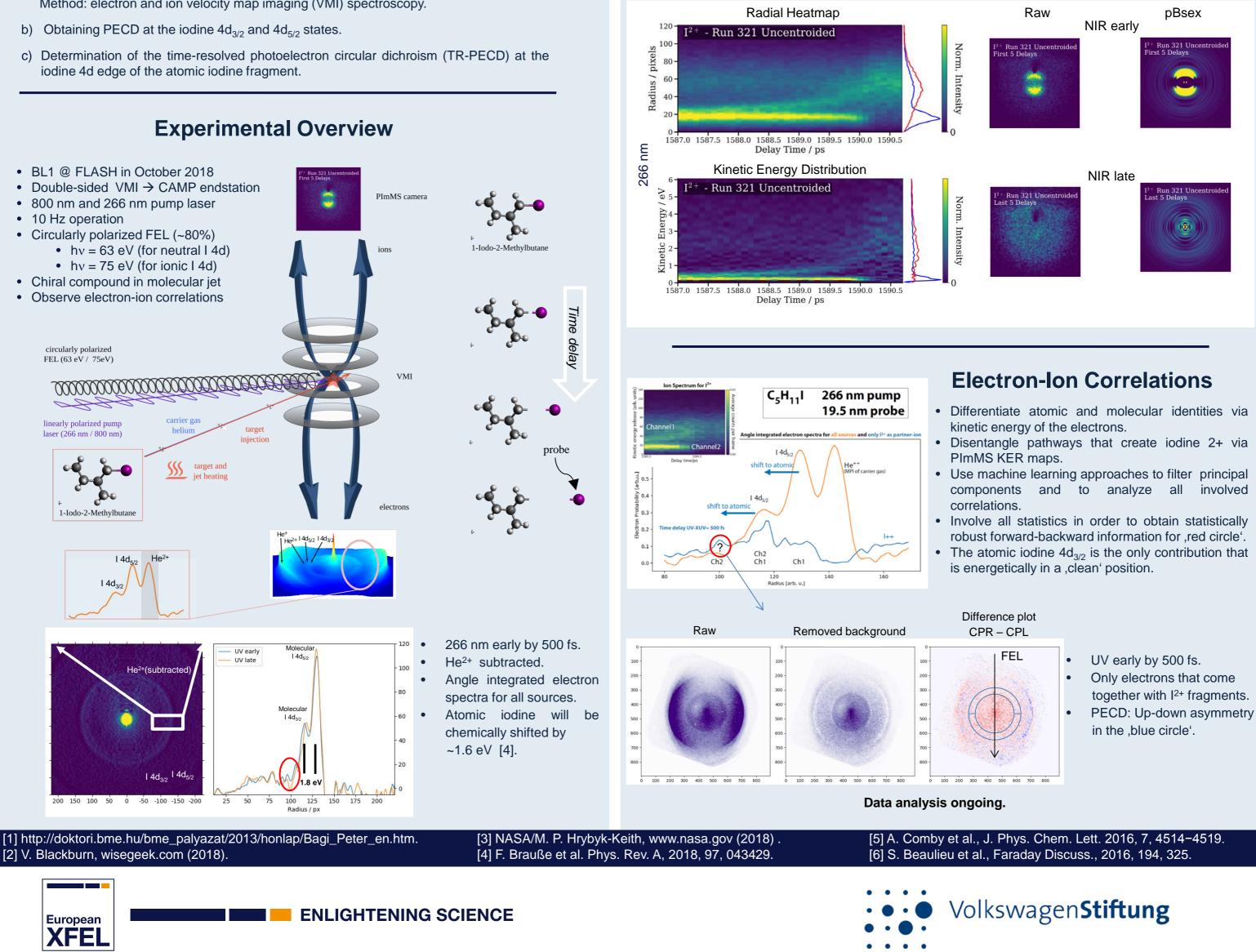
(4) CFEL @ DESY, Germany (8) Alba Nova Institute, Sweden

(9) MBI Berlin, Germany

Goal of the FLASH-Experiment

Evaluate the method of PECD as a tool for chiral recognition during ultrafast dynamics as well as to understand and eventually control photo-induced processes in chiral systems.


Motivation of the Scientific Agenda


- All known living tissue is homochiral \rightarrow Human bodies are chiral receptors.
- Hundreds of billions of \$ are spent annually for controlling the chirality of e.g. pharmaceuticals.
- PECD is a very sensitive method to sense and study chirality.

Aims of the Experiment

- a) Characterization of the chiral target and its dissociation dynamics for the neutral and charged iodine fragment as 'observer atom'. For different fragmentation channels and time delays (0 to -1500 fs) for left- and right circularly polarized XUV radiation and 3 different target forms, i.e. S-enantiomer, R-enantiomer, and racemic mixture. Method: electron and ion velocity map imaging (VMI) spectroscopy.
- b) Obtaining PECD at the iodine $4d_{3/2}$ and $4d_{5/2}$ states.
- c) Determination of the time-resolved photoelectron circular dichroism (TR-PECD) at the iodine 4d edge of the atomic iodine fragment.

PImMS Data (University of Oxford – Courtesy of F. Allum)

