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Abstract

In a previous paper we discussed the physics of a microbunched electron beam
kicked by the dipole field of a corrector magnet by describing the kinematics of
coherent undulator radiation after the kick. We demonstrated that the effect of
aberration of light supplies the basis for understanding phenomena like the deflec-
tion of coherent undulator radiation by a dipole magnet. We illustrated this fact by
examining the operation of an XFEL under the steady state assumption, that is a
harmonic time dependence. We argued that in this particular case the microbunch
front tilt has no objective meaning; in other words, there is no experiment that can
discriminate whether an electron beam is endowed with a microbunch front tilt
of not. In this paper we extend our considerations to time-dependent phenomena
related with a finite electron bunch duration, or SASE mode of operation. We focus
our attention on the spatiotemporal distortions of an X-ray pulse. Spatiotemporal
coupling arises naturally in coherent undulator radiation behind the kick, because
the deflection process involves the introduction of a tilt of the bunch profile. This
tilt of the bunch profile leads to radiation pulse front tilt, which is equivalent to
angular dispersion of the output radiation. We remark that our exact results can po-
tentially be useful to developers of new generation XFEL codes for cross-checking
their results.

1 Introduction

A well-known result of classical particle tracking states that after an electron
beam is kicked there is a change in the trajectory of the electron beam, while
the orientation of the microbunching front remains as before, see Fig 1. In
other words the kick results in a difference between directions of the electron
motion and of the normal to microbunching front [1, 2]. In XFEL simulations
it is generally accepted that coherent radiation from the undulator placed
after the kicker is emitted along the normal to the microbunching front [1].
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Fig. 1. Illustration of the problem as arises according to classical particle tracking
when a microbunched electron beam is deflected by a dipole magnet. After passing
the dipole, the microbunching is preserved, but only along its original direction.

The experiment [3] showed the surprising effect that coherent undulator
radiation can be kicked by an angle of about five times the rms radiation
divergence practically without suppression. The maximal kick angle was
limited only by the photon beamline aperture.

In a previous paper [4] we presented a kinematical description the exper-
iment [3] and demonstrated that the effect of aberration of light supplies
the basis for an understanding of a phenomena like deflection of coherent
undulator radiation by a dipole magnet. In order to focus on the ideal mech-
anism of microbunch tilt influence, in [4] we restricted our attention to the
steady-state theory using the approximation of a continuous electron beam.
However, in practical situations the electron beam has a finite pulse dura-
tion, and a question arises concerning the region of applicability of results
in [4]. The present study answers such question, extending the analysis of
the tilt influence by taking into account time-dependent effects.

2 Spatiotemporal transformation of X-ray FEL pulses by a kicker

Let us first consider a rectangular electron bunch of duration T. The trans-
verse distribution of the electron bunch has a Gaussian shape with standard
deviation σx. We make the assumption that the spatial profile of the bunch-
ing factor is close to that of the electron beam and that the modulation of
the electron bunch is fully longitudinally and transversely coherent. Self-
seeding schemes have been experimentally studied to reduce the bandwidth
of XFEL pulses up to the Fourier limit [5, 6]. If the bunch is sufficiently long
and the stretch in bunch duration due to the kick is much less that the bunch
length, vT � ασx, one can neglect edge effects and use the steady state ap-
proach. Using the plots presented in this paper one can give a quantitative
answer to the question about the region of applicability of the steady state
model in the case of fully coherent modulation.
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Let us now consider the case of an electron bunch with a modulation in-
duced by the SASE process in the undulator upstream of the dipole kick. As
a consequence of the start-up from shot noise, the longitudinal coherence of
the bunch modulation is rather poor. Here we are interested in the impact
of the distortion of the microbunching front of the kicked bunch on the per-
formance of the SASE X-ray beam splitting setup [3], where spatiotemporal
distortions affect the degree of transverse coherence value. When describing
the physical principles, it is always important to find an analytical descrip-
tion. In fact, finding analytical solutions is always fruitful for understanding
XFEL physics and for testing numerical simulation codes. From this point
of view, a SASE XFEL is a rather complicated object. It is important to find
a model that provides the possibility of an analytical description without
loss of essential information about the features of the random process. One
can satisfy this condition by modeling the electron beam by means of a long
rectangular bunch and by using a stationary random process for modeling
radiation pulses. An analysis of the SASE X-ray pulse quality is given in
terms of analytical results.

There is an urgent need to develop electron beam instrumentation allow-
ing for a full measurement of the microbunching structure, including the
spatiotemporal coupling of the modulation within the bunch. In order to
characterize such modulated electron bunches, a conventional undulator
module does not have enough resolution, and special diagnostic techniques
are needed. A method for obtaining a full characterization of the bunch
modulation could be based on the generation of an exact radiation replica
of the electron bunch modulation. In our case, the synthesizer would simply
consist of a short, few period (5 − 10) radiator undulator installed after the
kicker. Since the undulator is short, longitudinal dynamics in the undulator
is purely governed by single-particle effects, where results do not depends
on the presence of other particles.

In the following we assume that we actually have such a setup so that, after
the kicker, the beam enters the short radiator undulator, which is resonant at
the beam modulation frequency. Since the beam has a large bunching com-
ponent, coherent emission is copiously produced: in this paper we study
the characteristics of this pulse of radiation. The energy of the output radia-
tion pulse can be estimated to be in the µJ-level. A realistic measurement of
the microbunching heavily relies on the assumption that the beam density
modulation does not appreciably change as the beam propagates through
the radiator undulator. This approximation means that only the contribu-
tions to the radiation field arising from the initial density modulation are
taken into account, and not those arising from the induced bunching. The
effect of betatron motion on the preservation of micro bunching should be
accounted for. In fact, the finite angular divergence of the electron beam,
linked with the betatron motion, yields a spread of the longitudinal velocity

4



Fig. 2. Schematic representation of the electric field profile of an undistorted pulse
beam (left) and of a beam with pulse front tilt (right). The z axis is along the beam
propagation direction.

of the electrons, leading to microbunching suppression. This factor can be
easily estimated and one can conclude that due to the short length of the
radiator undulator it does not constitute a serious problem.

The signal produced by the radiator undulator is therefore expected to be an
electric field pulse with amplitude E(x, y, t). If no further longitudinal beam
dynamics effects are present in the radiator undulator, this field is directly
proportional to the microbunching amplitude M(x, y, t).

X-ray FEL electric field pulses are usually represented with sufficient ac-
curacy as the product of factors separately depending on space and time.
However, when the manipulation of the microbunched electron beam re-
quires the introduction of a kick, such assumption fails. The direction of
the energy flow is always orthogonal to the surface of constant phase, that
is to the wavefronts of the corresponding propagating wave. If one deals
with coherent undulator radiation from the kicked microbunched beam,
one has to consider, in addition, planes of constant intensity, that is pulse
fronts. Fig 2 shows a schematic representation of the electric field profile
of an undistorted pulse and one with a pulse-front tilt. Let us suppose that
the X-ray pulse propagates in the x − z plane, and that the pulse front tilt is
also in this plane. We start by writing the field of an undisturbed pulse as
E(x, t) = a(t)b(x) exp(−iω0t), where ω0 is the pulse carrier frequency, which
is linked to wave vector k by k = ω0/c. A distortion of the pulse front
does not affect propagation, because the phase fronts remain unaffected.
However for most applications, it is desirable that this fronts be parallel to
the phase fronts, and therefore orthogonal to the propagation direction. A
pulse-front tilt can indeed be introduced in the beam due to the propaga-
tion of an electron bunch through a kicker, which is our case of interest.
The electric field of a pulse including tilt distortion can be expressed in the
space-time domain [x, t] as E = a(t − px)b(x) exp(−iω0t), while the Fourier
transform from the [x, t] domain to the [kx, ω] domain can be expressed as
Ê(kx + p∆ω,∆ω), which is the Fourier component of the electric field of a
pulse with angular dispersion and ∆ω = ω−ω0. The tilt angle α is given by
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tanα = cp and p = dkx/dω = k(dθ/dω) 1 . One concludes that the pulse-front
tilt is invariably accompanied by angular dispersion. Any kick upstream
of the radiator undulator, which introduces a bunch profile tilt, also intro-
duces a pulse-front tilt and the output radiation is accompanied by angular
dispersion.

3 Situation treatable analytically

We first consider the case of SASE radiation. We perform an analysis on the
x − z plane specified by the vertical and longitudinal directions in Fig. 2.
Upon definition of

x1 = x̄ +
∆x
2

x2 = x̄ −
∆x
2
. (1)

we can specify in full generality the spatial correlation function of the electric
field between points x1 and x2 at time t as

Γt(x̄,∆x) =
〈
E
(
t, x̄ +

∆x
2

)
E∗

(
t, x̄ −

∆x
2

)〉
, (2)

where 〈...〉 indicates an average over an ensemble of shots and the subscript
t is a reminder of the dependence of the correlation function on time. As
discussed before, when studying this time correlation function, we assume
that the statistical process is stationary. Though this model is very idealized,
making use of it is justified by the fact that in many real cases the radiation
pulse is much longer that the coherence length. In other words, partial

1 Let us give an elementary derivation of this expression, linking the angular
dispersion and the pulse front tilt. This derivation is possible for ultrashort X-
ray pulse having large transverse size. In this case the short pulse consists of
monochromatic plane wave components with different frequencies. The surface of
constant phase (the phase front) is determined by φ = −ωt + kxx + kzz = const. This
equation describes a line in the x − z plane with slope tanθ = −kx/kz. The pulse
front is the surface where intensity is at a maximum. The condition for this is that
the plane wave components with different frequencies have the same phase that
is dφ/dω = −t + dkx/dω + dkz/dω = 0. This equation describes a line with slope
tanα = −dkx/dkz = tanθ+ [kz/(cosθ)2]dθ/dkz. We choose the coordinates system so
that θ = 0 for the meanω and the mean kz values. In this case, the slope of the phase
fronts is zero. Because of this, the slope of the pulse fronts becomes tanα = kdθ/dk
[7].
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coherence is an essential feature of SASE XFEL radiation in the time domain.
Under the assumption of ergodicity we can substitute the ensemble average
in Eq. (2) with a temporal average, thus obtaining

Γ(x̄,∆x) =

∞∫
−∞

dt E
(
t, x̄ +

∆x
2

)
E∗

(
t, x̄ −

∆x
2

)
, (3)

where we dropped the temporal dependence of Γ. Next we introduce a
Fourier representation of the field according to

E(t, x) =
1

2π

∞∫
−∞

d∆ω Ē(∆ω, x) exp(−iωt) . (4)

Using this representation and the relation

δ(ω2 − ω1) =
1

2π

∞∫
−∞

dt exp [i(ω2 − ω1)t] (5)

we obtain from Eq. (3)

Γ(x̄,∆x) =
1

2π

∞∫
−∞

d∆ω Ē
(
∆ω, x̄ +

∆x
2

)
Ē∗

(
∆ω, x̄ −

∆x
2

)
. (6)

In the frequency domain, the beam modulation envelope before the kick
can be modeled as

M̄(∆ω, x) = f (∆ω)g(x) , (7)

This means that we are assuming, in first approximation, full transverse
coherence of the SASE modulation upstream the kicker. Following [4], the
envelope of the modulation after the kick is

M̄(∆ω, x) = f (∆ω)g(x) exp
( i∆ωα

v
x
)
. (8)

The diagnostic undulator behind the kicker generates an exact radiation
replica of the electron beam modulation and substituting Eq. (8) into Eq. (6)
we obtain
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Γ(x̄,∆x) =
1

2π

∞∫
−∞

d∆ω
∣∣∣ f (∆ω)

∣∣∣2 exp
( i∆ωα

v
∆x

)
g
(
x̄ +

∆x
2

)
g∗

(
x̄ −

∆x
2

)
.(9)

We further model the radiation spectrum and the transverse dependence of
the pulse as smooth Gaussian functions of rms size σω and σx respectively

∣∣∣ f (∆ω)
∣∣∣2 = A exp

[
−

∆ω2

2σ2
ω

]
, (10)

and

g(x) = B exp
(
−

x2

2σ2
x

)
. (11)

Substitution in Eq. (9) finally gives

Γ(x̄,∆x) =
AB
√

2π
σω exp

[
−
σ2
ωα

2(∆x)2

2v2

]
exp

[
−

x̄2 + (∆x)2/4
σ2

x

]
,

(12)

which can be written equivalently as

Γ(x̄,∆x) =
AB
√

2π
σω exp

[
−

(
σ2
ωα

2

2v2 +
1

2σ2
x

)
(x2

1 + x2
2) +

σ2
ωα

2

2v2 x1x2

]
. (13)

We now introduce, as a figure of merit for Γ(x̄,∆x), the following definition
of degree of transverse coherence

ξ =

∫
∞

−∞

∫
∞

−∞
dx1dx2 |Γ(x1, x2)|2∣∣∣∫ ∞
−∞

dxΓ(x, x)
∣∣∣2 . (14)

Using Eq. (13) we obtain

ξ =
1

√
1 + α̂2

(15)

where

α̂ =

( √
2σωσx

v

)
α (16)
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Fig. 3. Dependence of the degree of coherence ξ, on the normalized kick angle α̃.

A plot of the output from the above result for ξ is given in Fig 3. It has a
very simple functional form. It is clear from this that the effect of the kick is
only significant when α̂2 & 1.

We give an example of the use of this formula, involving the typical param-
eters of a soft X-ray FEL. In the framework of the accepted model the input
parameter is the standard deviation of the SASE radiation spectrum, σω. We
expect that the typical FWHM of the SASE radiation spectrum envelope at
saturation, ∆ωFWHM, is of the order of 2ρ1Dω0, where ρ1D is the 1D FEL pa-
rameter [8] and ω0 is the resonance frequency. Therefore, setting σω ' ρ1Dω0

gives a good estimate of the rms deviation. Another input parameter is the
rms deviation of the transverse Gaussian distribution of the radiation field
amplitude, σx. Within our model, the transverse distribution of the field
amplitude at the radiator undulator exit is close to that of the electron beam.
For a typical soft X-ray case with λ ' 1nm, ρ1D ' 0.002, and σx ' 20µm,
the SASE radiation can be kicked by an angle of order of a mrad without
suppression of transverse coherence.

4 Figure of merit measuring the spatiotemporal coupling

A useful figure of merit measuring the spatiotemporal coupling can be found
in [9]. Considering the angular dispersion this parameter can be written as

ρ =

∫
dkxd(∆ω) I(kx,∆ω)

kx∆ω

< (δkx)2 >1/2< (δω)2 >1/2 , (17)
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where

< (δkx)2 >=

∫
dkxd(∆ω) I(kx,∆ω)k2

x ,

< (δω)2 >=

∫
dkxd(∆ω) I(kx,∆ω)ω2 ,

I(kx,∆ω) = |E(kx,∆ω)|2 (18)

The range of ρ is in [−1, 1] and readily indicates the severity of these distor-
tions. Thus, in order to estimate the pulse front tilt distortion we can simply
calculate the pulse front tilt parameter ρ. The case ρ = 0 corresponds to
a pulse free of spatiotemporal distortions, while 0 < |ρ| < 1 indicates that
some distortions are present. The ρ parameter is very sensitive to a small
amount of dispersion: a value of ρ ' 0.1 corresponds to a pulse stretched by
only about 10%. This correlation coefficient is ideal for controlling a setup
that should approach the Fourier limit. However, there is a little change in
ρ in the region of strong distortions [9].

We start by writing the electron bunch modulation immediately before the
kicker as M(x, t) = A(t)B(x) exp(−iω0t). In this section we study the case when
the bunch modulation is fully coherent in space and time. We further model
the spectrum and the transverse dependence of the bunch modulation as
smooth Gaussian functions of rms size σω and σx respectively. This model
has proven to be very fruitful, and gives the possibility of obtaining simple
analytical expressions for the main characteristics of the radiation from an
undulator behind the kicker.

Using Eq. (8) we can write the electric field of the radiation pulse from the
short diagnostic undulator that we supposed placed after the kick. In the
spatial-frequency and temporal-frequency domain one has

Ê1(∆ω, kx) = f (∆ω)h
(
kx +

∆ωα
v

)
. (19)

The spectrum distribution of the radiation pulse with Gaussian profile is
given by

∣∣∣ f (∆ω)
∣∣∣2 = A exp

[
−

∆ω2

2σ2
ω

]
. (20)

Moreover,
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h(kx) =
√

2πBσx exp
(
−

1
2

k2
xσ

2
x

)
. (21)

With the help of Eq. (18) we can write

< (δkx)2 >= 2πB2σ2
xA

∞∫
−∞

d(∆ω)

∞∫
−∞

dkxk2
x exp

[
−

(∆ω)2α2σ2
x

v2

]
× exp

[
−k2

xσ
2
x −

2kxσ2
xα(∆ω)
v

]
exp

[
−

∆ω2

2σ2
ω

]
(22)

and

< (δω)2 >= 2πB2σ2
xA

∞∫
−∞

dω

∞∫
−∞

dkx(∆ω)2 exp
[
−

(∆ω)2α2σ2
x

v2

]
× exp

[
−k2

xσ
2
x −

2kxσ2
xα ∆ω

v

]
exp

[
−

∆ω2

2σ2
ω

]
. (23)

Explicit calculations give

< (δkx)2 >= 21/2π2AB2σω

[
v2 + 2α2σ2

xσ
2
ω

v2σx

]
(24)

and

< (δω)2 >= 23/2π2AB2σxσ
3
ω . (25)

In a similar fashion one obtains

2πB2σ2
xA

∞∫
−∞

d(∆ω)

∞∫
−∞

dkx(∆ω)kx exp
[
−

(
kx +

∆ωα
v

)2

σ2
x

]
exp

[
−

∆ω2

2σ2
ω

]
=

−23/2π2AB2σxα
σ3
ω

v
. (26)

Substituting Eq. (26), Eq. (25) and Eq. (24) into Eq. (17) one finally gets

ρ = −

( √
2ασxσω

v

)
\

(
1 + 2

α2σ2
xσ

2
ω

v2

)1/2

, (27)

11



Fig. 4. Dependence of the tilt parameter ρ, on the normalized kick angle α̂.

that can also be expressed as

ρ = −
α̂

√
1 + α̂2

, (28)

where α̂ is the normalized kick angle given by Eq. (16). The behavior of ρ
as a function of α̂ is shown in Fig. 4. We believe that this parameter can be
used as a benchmark enabling the comparison of the performance of X-ray
FEL beam splitting setups.

We give an example of the use of this formula, involving parameters typical
of a soft X-ray FEL, as in the previous section. One of the input parameters
of our example is the standard deviation of the bandwidth limited spectrum
of a Gaussian X-ray FEL pulse, σω. Since the temporal and spectral charac-
teristics of the field are related to one another through a Fourier transform,
the standard deviation στ of the X-ray pulse intensity distribution in the
time domain and σω cannot vary independently of each other: the relation
σω = 0.5/στ holds.

In order to understand what performance can be achieved in a practical
application, we consider the shortest possible duration of the X-ray pulse
στ ' 1fs and σx ' 20µm, which are typical values for XFELs. For a kick
angle α = 1 mrad one obtains the value ρ ' 0.05. From this result it becomes
apparent that such ultrashort X-ray pulse can be kicked by an angle of
about a mrad with spatiotemporal distortions that can be acceptable in
many situations.
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5 Conclusions

A modulated electron bunch is usually represented as the product of an
amplitude function and a phase term. In our case of interest the spectral
amplitude is centered around a mean frequencyω0 and has appreciable val-
ues only in a narrow frequency interval ∆ω such that ∆ω/ω0 � 1. Because
of this, in the time domain it is convenient to introduce a carrier frequency
ω0 and to write the modulation as product of a slowly varying modulation
envelope and a phase term exp[iω0(z/v − t)]. The modulation of the elec-
tron bunch due to the XFEL process is usually represented with sufficient
accuracy as the product of factors separately depending on space and time.
However, when the manipulation of the modulated electron bunch requires
the introduction of a kick, such assumption fails. As discussed in [4], the car-
rier microbunching phase front is readjusted and always orthogonal to the
propagation direction. In this article we extended the analysis of the influ-
ence of the kick by taking into account time-dependent effects. As discussed
here, the kick introduces a tilt of the modulation envelope with respect to
the phase front. The delay across the bunch is characterized by a certain tilt
angle, which is simply equal to the kick angle α. A method for obtaining
a full characterization of the bunch modulation can be based on the gen-
eration of an exact radiation replica of the electron bunch modulation in a
short undulator installed after the kicker, which functions as a dedicated
diagnostics design. If one deals with coherent undulator radiation from a
kicked microbunched beam, one has to consider, in addition to an extra con-
stant phase, planes of constant intensity, that is pulse fronts. It follows that
any kick upstream of the radiator undulator introduces an X-ray pulse front
tilt, and the output radiation is accompanied by angular dispersion. In the
SASE regime, spatiotemporal distortion affects the degree of transverse co-
herence. An analysis of the quality of the SASE X-ray pulse is given in terms
of analytical results, which are expected to serve as a primary standard for
testing future FEL codes including effects related to the kick.
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