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ABSTRACT

The insulator–metal transition in liquid hydrogen is an important phenomenon to understand the interiors of gas giants, such as Jupiter and
Saturn, as well as the physical and chemical behavior of materials at high pressures and temperatures. Here, the path toward an experimental
approach is detailed based on spectrally resolved x-ray scattering, tailored to observe and characterize hydrogen metallization in dynamically
compressed hydrocarbons in the regime of carbon–hydrogen phase separation. With the help of time-dependent density functional theory
calculations and scattering spectra from undriven carbon samples collected at the European x-ray Free-Electron Laser Facility (EuXFEL), we
demonstrate sufficient data quality for observing C–H demixing and investigating the presence of liquid metallic hydrogen in future experi-
ments using the reprated drive laser systems at EuXFEL.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0146416

I. INTRODUCTION

The first confirmed discovery of an exoplanet in 19921 and then
the discovery of an exoplanet around a Sun-like star by Mayor and
Queloz2 opened the floodgates for the detection of exoplanets, leading

to multiple dedicated missions to look for exoplanets across the galaxy.
After 30 years and over 5000 confirmed exoplanets,3 it is now increas-
ingly important to understand how planetary systems form and
evolve. A large number of discovered exoplanets lie in the range of
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masses of gas giants like Jupiter and Saturn and ice giants like Uranus
and Neptune, with the ice giants dominating the population.4,5

Studying these large bodies in our Solar System continues to enhance
our understanding of the formation and evolution of planetary sys-
tems in general.

Various probe missions afforded us extensive data and improved
our understanding of the planets by exploring the upper layers and
space around them. The interiors of these astrophysical bodies can be
constrained using the measurements of their physical properties, but
establishing the internal structure and their bulk composition requires a
better understanding of the behavior of the chemical species at high-
pressure and high-temperature conditions. The thermal energies at
planetary interior conditions are at the same order of magnitude as the
energies stored in the chemical bonds, resulting in expected complex
chemical processes including phase transitions, species separation, and
demixing.6,7 The chemical composition and potential chemical pro-
cesses taking place inside these planets are essential for creating better
models and understanding their thermal, magnetic, and electrical
properties.8

The deep planetary conditions are at the low-temperature end of
the warm dense matter (WDM) regime. WDM describes the transition
region between cold condensed matter and high-temperature plas-
mas.9,10 One of the materials with great interest in research at WDM
conditions is metallic hydrogen. It was first predicted by Wigner and
Huntington11 that solid molecular hydrogen would transform into
metal at high pressures. A pressure-induced liquid–liquid phase transi-
tion from molecular hydrogen to a metallic phase is relevant to plane-
tary interiors and therefore has been widely researched.12–14 The
transition is referred to as plasma phase transition, which, depending
on temperature, is predicted to either be an abrupt first-order phase
transition or a continuous transition to the metallic state.15–17

Theoretical and experimental studies of metallic hydrogen have
significantly contributed to the current understanding of planetary evo-
lution. Jupiter and Saturn are predicted to have an interior dominated
by liquid metallic hydrogen, which is in contrast to the properties of the
insulating, molecular form present in the outer layers.6 This highly con-
densed metallic hydrogen in the interior of gas giant planets is expected
to be responsible for the strong dynamo that drives their exceptionally
strong magnetic fields.18 Uranus and Neptune are most often modeled
to be made of three layers: a rocky core consisting of silicates and iron,
an “icy” shell that contains a mixture of water, methane, and ammonia,
and a gaseous envelope dominated by hydrogen and helium.19–21 In the
high-pressure and high-temperature environment of these icy-giant
planets, it is predicted that methane will form polymeric hydrocarbon
chains8,22 and, deeper toward the core, will dissociate into carbon in the
form of diamond and metallic hydrogen.23–26

Transcribing the physics of WDM state requires consider-
ation of highly interacting particles. Coupling and quantum effects
are not perturbations in the WDM regime, but are as strong as the
thermal energy. The complex interplay of competing forces is a
reason that the precise theoretical modeling to adequately portray
the physics is very difficult.9,27,28 To test the models, dedicated lab-
oratory experiments need to be performed. The so-far applied
experimental methods are mostly based on cryogenic liquid hydro-
gen as the initial material and include static compression
approaches using diamond anvil cells29–32 and various dynamic
compression techniques.15,33–36

In addition to the challenges of compressing hydrogen to metalli-
zation conditions using the above-mentioned methods, the complexity
of cryogenic sample environments to start with high-density hydrogen
from the beginning also limits diagnostic capabilities. The measure-
ment of electrical conductivities for liquid H2 and D2 dynamically
compressed by high-velocity impactors driven by a gun has provided
the first pioneering insight.35 In more recent approaches, the insula-
tor–metal transition of hydrogen has been characterized by determin-
ing the surface reflectivity of the compressed sample. While there has
been progress using a surface reflectivity method, there are notable dis-
crepancies in the P–T conditions where hydrogen metallization was
observed.33,34 Indeed, systematic uncertainties of the approach arise
from the fact that the reflecting interface is often in direct contact with
a material containing the sample, which may induce additional chem-
istry and changes in the electronic structure. Therefore, techniques
capable of accessing the interior of the sample and probing the bulk
volume are preferable but difficult to realize experimentally. The high
electronic densities of WDM make it opaque to optical probes, and
therefore, hard x-rays of keV energy are required to access the bulk
volume.

As a further development of pioneering experiments using laser-
based x-ray sources, the advent of x-ray free-electron lasers has
matured enough to provide revolutionary capabilities in the diagnosis
of dynamically compressed matter, mainly created by high energy
lasers producing compression waves on nanosecond timescales.
Methods applied include spectrally resolved x-ray Thomson scattering
(XRTS) that can access the electron temperature and density, the ioni-
zation state, and plasmon features. The plasmon feature is sensitive to
frequency-dependent electron–ion collision processes, which are
related to the electrical conductivity.37

In this work, we present high-resolution x-ray scattering mea-
surements obtained in the collective regime from undriven carbon
samples in comparison with theoretical predictions using the time-
dependent density functional theory (TDDFT).38 Furthermore, the
possibility of observing the C–H demixing and hydrogen metallization
via plasmon scattering under high pressure and high temperature is
investigated with the help of experiments including a rep-rated ener-
getic shock driver.

II. X-RAY THOMSON SCATTERING

X-ray Thomson scattering is an established diagnostic method
for characterizing WDM.39,40 The particular experimental setup used
illuminated sample by a linearly polarized x-ray free-electron laser in
the horizontal plane. The incident wave vector k0 is described with
k0 ¼ 2pE0=hc. The scattered radiation is observed at the scattering
angle h along the direction of the scattered wave vector kS above the
sample by a spectrometer. The scattering vector k is defined by k ¼ kS
� k0. For small momentum and energy transfers from the incident x-
ray photon to the electron (�hx� �hx0, where x0 denotes the fre-
quency of the incident radiation), the magnitude of the incident wave
vector is close to the scattered wave vector, k0 � ks, and the absolute
value of the scattering vector k can be determined by

k ¼ jkj ¼ 4p
E0
hc

sin
h
2

� �
: (1)

The collective and non-collective regimes are distinguished by
the scattering parameter a ¼ 1=kkS, where kS is the plasma screening
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length: a � 1 corresponds to the collective scattering regime, and a
� 1 is characteristic for non-collective scattering. As a is dependent
on k, different regimes can be accessed by varying the incident x-ray
energy E0 and/or the scattering angle h. Here, the focus is on collective
scattering to resolve plasmon oscillations of the electrons.

The obtained spectra can, then, be compared to models of the
dynamic structure factor Sðk;xÞ, which describes the scattering of
radiation from charge density fluctuations. Theoretically, the dynamic
structure factor can be obtained by the inversion of the total electronic
dielectric function �ðk;xÞ. This expression is equivalent to the total
electron density response function vðk;xÞ.41 The dynamic structure
factor is obtained using the fluctuation–dissipation theorem,42

Sðk;xÞ ¼ �h
pne

1

1� e�hx=kBTe
Im vðk;xÞ½ �: (2)

For an advanced study of the sample properties, dynamic
structure factor predictions can be extracted from state-of-the-art
ab initio methods. For the study, time-dependent density func-
tional theory (TDDFT) simulations43 were performed. At ambient
conditions, the linear-response TDDFT calculations were per-
formed using the full-potential linearized augmented-plane wave
code implemented in Elk44 using bootstrap,45 a long-range
exchange-correlation (XC) kernel for TDDFT as implemented in
the Elk code. The response functions at high-pressure and high-
temperature conditions are evaluated using the adiabatic local
density approximation for TDDFT in yambo46 applying the
Kohn–Sham47 orbitals evaluated by Quantum ESPRESSO.48 The
simulations were performed for a system size ranging from 64 to
256 atoms consisting of C, H, CH, CH3, and C3H in a supercell
using a 2� 2� 2 k-point mesh. The Perdew–Burke–Ernzerhof
(PBE)49 XC functional is used in all the calculations.

III. RESULTS

The experimental data presented here were obtained at the High-
Energy-Density (HED) instrument of the European X-ray Free-
Electron Laser Facility (EuXFEL).50 The setup used was typical for
in situ x-ray diagnostics of laser-driven shock waves at XFEL facilities
combining spectrally resolved x-ray scattering in both forward and
backward geometries with x-ray diffraction, and only the drive laser
was not yet available. The details of the setup together with an analysis
of the backward scattering data have been described by Voigt et al.51

For demonstrating the forward scattering capabilities, 10lm thick dia-
mond samples were probed by x-ray pulses with a photon energy of
�6000 eV, focused to <10lm spot sizes using beryllium compound
refractive lenses. A monochromator was used to reduce the energy
bandwidth to �1 eV, from originally �20 eV corresponding to the
self-amplified spontaneous-emission (SASE) bandwidth. Both the
spectrometers used cylindrically bent Highly Annealed Pyrolytic
Graphite (HAPG) crystals with 80mm radius of curvature, albeit the
crystals used in the forward scattering setups had coating thickness of
100lm compared with 40 um in the backward direction.52 The back-
ward scattering setup had a JUNGFRAU detector53 at 155, to study x-
ray Raman spectroscopy from different samples.51 The forward scat-
tering signal was collected on an ePix100 detector54 at 18. Dark images
were taken as an average of 1200 frames (corresponding to a 2min
10Hz acquisition) per gain mode. The setup also included an ePix100
detector for x-ray diffraction (XRD) and an Andor Zyla 5.5 sCMOS

detector along with a bent Si-111 crystal spectrometer downstream of
transmitted x-rays to measure the source spectrum.51

For the analysis of the forward spectrometer, pixel values with
less than a nominal threshold associated with a clear single photon hit
were truncated to zero for reducing the noise. Pixel noise in high gain
corresponds to �290 eV, allowing us to identify single photon counts
with only Poisson noise. Several thousand two-dimensional detector
images were, then, summed up to derive a lineout. Figure 1 illustrates
the forward scattering spectrum from a 10lm thick diamond sample.
The plasmon feature, in this case collective excitations of valence band
electrons, is usually downshifted by �30 eV with respect to the elastic
peak.55 Using the monochromator allows the plasmon feature and the
substructures to be clearly resolved, which would have been smeared
out with pure SASE.

The forward scattering angle and the XFEL photon energy result
in an absolute value of the scattering vector of �0.94 Å�1 applying Eq.
(1). This wave number was, then, used as input for generating synthetic
spectra from TDDFT simulations. In Fig. 2, the plasmon feature
obtained from the experiment is compared with the TDDFT simula-
tions convolved with the experimental instrument function. The syn-
thetic spectrum shows reasonable agreement with the experimental
data, reproducing the detailed features, except the surface plasmon fea-
ture at�25 eV,56 which is not covered by the bulk nature of the simula-
tions. The total energy resolution obtained using the monochromator
with 100lm HAPG crystals is �5 eV. As the 100lm HAPG crystals
have more depth broadening than the 40lm HAPG crystals that were
used in the backward scattering setup of the same experiment, by using
the 40lm HAPG crystals in the forward scattering setup could bring
down the total spectral resolution to �3 eV.52 Solely using the SASE
mode results in �20 eV, which smears out all substructures of the plas-
mon feature and results in overlap with the elastic scattering peak. The
lower signal due to the monochromator has been compensated by tak-
ing a larger number of shots cumulatively.

IV. DISCUSSION

The obtained results suggest the applicability of the method pre-
sented for observing C–H demixing and hydrogen metallization under

FIG. 1. Forward x-ray scattering spectrum from diamond, normalized to the maxi-
mum of the elastic signal peak. Spectra were obtained by averaging over 18 000
shots using the x-ray beam in the SASE configuration along with a monochromator.
The plasmon feature is presented on a linear scale in Fig. 2.
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high-pressure, high-temperature conditions. In previous experiments,
polystyrene (CH) samples were dynamically compressed at the Linac
Coherent Light Source showing C–H phase separation on nanosecond
timescales using in situ x-ray diffraction.24,57 Frydrych et al.58 used a
similar experimental setup to determine the degree of species separa-
tion in a dynamically compressed polystyrene sample to WDM condi-
tions from spectrally resolved forward and backward x-ray scattering
data. At pressures of the order of �150GPa and temperatures around
�6000K, the carbon transforms into nanometer-sized diamonds.
Measured diffraction lineouts provide indirect evidence for nearly
complete C–H separation,69 where the isolated hydrogen would be
expected to be in a liquid metallic state. However, as XRD does not
provide a signal from the weakly scattering hydrogen, and reflectivity
measurements from the compression fronts remain elusive due to the
ongoing chemical reaction,59 so far there is no direct evidence for the
presence of liquid metallic hydrogen in these experiments. Due to its
sensitivity to electronic structure and bulk conductivity, the high-
resolution forward scattering method described here can overcome
these limitations and clarify the state of hydrogen in dynamically com-
pressed C–Hmixtures.

To test the sensitivity with the achieved spectral resolution,
TDDFT calculations of the plasmon structures for C, H, and CH at
conditions of P � 150GPa and T � 6000K were performed on ionic
configurations obtained from density functional molecular dynamics
(DFT-MD) simulations performed using VASP.60–63 For consistency,
the TDDFT calculations of the dynamic structure factor were per-
formed at the k-vector magnitude of �0:94 Å�1, i.e., the same as the
forward scattering in the experiment. The spectral contributions of all
three species were convolved with the experimentally obtained instru-
ment function.51 The results are depicted in Fig. 3 and show a single
peak with an almost Gaussian shape for a fully mixed CH sample. For
fully demixed CH, a culmination of two distinctly shifted plasmon fea-
tures from the two separate components is observed, forming a
double-peak structure. The peak at higher energy shifts originates
from the collective excitations of the diamond valence band, while the
peak at lower energy shifts represents the plasmon feature of liquid

metallic hydrogen. With the experimentally demonstrated spectral res-
olution of �3 eV possible using the 40lmHAPG crystals, and a sepa-
ration between the peaks of �6–8 eV, C–H phase separation and
hydrogen metallization can be observed using the demonstrated setup
in future experiments adding a rep-rated drive laser.

Additional TDDFT dynamic structure factor calculations were
performed on pure H and C, as well as other C–H mixtures (CH,
CH3, and C3H) at different scattering vectors to obtain the respective
plasmon peaks and plasmon dispersion shifts. Figure 4 shows the plas-
mon energy shifts for varying k-values for each species. The obtained
results show that the separation between the features of the fully dem-
ixed components as shown in Fig. 3 is larger at smaller scattering

FIG. 2. Measured plasmon feature (orange) from Fig. 1 in comparison with the cal-
culated plasmon feature (blue) after convolution with the instrument function.

FIG. 3. Calculated spectra for CH in mixed state (orange) and demixed state (blue)
for the scattering vector of k¼ 0.94 Å�1. The demixed state plasmon is a combina-
tion of the characteristic carbon (red dotted) and metallic hydrogen (black dotted)
features.

FIG. 4. Calculated plasmon energy shift for various species using the peak position
of a respective plasmon in the forward scattering spectrum at different scattering
vectors k. Plasmon shift in an experimental XRTS data at ambient conditions taken
from Ref. 55 is also displayed for comparison.
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vector magnitudes. The quadratic dispersion (shown up to k � 1:60)
from the TDDFT results is weak, especially for carbon.43,55 The
remaining results exhibiting a slightly stronger quadratic dispersion
are only shown for k¼ 0.80–1.25 Å�1 highlighting the spectral resolu-
tion in the plasmon peaks required for diagnostics. In addition, the
dispersion feature obtained using XRTS55 for diamond at ambient
conditions is additionally shown for Ref. 55 highlighting the differ-
ences expected between ambient and warm dense carbon states. Thus,
the corresponding experiments need to aim for small scattering angles
and/or low photon energies to optimize the sensitivity for C–H separa-
tion and hydrogen metallization via inelastic x-ray scattering.

In conclusion, the described method using collective x-ray
Thomson scattering is applicable to characterize liquid metallic hydro-
gen in the bulk of the sample, which is advantageous over the reflectiv-
ity measurements that can only probe the surface (which may be in a
non-equilibrium state, e.g., a shock front). We presented how the
exemplar scattering spectrum from ambient diamond recorded at the
HED instrument of European XFEL agrees well with the TDDFT sim-
ulations performed. The existing resolution is capable of distinguishing
the expected metallic hydrogen feature after demixing. In our demon-
stration experiment, �18 000 shots were accumulated due to a signifi-
cant decrease in x-ray flux due to the usage of a monochromator.
With the new possibility to use self-seeded x-ray beams providing a
spectral resolution comparable to using the monochromator,64 but
with approximately 50 times more x-ray photons per pulse, the
required number of shots will be significantly reduced. Moreover, the
samples applied in the demonstration experiment were notably thin-
ner than those in typical shock-compression experiments at XFEL
sources (10lm vs 50–100lm). Therefore, it can be expected that an
accumulation of approximately 1000 shots or even less is required to
obtain the data quality presented here. While high repetition rates
place high demands on target design and the target delivery system,65

the corresponding developments are under way at the HED instru-
ment, e.g., by allowing to replace targets without the need to break the
vacuum in the interaction chamber.66 Furthermore, plastics as a base
target material allow for using tape samples that enable such rep-rated
experiments with several 1000s of shots before targets have to be
swapped.67 Novel diagnostic tools combined with the new DiPOLE
high-energy laser system at the HED instrument of EuXFEL will
enable bulk-sensitive measurements of planetary core conditions. It is
up to 10Hz repetition rate, and pulse shaping capabilities68 can be
expected to play a crucial role in unlocking the physics behind the
planets in the Solar System as well as the evolution of the steadily
increasing number of confirmed exoplanets beyond.
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