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Reminder: The scope of the SPB/SFX Instrument 

FIG. 1. Schematic sketch of the simulated single–particle imaging experiment, showing the undu-

lator section, horizontal o↵set mirrors, and focussing mirrors. Di↵racted photons are registered in

the detector. The inset shows the simulated molecule 2NIP.

Electronic damage (i.e. ionization), however, sets in even earlier with the very first

photons hitting the sample, producing photo–electrons of a few hundred to a few thousand

eV kinetic energy. This process is typically followed by Auger decay on time scales of a

few femtoseconds. Precise values vary between chemical elements. Auger lifetimes of the

most abundant 2NIP constituent atoms range between 4.9 fs (Oxygen) and 10.7 fs (Carbon)

[6, 12]. Auger electrons from L or M shells leave the atom with a few hundreds of eV,

triggering an avalanche of secondary impact ionization on time scales of roughly 10-100 fs,

creating the strong repulsive forces between ions responsible for the Coulomb expansion [13].

The immediate e↵ect of increased ionization, noticable already before the ionic displace-

ment sets in, is a decrease in the amount of coherently scattered photons since the elastic

scattering cross–section scales with the square of the number of bound electrons. In this

work, we study whether we can further improve the signal level and signal–to–noise ratio,

and thereby in turn the consistency of oriented di↵raction volumes, by reducing the pulse

duration to 3 fs FWHM, i.e. shorter than the Auger lifetime of most 2NIP constituents.

Our simulations track the x–ray photons from their generation in the FEL’s undulator

structure through the x–ray optical beam line to the sample interaction point. We take into

account the stochastic nature of self–amplified spontaneous emission (SASE) x–ray pulses

in the temporal and spectral domain, as well as imperfections of optical elements in the

beamline. Subsequently, we model the photons’ interaction with and scattering from the

sample including time dependent e↵ects and their eventual registration in the detector. Ori-

entation and phasing [3] of the simulated di↵raction patterns are also part of the simulation

5

Image: C. Fortmann-Grote



The SPB/SFX Instrument: Installation, commissioning and some highlights Adrian Mancuso, European XFEL Users’ Meeting, 24th January 2018 2

Reminder: The scope of the SPB/SFX Instrument 

FIG. 1. Schematic sketch of the simulated single–particle imaging experiment, showing the undu-

lator section, horizontal o↵set mirrors, and focussing mirrors. Di↵racted photons are registered in

the detector. The inset shows the simulated molecule 2NIP.

Electronic damage (i.e. ionization), however, sets in even earlier with the very first

photons hitting the sample, producing photo–electrons of a few hundred to a few thousand

eV kinetic energy. This process is typically followed by Auger decay on time scales of a

few femtoseconds. Precise values vary between chemical elements. Auger lifetimes of the

most abundant 2NIP constituent atoms range between 4.9 fs (Oxygen) and 10.7 fs (Carbon)

[6, 12]. Auger electrons from L or M shells leave the atom with a few hundreds of eV,

triggering an avalanche of secondary impact ionization on time scales of roughly 10-100 fs,

creating the strong repulsive forces between ions responsible for the Coulomb expansion [13].

The immediate e↵ect of increased ionization, noticable already before the ionic displace-

ment sets in, is a decrease in the amount of coherently scattered photons since the elastic

scattering cross–section scales with the square of the number of bound electrons. In this

work, we study whether we can further improve the signal level and signal–to–noise ratio,

and thereby in turn the consistency of oriented di↵raction volumes, by reducing the pulse

duration to 3 fs FWHM, i.e. shorter than the Auger lifetime of most 2NIP constituents.

Our simulations track the x–ray photons from their generation in the FEL’s undulator

structure through the x–ray optical beam line to the sample interaction point. We take into

account the stochastic nature of self–amplified spontaneous emission (SASE) x–ray pulses

in the temporal and spectral domain, as well as imperfections of optical elements in the

beamline. Subsequently, we model the photons’ interaction with and scattering from the

sample including time dependent e↵ects and their eventual registration in the detector. Ori-

entation and phasing [3] of the simulated di↵raction patterns are also part of the simulation

5

Image: C. Fortmann-Grote

Data: SPI initiative, SLAC



The SPB/SFX Instrument: Installation, commissioning and some highlights Adrian Mancuso, European XFEL Users’ Meeting, 24th January 2018 2

Reminder: The scope of the SPB/SFX Instrument 

FIG. 1. Schematic sketch of the simulated single–particle imaging experiment, showing the undu-

lator section, horizontal o↵set mirrors, and focussing mirrors. Di↵racted photons are registered in

the detector. The inset shows the simulated molecule 2NIP.

Electronic damage (i.e. ionization), however, sets in even earlier with the very first

photons hitting the sample, producing photo–electrons of a few hundred to a few thousand

eV kinetic energy. This process is typically followed by Auger decay on time scales of a

few femtoseconds. Precise values vary between chemical elements. Auger lifetimes of the

most abundant 2NIP constituent atoms range between 4.9 fs (Oxygen) and 10.7 fs (Carbon)

[6, 12]. Auger electrons from L or M shells leave the atom with a few hundreds of eV,

triggering an avalanche of secondary impact ionization on time scales of roughly 10-100 fs,

creating the strong repulsive forces between ions responsible for the Coulomb expansion [13].

The immediate e↵ect of increased ionization, noticable already before the ionic displace-

ment sets in, is a decrease in the amount of coherently scattered photons since the elastic

scattering cross–section scales with the square of the number of bound electrons. In this

work, we study whether we can further improve the signal level and signal–to–noise ratio,

and thereby in turn the consistency of oriented di↵raction volumes, by reducing the pulse

duration to 3 fs FWHM, i.e. shorter than the Auger lifetime of most 2NIP constituents.

Our simulations track the x–ray photons from their generation in the FEL’s undulator

structure through the x–ray optical beam line to the sample interaction point. We take into

account the stochastic nature of self–amplified spontaneous emission (SASE) x–ray pulses

in the temporal and spectral domain, as well as imperfections of optical elements in the

beamline. Subsequently, we model the photons’ interaction with and scattering from the

sample including time dependent e↵ects and their eventual registration in the detector. Ori-

entation and phasing [3] of the simulated di↵raction patterns are also part of the simulation

5

Image: C. Fortmann-Grote

Data: SPI initiative, SLAC

www.xfel.eu 

Experiment and samples 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Towards 3D Single Particle Imaging using a model, non-
crystalline system with weak 3D diffraction data 
K. Giewekemeyer1, A. Aquila1,2*, N.D. Loh3, Y. Chushkin4, K.S. Shanks5, J.T. Weiss5, M.W. Tate5, H.T. Philipp5, S. Stern6, P. Vagovic6,  C.H. Yoon1,6,2*, 
M. Mehrjoo1, F. Zontone4, D. Vine7, R. Harder7, C. Chang2, R. Tiberio8, A. Sakdinawat2, G.J. Williams2,9*,  S.M. Gruner5, and A.P. Mancuso1 
1European XFEL, Hamburg, Germany; 2SLAC National Accelerator Laboratory, Menlo Park (CA), USA; 3Centre for BioImaging Sciences, National University of Singapore, Singapore; 4ESRF – The European 
Synchrotron, Grenoble, France; 5Department of Physics, Cornell University, Ithaca (NY), USA;  6CFEL/DESY, Hamburg, Germany; 7Argonne National Laboratory, Argonne (IL), USA; 8Stanford University, 
Stanford (CA), USA; 9Brookhaven National Laboratory, Upton (NY), USA 

Introduction and Motivation 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Results (work in progress) 

Preliminary conclusions and outlook 

Far field diffraction data from a nano-fabricated gold sample 
(sidelength ~800 nm, for similar sample see SEM picture (a)) was 
collected at beamline ID10 of the ESRF. Data from rotation angles 
θ = -80˚...72˚ was obtained using the high-dynamic range Mixed-
Mode Pixel Array Detector (MM-PAD), developed at Cornell 
University [3]. Then the sample was rotated along the beam 
direction by ca. 50°and another rotation series was collected (θ = 
-82˚...66˚). Due to the high dynamic range of the detector (>108 
photons/sec/pixel) no beamstop was required, allowing for full 
control of the scattered and unscattered beam. 
To arrive at the low signal level expected for scattering from small 
particles at FEL sources [4], 2000 frames per projection were 
collected, with 25 msec/frame exposure time, totalling in 456,000 
diffraction patterns for the full dataset presented here. In addition, 
the beam was attenuated by a factor of ~3.4. Corresponding 
background data (on the empty membrane) was collected as well. 
The average number of incident photons per frame was around 
5.9×105 photons, with around 111 scattered photons per frame 
(outside the central speckle). 

We obtained a 3D diffraction dataset with a relatively small missing cone (~30˚) and 228 orientations, 
divided into 2000 frames per projection. Diffraction data was measured without a beamstop, using 
the MM-PAD detector [3]. Individual frames have scattering levels in the range that is expected for 
FEL single-shot diffraction of macromolecules [4], allowing for a realistic experimental test of 
currently available orientation algorithms, such as EMC [2] or manifold embedding [5].  
The dataset comprising 456,000 individual frames was assembled into a 3D diffraction volume 
without the knowledge of the frames‘ orientation in 100 iterations of the EMC algorithm [2]. The 
phasing step was performed using the Hybrid-Input-Output (HIO) algorthm, combined with Error 
Reduction (ER).  
According to these still preliminary results EMC can be applied successfully in the SPI case to 
experimental data frames with as little as around a 100 photons per frame. Applications to data with 
higher background noise, taken at APS, are planned. 

Due to their unique source properties, recent and future Free Electron Laser 
(FEL) sources offer the potential of 3D Coherent X-ray Diffractice Imaging 
(CDI) of isolated, very small particles such as viruses or macromolecules, 
without the need for signal enhancement through crystallization [1]. Due to 
the Coulomb explosion initiated by the interaction of a very short (<100 fs) 
and bright (≥1012 photons) X-ray pulse with a single sample particle, this 
needs to be replenished continuously. Therefore, to obtain a 3D structure of 
the sample, diffraction data from a very large number of reproducible 
particles in random 3D orientations needs to be collected. The large number 
is required as (i) a certain amount of orientations is needed to cover all 
possible orientations and (ii) diffraction from particles as small as 
macromolecules is very weak, with signal levels of N~103 scattered photons 

per frame and less. Before the 3D electron density can be reconstructed 
based on iterative phase retrieval (phase problem), it is necessary to first 
reconstruct the 3D intensity distribution in reciprocal space (orientation 
problem) [2]. A considerable challenge in this process is experimental 
background scattering from the sample medium, the instrument, etc., which 
can be as high as the signal itself. 
To study the effect of this background and in order to establish, improve and 
evaluate the analysis steps from diffraction data collection to 3D structure 
retrieval we experimentally mimic an FEL experiment using a coherent 
synchrotron beam, with realistic signal level and background. As samples we 
use colloidal nano-particles and nano-frabricated gold structures with well-
known shape and composition. 
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3D Diffraction volume reconstructed by EMC  

3D intensity after 100 iterations of the Expansion-Maximization-Compression (EMC) 
algorithm [2]. Different views on the same intensity distribution are shown. The algorithm was 
initialized  by a random 3D distribution. 

Real-space reconstruction 

To reach the reconstruction on the 
left, 560 iterations (Hybrid-Input-
Output) with Shrinkwrap support-
refinement (every 20th iteration) 
were performed. The threshold 
parameter for the Shrinkwrap-
process was set to 0.1. Finally, 240 
iterations of Error Reduction were 
added to reach a local minimum. An 
average of 55 reconstructions is 
shown here, iso-surface-renedered. 
The voxel sidelength is 15.9 nm. 
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Outlook: Data with high background level 

Typical single frame (with sample) 

Typical single frame (w/o sample) 

Outline of sample (Au  
nano-particles) at one 
orientation. 

Data collected in a very similar manner at 
Advanced Photon Source, beamline 34IDC. 

Data: K. Giewekemeyer, et al
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without the knowledge of the frames‘ orientation in 100 iterations of the EMC algorithm [2]. The 
phasing step was performed using the Hybrid-Input-Output (HIO) algorthm, combined with Error 
Reduction (ER).  
According to these still preliminary results EMC can be applied successfully in the SPI case to 
experimental data frames with as little as around a 100 photons per frame. Applications to data with 
higher background noise, taken at APS, are planned. 

Due to their unique source properties, recent and future Free Electron Laser 
(FEL) sources offer the potential of 3D Coherent X-ray Diffractice Imaging 
(CDI) of isolated, very small particles such as viruses or macromolecules, 
without the need for signal enhancement through crystallization [1]. Due to 
the Coulomb explosion initiated by the interaction of a very short (<100 fs) 
and bright (≥1012 photons) X-ray pulse with a single sample particle, this 
needs to be replenished continuously. Therefore, to obtain a 3D structure of 
the sample, diffraction data from a very large number of reproducible 
particles in random 3D orientations needs to be collected. The large number 
is required as (i) a certain amount of orientations is needed to cover all 
possible orientations and (ii) diffraction from particles as small as 
macromolecules is very weak, with signal levels of N~103 scattered photons 

per frame and less. Before the 3D electron density can be reconstructed 
based on iterative phase retrieval (phase problem), it is necessary to first 
reconstruct the 3D intensity distribution in reciprocal space (orientation 
problem) [2]. A considerable challenge in this process is experimental 
background scattering from the sample medium, the instrument, etc., which 
can be as high as the signal itself. 
To study the effect of this background and in order to establish, improve and 
evaluate the analysis steps from diffraction data collection to 3D structure 
retrieval we experimentally mimic an FEL experiment using a coherent 
synchrotron beam, with realistic signal level and background. As samples we 
use colloidal nano-particles and nano-frabricated gold structures with well-
known shape and composition. 
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3D Diffraction volume reconstructed by EMC  

3D intensity after 100 iterations of the Expansion-Maximization-Compression (EMC) 
algorithm [2]. Different views on the same intensity distribution are shown. The algorithm was 
initialized  by a random 3D distribution. 

Real-space reconstruction 

To reach the reconstruction on the 
left, 560 iterations (Hybrid-Input-
Output) with Shrinkwrap support-
refinement (every 20th iteration) 
were performed. The threshold 
parameter for the Shrinkwrap-
process was set to 0.1. Finally, 240 
iterations of Error Reduction were 
added to reach a local minimum. An 
average of 55 reconstructions is 
shown here, iso-surface-renedered. 
The voxel sidelength is 15.9 nm. 
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Outlook: Data with high background level 

Typical single frame (with sample) 

Typical single frame (w/o sample) 

Outline of sample (Au  
nano-particles) at one 
orientation. 

Data collected in a very similar manner at 
Advanced Photon Source, beamline 34IDC. 

Data: K. Giewekemeyer, et al

Sim recon: Yoon, et al
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Fig. S4. Schematic of the experimental setup. (A) A lipidic cubic phase (LCP) microjet 
continuously transports microcrystals across the focused XFEL beam. X-ray diffraction is 
recorded on a detector for each and every XFEL exposure. A green ns laser is used to 
photo-activate bR microcrystals prior to the arrival of an XFEL pulse. (B) Data collection 
sequence illustrating how X-ray diffraction data were collected at 30 Hz from photo-
activated (green laser flash, 15 Hz) and resting (no laser flash) in an interleaved fashion.  

Figure: Nango, et al, Science, 2016
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Reminder: The scope of the SPB/SFX Instrument 

FIG. 1. Schematic sketch of the simulated single–particle imaging experiment, showing the undu-

lator section, horizontal o↵set mirrors, and focussing mirrors. Di↵racted photons are registered in

the detector. The inset shows the simulated molecule 2NIP.

Electronic damage (i.e. ionization), however, sets in even earlier with the very first

photons hitting the sample, producing photo–electrons of a few hundred to a few thousand

eV kinetic energy. This process is typically followed by Auger decay on time scales of a

few femtoseconds. Precise values vary between chemical elements. Auger lifetimes of the

most abundant 2NIP constituent atoms range between 4.9 fs (Oxygen) and 10.7 fs (Carbon)

[6, 12]. Auger electrons from L or M shells leave the atom with a few hundreds of eV,

triggering an avalanche of secondary impact ionization on time scales of roughly 10-100 fs,

creating the strong repulsive forces between ions responsible for the Coulomb expansion [13].

The immediate e↵ect of increased ionization, noticable already before the ionic displace-

ment sets in, is a decrease in the amount of coherently scattered photons since the elastic

scattering cross–section scales with the square of the number of bound electrons. In this

work, we study whether we can further improve the signal level and signal–to–noise ratio,

and thereby in turn the consistency of oriented di↵raction volumes, by reducing the pulse

duration to 3 fs FWHM, i.e. shorter than the Auger lifetime of most 2NIP constituents.

Our simulations track the x–ray photons from their generation in the FEL’s undulator

structure through the x–ray optical beam line to the sample interaction point. We take into

account the stochastic nature of self–amplified spontaneous emission (SASE) x–ray pulses

in the temporal and spectral domain, as well as imperfections of optical elements in the

beamline. Subsequently, we model the photons’ interaction with and scattering from the

sample including time dependent e↵ects and their eventual registration in the detector. Ori-

entation and phasing [3] of the simulated di↵raction patterns are also part of the simulation
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Results (work in progress) 

Preliminary conclusions and outlook 

Far field diffraction data from a nano-fabricated gold sample 
(sidelength ~800 nm, for similar sample see SEM picture (a)) was 
collected at beamline ID10 of the ESRF. Data from rotation angles 
θ = -80˚...72˚ was obtained using the high-dynamic range Mixed-
Mode Pixel Array Detector (MM-PAD), developed at Cornell 
University [3]. Then the sample was rotated along the beam 
direction by ca. 50°and another rotation series was collected (θ = 
-82˚...66˚). Due to the high dynamic range of the detector (>108 
photons/sec/pixel) no beamstop was required, allowing for full 
control of the scattered and unscattered beam. 
To arrive at the low signal level expected for scattering from small 
particles at FEL sources [4], 2000 frames per projection were 
collected, with 25 msec/frame exposure time, totalling in 456,000 
diffraction patterns for the full dataset presented here. In addition, 
the beam was attenuated by a factor of ~3.4. Corresponding 
background data (on the empty membrane) was collected as well. 
The average number of incident photons per frame was around 
5.9×105 photons, with around 111 scattered photons per frame 
(outside the central speckle). 

We obtained a 3D diffraction dataset with a relatively small missing cone (~30˚) and 228 orientations, 
divided into 2000 frames per projection. Diffraction data was measured without a beamstop, using 
the MM-PAD detector [3]. Individual frames have scattering levels in the range that is expected for 
FEL single-shot diffraction of macromolecules [4], allowing for a realistic experimental test of 
currently available orientation algorithms, such as EMC [2] or manifold embedding [5].  
The dataset comprising 456,000 individual frames was assembled into a 3D diffraction volume 
without the knowledge of the frames‘ orientation in 100 iterations of the EMC algorithm [2]. The 
phasing step was performed using the Hybrid-Input-Output (HIO) algorthm, combined with Error 
Reduction (ER).  
According to these still preliminary results EMC can be applied successfully in the SPI case to 
experimental data frames with as little as around a 100 photons per frame. Applications to data with 
higher background noise, taken at APS, are planned. 

Due to their unique source properties, recent and future Free Electron Laser 
(FEL) sources offer the potential of 3D Coherent X-ray Diffractice Imaging 
(CDI) of isolated, very small particles such as viruses or macromolecules, 
without the need for signal enhancement through crystallization [1]. Due to 
the Coulomb explosion initiated by the interaction of a very short (<100 fs) 
and bright (≥1012 photons) X-ray pulse with a single sample particle, this 
needs to be replenished continuously. Therefore, to obtain a 3D structure of 
the sample, diffraction data from a very large number of reproducible 
particles in random 3D orientations needs to be collected. The large number 
is required as (i) a certain amount of orientations is needed to cover all 
possible orientations and (ii) diffraction from particles as small as 
macromolecules is very weak, with signal levels of N~103 scattered photons 

per frame and less. Before the 3D electron density can be reconstructed 
based on iterative phase retrieval (phase problem), it is necessary to first 
reconstruct the 3D intensity distribution in reciprocal space (orientation 
problem) [2]. A considerable challenge in this process is experimental 
background scattering from the sample medium, the instrument, etc., which 
can be as high as the signal itself. 
To study the effect of this background and in order to establish, improve and 
evaluate the analysis steps from diffraction data collection to 3D structure 
retrieval we experimentally mimic an FEL experiment using a coherent 
synchrotron beam, with realistic signal level and background. As samples we 
use colloidal nano-particles and nano-frabricated gold structures with well-
known shape and composition. 
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3D Diffraction volume reconstructed by EMC  

3D intensity after 100 iterations of the Expansion-Maximization-Compression (EMC) 
algorithm [2]. Different views on the same intensity distribution are shown. The algorithm was 
initialized  by a random 3D distribution. 

Real-space reconstruction 

To reach the reconstruction on the 
left, 560 iterations (Hybrid-Input-
Output) with Shrinkwrap support-
refinement (every 20th iteration) 
were performed. The threshold 
parameter for the Shrinkwrap-
process was set to 0.1. Finally, 240 
iterations of Error Reduction were 
added to reach a local minimum. An 
average of 55 reconstructions is 
shown here, iso-surface-renedered. 
The voxel sidelength is 15.9 nm. 
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Fig. S4. Schematic of the experimental setup. (A) A lipidic cubic phase (LCP) microjet 
continuously transports microcrystals across the focused XFEL beam. X-ray diffraction is 
recorded on a detector for each and every XFEL exposure. A green ns laser is used to 
photo-activate bR microcrystals prior to the arrival of an XFEL pulse. (B) Data collection 
sequence illustrating how X-ray diffraction data were collected at 30 Hz from photo-
activated (green laser flash, 15 Hz) and resting (no laser flash) in an interleaved fashion.  

Figure: Nango, et al, Science, 2016

Image: PDB 4W4Q
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Schematic of the “Day one” SPB/SFX Instrument

3-16 keV

~1 µs

100 ms (10 Hz)

60
 pu

lse
s, 

~6
0 µ

s (
1.1

 M
Hz)

99
.94

 m
s i

dle
 tim

e

~50 fs

High repetition rate is unique feature 
and competitive edge of XFEL



The SPB/SFX Instrument: Installation, commissioning and some highlights Adrian Mancuso, European XFEL Users’ Meeting, 24th January 2018 4

The SPB/SFX instrument before

17th October 2016
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..and after

20th Sep, 201720th Sep, 2017
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..and after

20th Sep, 201720th Sep, 2017

27th Nov, 2017
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How did we get there? How did we get to data and results?

 24.02.17 — Delivery of mirror chambers and supports (first “big” component to be installed)  

 31.03.17 — Mirror mechanics installed  

 10.04.17 — Sample chamber and Component Support Structure (CSS) installed 

 Not yet internals of sample environment 

 15.05.17 — Experiment hutch cabling completed 

 28.05.17 — Experimental hall flooded (a Sunday!) 

 31.06.17 — Cable flood damage (corrosion) repairs completed 

 20.06.17 — Commissioning setup (sample chamber internal) installed 

 23.06.17 — First beam in hutches  

 24.06.17 — First coherent diffraction (edges, slits), 29.06.17 (Far-field aperture diffraction) 30.06.17 (Fresnel diffraction) 

 13.08.17 — AGIPD delivered, 19.08.17 — AGIPD first darks at SPB/SFX, 28.08.17 — AGIPD first X-ray data at SPB/SFX, 14.09.17 — 
AGIPD used in first user experiment at SPB/SFX! 

 22.08.17 — Liquid Jet sample delivery system installed  

 14.09.17 — Liquid Jet sample delivery system used with beam 

 16.09.17 (night) — First Serial Crystallography data on AGIPD from lysozyme 

 17.11.17 — First analysed results communicated to entire first experiment collaboration by lead investigator Anton Barty
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Mirror chambers, sample chamber and support structure 
installed…

31st March, 2017

…even before the hutch infrastructure was completed!
 First “big” components installed 

 Essential part of the SPB/SFX vacuum system (remember the instrument’s in vacuum and windowless)
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Mirror chambers, sample chamber and support structure 
installed…

31st March, 2017

…even before the hutch infrastructure was completed!
 First “big” components installed 

 Essential part of the SPB/SFX vacuum system (remember the instrument’s in vacuum and windowless)

10th April, 2017
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First Beam in the hall 
Coherent diffraction from early commissioning
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Coherent diffraction from early commissioning
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A coherent walk through Fresnel number…
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14.08 at 1:00p.m.: …welcome to XHQ 

10

Installation of AGIPD at SPB/SFX

13.08.17 — AGIPD delivered, 19.08.17 — AGIPD first darks at SPB/SFX, 28.08.17 — AGIPD first X-ray data at SPB/SFX, 14.09.17 — AGIPD 
used in first user experiment at SPB/SFX!
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Installation of AGIPD at SPB/SFX

First dark data at SPB/SFX 19.08.17
Removal of “cap”

13.08.17 — AGIPD delivered, 19.08.17 — AGIPD first darks at SPB/SFX, 28.08.17 — AGIPD first X-ray data at SPB/SFX, 14.09.17 — AGIPD 
used in first user experiment at SPB/SFX!
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Exchange of “hood”
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The SPB/SFX Instrument: Installation, commissioning and some highlights Adrian Mancuso, European XFEL Users’ Meeting, 24th January 2018 10

Installation of AGIPD at SPB/SFX

First dark data at SPB/SFX 19.08.17
Removal of “cap”

Exchange of “hood”

Installation of “cage”

13.08.17 — AGIPD delivered, 19.08.17 — AGIPD first darks at SPB/SFX, 28.08.17 — AGIPD first X-ray data at SPB/SFX, 14.09.17 — AGIPD 
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Installation of AGIPD at SPB/SFX

First dark data at SPB/SFX 19.08.17
Removal of “cap”

Exchange of “hood”

Installation of “cage”Completed “cage” with L. Lopez, C. Takem and P. Schütt 
9:30pm, Saturday 19th August 2017

13.08.17 — AGIPD delivered, 19.08.17 — AGIPD first darks at SPB/SFX, 28.08.17 — AGIPD first X-ray data at SPB/SFX, 14.09.17 — AGIPD 
used in first user experiment at SPB/SFX!
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First data from AGIPD at SPB/SFXFirst	data	from	AGIPD	at	SPB/SFX	

The	experiment:		
■  Powder	diffrac9on	from	LiTi	(le?)	
■  Liquid	jet	with	crystals	(centre)	
■  Automa9c	indexing	(right)	
■  Frame	rate	4.5	MHz	
■  30	pulses	@	1.1MHz/train	
■  E=8keV	

On	behalf	of	the	AGIPD	consor9um,	DESY-CXI	&	XFEL	
AGIPD consortium 
A. Allahgholi1, J. Becker1, A. Delfs1, R. Dinapoli2, P. Göttlicher1, H. Graafsma1,5, D. 
Greiffenberg2, H. Hirsemann1, S. Jack1, R. Klanner3, A. Klyuev1, H. Krueger4,  M. Kuhn1, 
S. Lange1, T. Laurus1,  A. Marras1, D. Mezza2, A. Mozzanica2, J. Poehlsen1, S. Rah6, B. 
Schmitt2, J. Schwandt3, I. Sheviakov1, X. Shi2, S. Smoljanin2,U. Trunk1 , Q. Xia1, J. 
Zhang1, M. Zimmer1 
1 – Deutsches Elektronen-Synchrotron, 2 – Paul Scherrer Institute, 3 – Universität Hamburg, 4 – 
Universität Bonn, 5 – Mid Sweden University, 6 – Pohang Accelerator Laboratory. 

XFEL	Detector		group	
Steffen Hauf, Alexander Kaukher , Astrid Münnich, Jolanta Sztuk-Dambietz!
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Universität Bonn, 5 – Mid Sweden University, 6 – Pohang Accelerator Laboratory. 

XFEL	Detector		group	
Steffen Hauf, Alexander Kaukher , Astrid Münnich, Jolanta Sztuk-Dambietz!
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And then—just like that—we’re doing experiments with 
100+ users

First user group (experiment 2012) was an open collaboration with 100+ participants 
Lead investigator: Anton Barty
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Experiment 2012: Collaborative 100+ participants 
Lead investigator: Anton Barty

xfel2012: Anton Barty, Valerio Mariani, Andrew Morgan, Tom White (CFEL), Helen Ginn (Oxford), Filipe Maia (Uppsala) 
and others 
FS-DS detector group: Manuela Kuhn, Thorsten Laurus, Aschkan Allagholi
XFEL detector group: Steffen Hauf

<unpublished data>
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The data collected at SPB/SFX can be used to solve for 
structure 

<unpublished data>
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First XFEL2012 results compare well to previous SFX 
structures

Dominik Oberthur: Structure refinement 
17 Nov 2017

Slide: Anton Barty

In short, the instrument works  
and we can do serial crystallography 
at SPB/SFX!

<unpublished data>



The SPB/SFX Instrument: Installation, commissioning and some highlights Adrian Mancuso, European XFEL Users’ Meeting, 24th January 2018 16

Metrics show resolution independent of pulse number in 
the train

For the parameters of the early user experiments 
(15 µm focal spot, 1.1 MHz repetition rate), 
the train can be usefully exploited for serial crystallography

<unpublished data>
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Pump-probe serial crystallography: experiment #2066

PI: Petra Fromme

<unpublished data>

Collected > 54 000 frames of time-resolved serial crystallography data
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Diffraction data from single viruses: SPB/SFX #2013

PI: Filipe Maia

Viruses injected with aerosol jet and diffraction data recorded

<unpublished data>
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Not everything went to plan:  
Expected vs delivered parameters

Planned parameters 
(Dec 2016 / Jan 2017)

Delivered beam 
parameters

Photon Energy 8.86 keV ~ 9.3 keV

Repetition rate 1.1 MHz 1.1 MHz

# of pulses per train 60 30

Focal spot size 3 µm 15 µm

Pulse energy ~300 µJ 300–1000µJ

Focal spot size large than expected due to CRLs  
(chromaticity, perhaps additional effects)
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What’s next? 
Mirrors for higher transmission and smaller spot sizes

 First mirrors presently coated and to be installed next week. Scheduled for operation in run 3 (end 
2018). 

 To the best anyone can ascertain, the mirrors meet the 2 nm P-V height error specification 

 Should provide vastly superior optical properties compared to the CRLs, particularly in 
transmission, aperture and spot size as well as benefits due to achromaticity 

 Downstream interaction region (SFX contribution) to be in-part installed in 2018 too for early 2019 
delivery (in atmosphere system)
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Headline Conclusions

 For the parameters used (1.1 MHz rep rate, 15 um spot) 
the European XFEL rep rate can be successfully exploited 
for both serial crystallography and SPI 

 Day one instrument works—first structure determined! 
Publishable results generated! 

 Mirrors are coming for better focal spot sizes 

 Call for run 3 (inc. use of mirrors) will open in (approx.) March this year. 
A detailed description of instrument capabilities will be available then. 

 Still plenty of work to be done at the instrument, however already we can use SPB/SFX for 
serial crystallographic structure determination and first single particle imaging projects!
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First	data	from	AGIPD	at	SPB/SFX	

The	experiment:		
■  Powder	diffrac9on	from	LiTi	(le?)	
■  Liquid	jet	with	crystals	(centre)	
■  Automa9c	indexing	(right)	
■  Frame	rate	4.5	MHz	
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■  E=8keV	
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