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A search for the K + → μ−νe+e+ decay, forbidden within the Standard Model by either lepton number or 
lepton flavour conservation depending on the flavour of the emitted neutrino, has been performed using 
the dataset collected by the NA62 experiment at CERN in 2016–2018. An upper limit of 8.1 × 10−11

is obtained for the decay branching fraction at 90% CL, improving by a factor of 250 over the previous 
search.
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0. Introduction

In the Standard Model (SM), neutrinos are strictly massless 
due to the absence of right-handed chiral states. The discovery 
of neutrino oscillations has demonstrated non-zero neutrino mass, 
which makes the experimental discrimination between the Dirac 
and Majorana neutrino possible in principle. Strong evidence for 
the Majorana nature of the neutrino would be provided by the 
observation of lepton number violating (LNV) processes, including 
kaon decays [1–4]. Furthermore, lepton flavour violating (LFV) kaon 
decays are expected in new physics models involving flavour vio-
lating ALPs and Z ′ particles [5,6].

The NA62 experiment at CERN collected a large dataset of K +
decays to lepton pairs in 2016–2018, using dedicated trigger lines. 
This dataset has been analysed to establish stringent upper limits 
of the branching ratios of the LNV decays K + → π−(π0)e+e+ [7], 
K + → π−μ+μ+ [8] and K + → π−μ+e+ [9], as well as LFV de-
cays K + → π+μ−e+ and π0 → μ−e+ [9].

The K + → μ−νe+e+ decay is forbidden in the SM by either LN 
or LF conservation, depending on the flavour of the emitted neu-
trino. Experimentally, the current upper limit of the decay branch-
ing fraction is 2.1 × 10−8 at 90% CL [10,11]. In the context of the 
above programme, a new search for the K + → μ−νe+e+ decay 
with the NA62 2016–2018 dataset is reported here.

1. Beam, detector and data sample

The layout of the NA62 beamline and detector [12] is shown 
schematically in Fig. 1. An unseparated secondary beam of π+
(70%), protons (23%) and K + (6%) is created by directing 400 GeV/c
protons extracted from the CERN SPS onto a beryllium target in 
spills of 3 s effective duration. The beam central momentum is 
75 GeV/c, with a momentum spread of 1% (rms).

Beam kaons are tagged with a time resolution of 70 ps by a 
differential Cherenkov counter (KTAG), which uses nitrogen gas at 
1.75 bar pressure contained in a 5 m long vessel as radiator. Beam 
particle positions, momenta and times (to better than 100 ps res-
olution) are measured by a silicon pixel spectrometer consisting 
of three stations (GTK1,2,3) and four dipole magnets forming an 
achromat. A toroidal muon sweeper (scraper, SCR) is installed be-
tween GTK1 and GTK2. A 1.2 m thick steel collimator (COL) with 
a 76 × 40 mm2 central aperture and 1.7 × 1.8 m2 outer dimen-
sions is placed upstream of GTK3 to absorb hadrons from upstream 
K + decays; a variable-aperture collimator of 0.15 × 0.15 m2 outer 
dimensions was used up to early 2018. Inelastic interactions of 
beam particles in GTK3 are detected by an array of scintillator 
hodoscopes (CHANTI). A dipole magnet (TRIM5) providing a 90 
MeV/c horizontal momentum kick is located in front of GTK3. The 
beam is delivered into a vacuum tank evacuated to a pressure of 
10−6 mbar, which contains a 75 m long fiducial volume (FV) start-
ing 2.6 m downstream of GTK3. The beam angular spread at the FV 
entrance is 0.11 mrad (rms) in both horizontal and vertical planes. 
Downstream of the FV, undecayed beam particles continue their 
path in vacuum.

Momenta of charged particles produced in K + decays in the FV 
are measured by a magnetic spectrometer (STRAW) located in the 
vacuum tank downstream of the FV. The spectrometer consists of 
four tracking chambers made of straw tubes, and a dipole magnet 
(M) located between the second and third chambers that provides 
a horizontal momentum kick of 270 MeV/c in a direction opposite 
to that produced by TRIM5. The momentum resolution is σp/p =
(0.30 ⊕ 0.005 · p)%, with the momentum p expressed in GeV/c.

A ring-imaging Cherenkov detector (RICH) consisting of a 
17.5 m long vessel filled with neon at atmospheric pressure (with 
a Cherenkov threshold of 12.5 GeV/c for pions) provides particle 
identification, charged particle time measurements with a typical 
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Fig. 1. Schematic side view of the NA62 beamline and detector.

resolution of 70 ps, and the trigger time. Two scintillator ho-
doscopes (CHOD), which include a matrix of tiles and two planes 
of slabs arranged in four quadrants located downstream of the 
RICH, provide trigger signals and time measurements with 200 ps 
precision.

A 27X0 thick quasi-homogeneous liquid-krypton (LKr) electro-
magnetic calorimeter is used for particle identification and pho-
ton detection. The calorimeter has an active volume of 7 m3, 
segmented in the transverse direction into 13248 projective cells 
of 2 × 2 cm2 size, and provides an energy resolution σE/E =
(4.8/

√
E ⊕ 11/E ⊕ 0.9)%, with E expressed in GeV. To achieve her-

metic acceptance for photons emitted in K + decays in the FV at 
angles up to 50 mrad from the beam axis, the LKr calorimeter is 
complemented by annular lead glass detectors (LAV) installed in 
12 positions inside and downstream of the vacuum tank, and two 
lead/scintillator sampling calorimeters (IRC, SAC) located close to 
the beam axis. An iron/scintillator sampling hadronic calorimeter 
formed of two modules (MUV1,2) and a muon detector consisting 
of 148 scintillator tiles located behind an 80 cm thick iron wall 
(MUV3) are used for particle identification.

The data sample analysed is obtained from 0.89 ×106 SPS spills 
recorded in 2016–2018, with the typical beam intensity increas-
ing over time from 1.3 × 1012 to 2.2 × 1012 protons per spill. The 
latter value corresponds to a 500 MHz mean instantaneous beam 
particle rate at the FV entrance, and a 3.7 MHz mean K + decay 
rate in the FV. The main NA62 trigger is dedicated to the collec-
tion of very rare K + → π+νν̄ decays [13]. The present analysis 
is based on the dedicated multi-track (MT), electron multi-track 
(eMT) and muon multi-track (μMT) trigger lines operating concur-
rently with the main trigger line [14,15], downscaled typically by 
factors DMT = 100, DeMT = 8 and DμMT = 8. The downscaling fac-
tors were varied during data-taking to accommodate the increasing 
beam intensity. The low-level (L0) hardware trigger is based on 
RICH signal multiplicity and coincidence of signals in two opposite 
CHOD quadrants. The μMT (eMT) line requires aenh 10 (20) GeV 
energy deposit in the LKr calorimeter. The μMT line requires a sig-
nal in an outer tile of the MUV3 detector (i.e. one of the 140 tiles 
not adjacent to the beam pipe). The high-level (L1) software trig-
ger involves beam K + identification by the KTAG, reconstruction of 
a negatively-charged STRAW track, and fewer than three in-time 
signals in LAV stations 2–11 (in the μMT trigger line only). For 
signal-like samples characterised by an LKr energy deposit well 
above 20 GeV, the measured inefficiencies of the CHOD (STRAW) 
trigger conditions are typically at the 1% (5%) level, while those of 
the RICH, MUV3, KTAG and LKr conditions are of O(10−3).

Monte Carlo (MC) simulations of particle interactions with the 
detector and its response are performed using a software package 

based on the Geant4 toolkit [16]. In addition, accidental activity is 
simulated and the response of the trigger lines is emulated.

2. Event selection

The rate of the possible signal decay K + → μ−νe+e+ (denoted 
Kμνee below) is measured with respect to the rate of the normal-
isation decay K + → π+e+e− (denoted Kπee below), which allows 
a first order cancellation of detector and trigger inefficiencies. The 
Kμνee decay candidates are collected with the MT, eMT and μMT 
trigger lines, while the Kπee decay candidates are collected with 
the MT and eMT lines only. The following selection criteria are 
common for the Kμνee and Kπee decay candidates.

• Three-track vertices are reconstructed by extrapolating STRAW 
tracks into the FV, taking into account the measured resid-
ual magnetic field in the vacuum tank, and selecting triplets 
of tracks consistent with originating from the same point. Ex-
actly one vertex should be present in the event. The total 
charge of the three tracks should be q = +1. The longitudinal 
position of the vertex, zvtx, should be within the FV. The mo-
menta of the tracks forming the vertex should be in the range 
6–44 GeV/c, and their trajectories through the STRAW cham-
bers and extrapolated positions in the CHOD and LKr calorime-
ter front planes should be within the respective geometrical 
acceptances. Each pair of tracks should be separated by at least 
15 (200) mm in each STRAW chamber plane (LKr front plane) 
to suppress photon conversions and reduce shower overlap ef-
fects.

• Track times, ttrack, are defined initially using the CHOD infor-
mation. The vertex CHOD time is evaluated as the average of 
the track CHOD times. Signals in the RICH geometrically com-
patible with the tracks, within 3 ns of the vertex CHOD time, 
are used to evaluate track RICH times. Track and vertex time 
estimates are then refined using the more precise RICH infor-
mation. Each track is required to be within 2.5 ns of the trigger 
time, ttrigger.

• To suppress backgrounds with photons in the final state, orig-
inating from K + → π+π0

D and K + → π0
D e+ν decays followed 

by the Dalitz decay π0
D → γ e+e− , no signals in the LAV detec-

tors located downstream of the reconstructed vertex position 
are allowed within 4 ns of the vertex time.

• Particle identification is based on the ratio E/p of the energy 
deposited in the LKr calorimeter (within 50 mm of the track 
impact point, within 10 ns of the vertex time) to the momen-
tum measured by the spectrometer. Pion (π±), muon (μ±) 
and electron (e±) candidates are required to have E/p < 0.85, 
E/p < 0.2 and 0.9 < E/p < 1.1, respectively. No geometrically 
associated MUV3 signals within 3 ns of the vertex time are 
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allowed for pion candidates, and an associated MUV3 signal 
within 5 ns of the vertex time is required for the muon candi-
dates.

The Kπee selection is identical to that of Ref. [7], and includes the 
following additional criteria.

• The tracks forming the vertex should be identified as π+e+e− , 
according to the specified charge and particle identification re-
quirements.

• The total momentum of the three tracks, pvtx, should sat-
isfy the condition |pvtx − pbeam| < 2 GeV/c, where pbeam is 
the beam central momentum. The total transverse momen-
tum with respect to the beam axis should be below 30 MeV/c. 
The quantity pbeam and the beam axis direction are monitored 
throughout the data taking, typically every few hours, with 
fully reconstructed K + → π+π+π− decays.

• The reconstructed π+e+e− mass, mπee , should be in the nor-
malisation region defined as 470–505 MeV/c2, accounting for 
the 1.7 MeV/c2 resolution and the radiative tail. The recon-
structed e+e− mass should be mee > 140 MeV/c2 to suppress 
backgrounds from the K + → π+π0 decay followed by π0

D →
e+e−γ , π0

D D → e+e−e+e− , and π0 → e+e− decays. This leads 
to an acceptance reduction to 73% of its value, i.e. a relative 
reduction of 27%.

The following selection criteria are specific to the Kμνee selection. 
The presence of an undetected neutrino in the final state enhances 
the background, therefore the vertex position condition and the 
photon veto criteria are more stringent than in the Kπee case.

• The tracks forming the vertex should be identified as μ−e+e+ , 
according to the specified charge and particle identification re-
quirements.

• A momentum deficit, pbeam − pvtx > 10 GeV/c, is required 
to suppress the K + → π+π+π− background. This condition 
leads to a 55% relative reduction of acceptance, assuming a 
uniform phase space distribution.

• The squared missing mass is defined as m2
miss = (P K − Pμ −

Pe1 − Pe2)
2, where P K , Pμ and Pe1,2 are the kaon, muon 

and positron four-momenta, respectively. The four-momenta 
are evaluated using the mean kaon beam momentum and the 
reconstructed daughter momenta, under the respective mass 
hypotheses. The signal region is defined as −0.006 GeV2/c4 <

m2
miss < 0.004 GeV2/c4. The asymmetric definition reduces the 

K + → π+π−e+ν background while maximising acceptance, 
taking into account the m2

miss resolution of 1.4 × 10−3 GeV2/c4

and its non-gaussian tails.
• The longitudinal position of the vertex should not be within 

the first 3 m of the FV. This reduces the background from up-
stream decays, i.e. decays occurring upstream of GTK3. Track 
bending by the TRIM5 magnet leads to a biased reconstruction 
of the decay vertex and kinematic properties of these decays.

• For further suppression of backgrounds with photons in the fi-
nal state, no clusters in the LKr calorimeter are allowed with 
energy above 3 GeV, separated by more than 150 mm from 
each of the track impact points, and within 6 ns of the vertex 
time.

3. The effective number of K + decays

The reconstructed mπee spectra obtained with the Kπee se-
lection for the data, as well as simulated signal and background 
components, are displayed in Fig. 2 (left). Below the mπee normal-
isation region, the background is mainly due to K + → π+π+π−
decays with two pions (π±) misidentified as electrons (e±), and 

K + → π+π−e+ν decays with one pion (π−) misidentified as 
an electron (e−). In the mπee normalisation region, 10975 de-
cay candidates are observed in the data sample, and the principal 
background comes from the K + → π+π0

D , π0
D → γ e+e− decay 

chain. This background is suppressed by the mee > 140 MeV/c2

selection condition, and contributes via double particle misiden-
tification (π+ → e+ and e+ → π+). Pion and electron identifica-
tion with the LKr calorimeter is modelled using (mis)identification 
probabilities measured from data samples of K + → π+π+π− and 
K + → π0e+ν decays [7]: the misidentification probabilities are 
about 1%, and depend on momentum. Contribution to the back-
ground from the pion decay in flight, π± → e±ν , is negligible due 
to the O(10−4) branching fraction of this decay.

To account for the fact that the μMT trigger line is used to 
collect Kμνee events only, while the eMT and MT lines are used 
to collect both Kμνee and Kπee events, a weight determined by 
the trigger downscaling factors is applied to each Kπee event in 
the data sample to evaluate the number of Kπee candidates for 
normalisation:

w =
1 −

(
1 − 1

DeMT

)(
1 − 1

DμMT

)(
1 − 1

DMT

)

1 −
(

1 − 1
DeMT

)(
1 − 1

DMT

) ≥ 1.

The weight quantifies the enhancement of the kaon flux provided 
by the additional μMT trigger line used to collect Kμνee events. 
The weight has a typical value of 1.8, and reaches 2.9 for subsets 
of data with large values of the DeMT/DμMT ratio.

The effective number of K + decays in the FV is computed as

NK = (1 − f ) · Nπee

Bπee · Aπee

= (1.97 ± 0.02stat ± 0.02syst ± 0.06ext) × 1012, (1)

where: Nπee = 21401 is the number of weighted Kπee candi-
dates in the data sample; Bπee = (3.00 ± 0.09) × 10−7 is the Kπee

branching fraction [11]; Aπee = (3.62 ± 0.03syst) × 10−2 is the se-
lection acceptance evaluated with simulations including trigger in-
efficiency and effects of event pileup; and f = 1.0 × 10−3 is the 
relative background contamination evaluated with simulations. The 
uncertainty in Aπee is estimated from stability checks with respect 
to variation of the selection criteria. The quoted systematic uncer-
tainty in NK is due to Aπee , while the external uncertainty is due 
to Bπee .

4. Background to the K + → μ−νe+e+ decay

Background due to single kaon decays

Background to the Kμνee process from single K + decays is esti-
mated using simulations with data-driven modelling of pion and 
electron (mis)identification, as described in Ref. [7]. To validate the 
background estimates, lower and upper regions of m2

miss located be-
low and above the signal region are considered, while the signal 
region is kept masked.

• K + → π+π+π− decay, with double π+ → e+ misidentifica-
tion and π− → μ−ν̄ decay in flight, contributes mainly in 
the upper m2

miss region. Background in the signal mass region 
is minimised by the choice of the selection condition on the 
missing momentum, pbeam − pvtx. Background from upstream 
K + → π+π+π− decays is minimised by the zvtx selection 
condition.

• K + → π+π−e+ν decay, with π+ → e+ misidentification and 
π− → μ−ν̄ decay in flight, contributes mainly in the upper 
m2

miss region. The contribution in the signal mass region is also 
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Fig. 2. Left: reconstructed mπee spectra for the data and MC samples obtained with the Kπee selection. The data events are not weighted (see Section 3). Right: reconstructed 
m2

miss spectra for the data and MC samples obtained with the Kμνee selection. The normalisation and signal mass regions are indicated by vertical arrows.

minimised by the missing momentum and zvtx selection con-
ditions.

• The K + → π0
D e+ν , π0

D → e+e−γ decay chain contributes via 
e− → μ− misidentification if the photon is not detected. The 
electron misidentification probability achieved by the E/p <
0.2 condition is found with simulations to be O(10−4), the 
probability of a matching in-time accidental MUV3 signal is 
O(10−2). Photon veto conditions provide further suppression, 
resulting in a small background contribution. The background 
from the rare decay K + → e+νe+e− [17], also contributing via 
e− → μ− misidentification, is negligible.

• The rare decay K + → e+νμ+μ− [17] enters via muon decay 
in flight, μ+ → e+νν̄ , and its contribution is small.

Background due to accidental activity

Background due to coincidences of multiple kaon decays, beam 
pion decays or beam halo muons is estimated using several meth-
ods.

• Alternative event selections with an out-of-time track are con-
sidered: the timing condition |ttrack − ttrigger| < 2.5 ns is re-
placed by 2.5 ns < |ttrack − ttrigger| < 20 ns for either the μ−
candidate or one of the e+ candidates. These selections are 
blind to single K + decays, and enhance accidental background 
by up to a factor of seven (taking trigger efficiencies into ac-
count). No data events in the signal m2

miss region are observed 
using any of these alternative selections.

• Another alternative event selection is considered: the vertex 
charge condition is replaced by q = −1, and the μ−e+e− fi-
nal state is requested. No data events satisfy this selection in 
either of the signal, lower or upper regions of m2

miss.
• The background component due to the coincidence of two 

K + → π+π+π− decays is evaluated with a dedicated simu-
lation: the estimated background in the signal m2

miss region is 
1.2 × 10−3 events.

It is concluded that background contributions due to accidental ac-
tivity can be neglected.

Summary of background contributions

The reconstructed m2
miss spectra obtained with the Kμνee selection 

for the data, as well as simulated signal and background compo-
nents, are displayed in Fig. 2 (right). The estimated background 
contributions in the lower, signal and upper m2

miss regions are 

Table 1
Background estimates in the lower, signal and upper Kμνee squared missing mass 
regions with their statistical uncertainties. The contributions from upstream K + →
π+π+π− and K + → π+π−e+ν decays are quoted separately. Upper limits at 90% 
CL are quoted when no simulated events satisfy the selection. The numbers of ob-
served data events are also listed.

Mode / Region Lower Signal Upper

K + → π+π+π− < 0.07 < 0.07 1412 ± 11
K + → π+π−e+ν 0.01 ± 0.01 0.16 ± 0.02 867 ± 1
K + → π+π+π− (upstream) < 0.03 0.06 ± 0.03 1.5 ± 0.3
K + → π+π−e+ν (upstream) 0.01 ± 0.01 0.01 ± 0.01 0.14 ± 0.03
K + → π0

D e+ν 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01
K + → e+νμ+μ− < 0.01 < 0.01 0.05 ± 0.02

Total expected 0.04 ± 0.02 0.26 ± 0.04 2281 ± 11

Data 0 0 2271

listed in Table 1. The numbers of data events in the lower and 
upper regions are compared to the background estimates before 
opening the masked region, and found to be in agreement within 
statistical fluctuations. The background in the signal region is esti-
mated to be

NB = 0.26 ± 0.04,

where the uncertainty is dominated by the MC statistical contribu-
tion.

5. Results

The signal acceptance evaluated with simulations, assuming 
a uniform phase space distribution of signal events, is Aμνee =
0.0144. The uncertainty in Aμνee is negligible for the purpose 
of the signal search. The single event sensitivity, defined as the 
branching fraction of the Kμνee decay corresponding to the obser-
vation of one signal event, is found to be

BSES = (
NK · Aμνee

)−1 = (3.53 ± 0.12) × 10−11.

No data events are observed in the signal region after unmasking. 
An upper limit of the signal branching fraction is evaluated using 
the quantity BSES and the numbers of expected background events 
and observed data events using the CLS method [18]:

B(K + → μ−νe+e+) < 8.1 × 10−11 at 90% CL.
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6. Summary

A search for the forbidden decay K + → μ−νe+e+ has been 
performed using the dataset collected by the NA62 experiment at 
CERN in 2016–2018. An upper limit of 8.1 × 10−11 is obtained for 
the decay branching fraction at 90% CL assuming a uniform phase 
space distribution of signal events, which improves by a factor of 
250 over the previous search [10,11]. The sensitivity is not lim-
ited by the background. Similarly to other limits for the rates of 
LNV/LFV decays, the result depends on the phase space density 
assumption. The sensitivity is not sufficient to obtain new con-
straints on the models involving Majorana neutrinos and lepton 
flavour violating ALPs and Z ′ , however the result probes physics 
beyond these models.
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