
set(“motor/A”,

“targetPosition”, 2);

execute(“motor/A”, “move”);

Karabo: Lessons Learnt from a Control
Framework Development
G. Fluckea, M. Bega, M. Bergemanna, V. Bondara, C. Danilevskia, M. Duarte
Trevisania, W. Ehsana, S. Esenova, R. Fabbria, H. Fangohra,c, D. Fullà Marsàa,
G. Giovanettia, D. Göriesa, S. Haufa, D. Hickina, E. Kamila, Y. Kirienkoa,
A. Klimovskaiaa, T. Kluyvera, A. Lemosa, D. Mamchyka, T. Michelata, A. Parentia,
H. Santosa, A. Silenzia, C. Youngmana, J. Zhua, S. Brockhausera,b

aEuropean XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany, b Biological
Research Center (BRC), Hungarian Academy of Sciences, Temesvri Krt. 62,
Szeged, 6726, Hungary, cUniversity of Southampton, Southampton, SO17 1BJ,
United Kingdom

European XFEL GmbH, Gero Flucke, Holzkopppel 4, 22869 Schenefeld, Germany, Phone +49 40 8998-6826, Fax +49 40 8998-1905 gero.flucke@xfel.eu
www.xfel.eu

References
[1] B.C. Heisen et al., “Karabo: an integrated software framework combining control, data management and
scientific computing tasks”,14th International Conference on Accelerator & Large Experimental Physics Control
Systems, ICALEPCS 2013, San Francisco, U.S.A.
[2] B. Schäling, “The Boost C++ Libraries”. XML Press, 2011.
[3] S. Hauf et al., “The Karabo Distributed Control System”, submitted to Journal of Synchrotron Radiation

Synchronous Blocking Calls
Remote calls trigger the execution of tasks
May require a request to other devices or hardware

Can be done synchronously & asynchronously
Synchronous: may block a programme thread

Can lead to thread starvation and big delays for further messages until reply received
�Avoid synchronous and other blocking constructs where possible

E.g. when connecting to parameter updates of other devices
Where asynchronous refactoring is cumbersome, temporarily extend the thread pool

Additions to Karabo to support these solutions:
Possibility to postpone the reply for a request to another thread (AsyncReply)
Failure handling for asynchronous requests
► Backward compatibility forbade to just add a flag to asynchronous handlers –

independent success and failure handlers complicate asynchronous call chains

Abstract
After surveying available solutions in 2011, the European XFEL decided to write a custom
control and data processing system for its photon beam-lines and scientific instruments from
scratch [1]. At the end of 2016, Karabo version 2 was released and has since then been used
to commission the facility and execute the first user experiments.
A system complexity as required for these tasks could never be simulated beforehand which
means that substantial improvements were needed to make Karabo as reliable and high-
performance as needed to control the equipment. This poster guides through the main
technical problems from which Karabo suffered (concentrating on the C++ implementation),
and the means to overcome them to smoothly operate the European XFEL facility [3].

Limitations of boost::asio::strand
Boost’s strand provides ordered execution on a multi-threaded event loop

Handlers posted to one strand are executed one after another in order of posting
Boost’s strand does not guarantee that handlers posted to different strands can be
executed in parallel

Several strands can effectively work like a single one, on a basically random basis
Problematic if a handler’s execution takes very long and another handler reads TCP
messages: reading can get extremely slow

�Abandon use of boost::asio::strand

Ordering may already be guaranteed by programme logic (even using bare event loop)
Else replace by new Karabo strand that implements the first-in first-out queue logic

Congestion by Broadcasting Messages
Karabo system topology is fully dynamic: no central instance knows which devices exist
Therefore relies on broadcast messages received by all (e.g. “instance new” or “gone”)
That scales badly between two large C++ servers hosting hundreds of devices each

If one servers starts all its devices within 10 seconds, the broker will distribute N
messages to each of the N devices (and the server instance) on the other server
Leads to N * (N+1) messages, e.g. about 25 kHz for 10 seconds for N = 500

Karabo’s broker client library and/or serialisation cannot cope with this load
Delay of other processing on the receiving server of easily a minute

�Send broadcast messages only once to each C++ server
Server distributes locally to its devices: networking and serialisation reduced a lot

Data Copies in Serialisation of Large Data
Karabo version 2 introduced a dedicated container for large data: NDArray

Can adopt or view raw memory
Behaviour similar to numpy.ndarray in Python
No data copies between Python and C++ for Python bindings

Karabo’s TCP interface required a single raw data buffer for handling NDArray ’s data
and meta data

Large data was copied unnecessarily
Similarly, de-serialisation did extra copies

�Introduce a BufferSet to TCP and serialisation interfaces
Internal data buffer of NDArray not copied anymore – only small meta data
Pipeline connections got six times faster, transferring reliably 1.35 GByte/s

Locking Mutexes to Avoid Parallel Execution
Karabo used mutex locks to guarantee that an RPC method is not executed in parallel to
itself in different threads
For long (blocking) methods this can block many programme threads

E.g. when instantiating many devices by calling the instantiate method of a server
Can lead to thread starvation and big delays for further messages

Order can get lost since undefined order of acquiring the lock
�Ensure sequential execution by properly queuing first-in first-out

E.g. using a (proper – see on the right) strand object

Conclusions
As Karabo installation sizes grew during commission the EuXFEL photon beam-lines and
instruments and while carrying out the first experiments producing large data from fast
detectors, several deficiencies were discovered in the C++ implementation. Unnecessary
data copies and synchronous or blocking calls executed on the central multi-threaded event
loop led to unacceptable delays on systems under load.
Fortunately, critical synchronous communication patterns could be switched to asynchronous
behaviour, and data copies could be avoided for large pipeline data, both without the need to
change any code of hardware control devices. Today, Karabo reliably controls experiments at
EuXFEL instruments [3], providing the benefits of tight integration of instrument control and
online data processing to the operators.
If the Karabo C++ framework were to be rewritten from scratch, one could provide simpler
support for asynchronous programming, e.g. by the use of coroutines as are fundamental to
the success of Karabo’s middlelayer interface, written in single-threaded Python.

Losing Message Order on Event Loop
Order of messages sent from one device
to another can matter a lot
JMS broker used by Karabo ensures order
Posting a handler to a multi-threaded event loop (from boost::asio) does not
guarantee order (mis-order happens rarely, but especially on busy systems)

�Keep order by placing relevant handlers in a sequential queue
E.g. using a (proper – see above) strand object

Device
2

Device
1

Request

Notify

Notify

Reply

Karabo in a Nutshell
Karabo is designed to provide supervisory control and data acquisition for the European
XFEL (EuXFEL). Hardware devices and system services are represented by Karabo devices
of which many can run within the same server process, distributed among various control
hosts. Devices communicate via a central message broker using language (C++ and Python)
agnostic remote procedure calls (RPC). The Karabo design is event-driven, offering
subscription to (remote) signals to avoid polling for parameter updates. Large data from
detectors and for online monitoring the experiment is transported via flexible data pipelines
using direct TCP connections. A specialty of the EuXFEL Karabo installation is that several
hundred hardware devices can be controlled by a single programmable logic controller that
communicates via a single TCP line with Karabo. Remote control is provided via a single
C++ server with hundreds of devices, posing a particular challenge to concurrency.
The Karabo 2 release added features like alarm handling and a central configuration
database, changed the pipeline protocol and refactored the C++ core to use a process wide
common, multi-threaded event loop based on the boost::asio [2] library.

12th NOBUGS Conference, Brookhaven National Laboratory, USA, 2018

