
Data Analysis at the European XFEL using
Karabo

T. Michelata, A. Bartyd, M. Bega, M. Bergemanna, V. Bondara, C. Danilevskia, M. Duarte Trevisania, W. Ehsana, S. Esenova, R. Fabbria, G. Fluckea , D. Fullà Marsàa,
G. Giovanettia, D. Göriesa, S. Haufa, D. Hickina, E. Kamila, D. Khakhulina, Y. Kirienkoa, A. Klimovskaiaa, T. Kluyvera, M. Kuhnd, A. Lemosa, D. Mamchyka, V. Marianid,

A. Parentia, H. Santosa, A. Silenzia, C. Youngmana, J. Zhua, H. Fangohra,c and S. Brockhausera,b

aEuropean XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany, b Biological Research Center (BRC), Hungarian Academy of Sciences, Temesvri Krt. 62, Szeged, 6726, Hungary, cUniversity
of Southampton, Southampton, SO17 1BJ, United Kingdom, d Center for Free Electron Laser Science, DESY, Hamburg, Germany

European XFEL GmbH, Thomas Michelat, Holzkoppel 4, 22869 Schenefeld, Germany, Phone +49 40 8998-6739, Fax +49 40 8998-1905, thomas.michelat@xfel.eu
www.xfel.eu

The European XFEL has gathered about 1.5PB of raw data in the first year of operation. We
describe the data analysis capabilities [1] of the Karabo distributed control system [2] and
related software developed at the European XFEL to supporting scientific experiments. The
range of requirements for data analysis includes near-real time during experiments and
offline analysis.

Karabo Bridge

The Karabo bridge allows data analysis tools to receive data from the Karabo control
system without having to be build against the framework. It uses ZeroMQ and msgpack to
send data efficiently. In the future, this will be extended to send data back to Karabo as well.
The European XFEL provides C++ [3] and Python [4] clients.

The Karabo Bridge has been used to feed analysis tools such as OnDA [6], Hummingbird
[7], CASS [8], Dozor [9] and PyFAI [10] based software for near-real time feedback.

References
[1] H. Fangohr et al., “Data Analysis Support in Karabo at European XFEL”, in Proc. 16th Int. Conf. on Accelerator and Large Experimental
Control Systems (ICALEPCS'17), Barcelona, Spain, Oct. 2017, paper TUCPA01, pp. 245-252, ISBN: 978-3-95450-193-9,
https://doi.org/10.18429/JACoW-ICALEPCS2017-TUCPA01, 2018.
[2] B. Heisen, D. Boukhelef, S. Esenov, S. Hauf, I. Kozlova, L. Maia, A. Parenti, J. Szuba, K. Weger, K. Wrona et al., “Karabo: An
integrated software framework combining control, data management, and scientific computing tasks,” in 14th International Conference on
Accelerator & Large Experimental Physics Control Systems, ICALEPCS2013. San Francisco, CA, 2013.

Acknowledgements
We acknowledge contributions from all staff and collaborators at European XFEL who helped shaping and realizing the presented
framework, and financial support from the OpenDreamKit Horizon 2020 European Research Infrastructures project #676541, and the
Gordon and Betty Moore Foundation through Grant GBMF #4856, by the Alfred P. Sloan Foundation and by the Helmsley Trust.

12th NOBUGS Conference, Brookhaven National Laboratory, USA, 2018

Fig 2. Schematic view of data flow for rapid feedback during experiment

Data Pipelines

The Karabo framework support peer-to-peer messaging between
devices, allowing the implementation of processing pipelines with
high data rates. Pipelines implemented in the Karabo environment
can easily parallelize and distribute heavy processing tasks on
many physical machines.
Any processing algorithm implemented as a Karabo device can
use this feature and benefit from the Karabo integration (results
permanently stored via DAQ, GUI control and live view, …)

Fig 3. example of pipeline processing

Fig 4. Live feedback of calibrated data from the LPD detector on a Karabo scene

Data Structure

The European XFEL facility generates
coherent and intense X-ray pulses by bunches
of up to 2700 pulses repeating every 100 ms.

The data generated by instruments and
detectors for each of these pulses are
distributed at 10 Hz, which corresponds to the
pulses train structure. One train data
container consist of many images taken for
each pulse in a train.

Fig 1. train structure at EuXFEL

Offline Processing

We develop and provide a Python package for data analysis: Karabo-data [5]. It is designed
for reading data stored by the Karabo data acquisition service and offer a range of
function and routines to support users offline data analysis.
Karabo-data is an open source project and is in active development. Feature requests and
contributions are welcome. Some of the current features:

Run data reading and exploration
Data filtering (sources, trains, …)
Data correlation (Pandas, Xarray)
Data views to fit external tools
Stream data as the Karabo Bridge
Apply detector geometry
Data conversion (from HDF5)

Fig 5. Fast Azimutal integration tool getting data from the Karabo Bridge Fig 6. OnDA[6] integrated Karabo Bridge interface

The large detectors used at the
European XFEL need
appropriate correction and
calibration before further
processing can be applied on
the data they produce. This is
carried out using the data
pipelines distributing the data
over 8 GPU processing nodes
on a HPC cluster.

[3] https://github.com/European-XFEL/karabo-bridge-cpp
[4] https://github.com/European-XFEL/karabo-bridge-py
[5] https://github.com/European-XFEL/karabo_data
[6] http://journals.iucr.org/j/issues/2016/03/00/zf5001/index.html

[7] http://journals.iucr.org/j/issues/2016/03/00/zd5007/index.html
[8] http://journals.iucr.org/j/issues/2016/04/00/zw5003/index.html
[9] http://journals.iucr.org/d/issues/2015/11/00/tz5083/index.html
[10] http://journals.iucr.org/j/issues/2015/02/00/fv5028/index.html

Online Detector Calibration

Online Processing

During experiments, near real-time feedback to users and beam scientists is important in
order to optimize the experiment setup and collect the best data possible. We provide
solutions to process data and give visualization feedback in the order of seconds.

Fig 7. karabo-data example using Pandas dataframe Fig 8. applying geometry correction on detector data

https://github.com/European-XFEL/karabo-bridge-cpp
https://github.com/European-XFEL/karabo-bridge-cpp
https://github.com/European-XFEL/karabo-bridge-cpp
https://github.com/European-XFEL/karabo-bridge-cpp
https://github.com/European-XFEL/karabo-bridge-cpp
https://github.com/European-XFEL/karabo-bridge-cpp
https://github.com/European-XFEL/karabo-bridge-cpp
https://github.com/European-XFEL/karabo-bridge-cpp
https://github.com/European-XFEL/karabo-bridge-py
https://github.com/European-XFEL/karabo-bridge-py
https://github.com/European-XFEL/karabo-bridge-py
https://github.com/European-XFEL/karabo-bridge-py
https://github.com/European-XFEL/karabo-bridge-py
https://github.com/European-XFEL/karabo-bridge-py
https://github.com/European-XFEL/karabo-bridge-py
https://github.com/European-XFEL/karabo-bridge-py
https://github.com/European-XFEL/karabo_data
https://github.com/European-XFEL/karabo_data
https://github.com/European-XFEL/karabo_data
https://github.com/European-XFEL/karabo_data
https://github.com/European-XFEL/karabo_data
http://journals.iucr.org/j/issues/2016/03/00/zd5007/index.html%5B8
http://journals.iucr.org/j/issues/2016/03/00/zd5007/index.html%5B8
http://journals.iucr.org/j/issues/2016/03/00/zd5007/index.html%5B8
http://journals.iucr.org/j/issues/2016/03/00/zd5007/index.html%5B8
http://journals.iucr.org/j/issues/2016/03/00/zd5007/index.html%5B8

	Data Analysis at the European XFEL using Karabo

