Files

Abstract

We consider the extended Hubbard model and introduce a corresponding Heisenberg-like problem written in terms of spin operators. The derived formalism is reminiscent of Anderson’s idea of the effective exchange interaction and takes into account nonlocal correlation effects. The results for the exchange interaction and spin susceptibility in the magnetic phase are expressed in terms of single-particle quantities. This fact not only can be used for realistic calculations of multiband systems but also allows us to reconsider a general description of many-body effects in the most interesting physical regimes, where the physical properties of the system are dominated by collective (bosonic) fluctuations. In the strongly spin-polarized limit, when the local magnetic moment is well defined, the exchange interaction reduces to a standard expression of the density functional theory that has been successfully used in practical calculations of magnetic properties of real materials.

Details

Statistics

from
to
Export