SASE3 instruments – status and plans

European XFEL Users' Meeting 2018

Serguei Molodtsov European XFEL, Scientific Director

Overview

- Undulator systems
- Optics and diagnostics
- Experimental hutches
- Optical lasers
- Detectors
- Sample environment
- Scientific instruments

SASE System without

With enclosure

All gaps closed to 10 mm

- Hardware installed & aligned
- Control system & remote controls operational
- Air conditioning commissioned & operational
- All gaps can be closed to 10 mm
- System is fully operational
- Final system tests were done

SASE3 undulator is fully operational since the end of March 2017

Implementation of circular polarization in 2020, cooperation with SwissFEL

- Boundary condition of the design considered was minimum invasiveness to the SwissFEL/PSI undulator layout with the main goal to decrease implementation costs.
- Afterburner sections length (2 m) and the precise mechanics were selected to be the same in both cases for the European XFEL afterburners and the undulator of SwissFEL/PSI.
- Solution presented allows using intersections, phase shifters, and quadrupole movers already used at the European XFEL.

Optics & vacuum components installation summary SASE3

- All components are delivered and installed.
- Racks & cables: Most essential cables for first commissioning are in place.
- Vacuum system is complete and closed.
- Controls: Vacuum complete and in operation. Motion control under local testing and Karabo projects are being set up.
- Optics: Two offset mirrors and optics for soft-X-ray monochromator (2 pre-mirrors, 1 short grating, 1 long grating blank) are installed.
- First lasing is expected in the beginning of February. Commissioning of beam transport in XTD10 will start on February 14.

Current view of SASE3, XTD10 tunnel

Vacuum Control System (PLC/Karabo)

Diagnostics installation summary SASE3

Systems:

FILT, IMGTR, KMONO, IMGSR, XGM, DP (PES related differential pumping), PES, IMGFEL, MCP-detector, IMGPIII, IMGPII90, IMGPII45, 2 x IMGES, 3 x IMGPI

- Mechanics / UHV chambers
 - All supports installed and surveyed
 - All vacuum chambers installed and connected to beamline vacuum.
- Gas supply system installed, tested, flushed; operational for XGM
- All electronics and cabling installation completed (except PES)
- Technical commissioning without beam
 - Completed for XGM, DP, Imagers. Ongoing for MCP, KMONO
 - not started for PES (on locally controlled vacuum operation)

SASE3 photon diagnostics

SASE3 photon diagnostics: imagers

SASE3: Status of the civil construction

- Laser hutches: Done.
- Experimental hutches: Done.
- Control and rack hutches: Done.

SASE3: Status of the technical infrastructure installation

SASE3: Status of the cabling / PLC planning

- IT cabling: Done, final acceptance test planned for the middle of Feb. IT connectivity available mid of March.
- PLC modules production: ca. 80% produced & tested. Remaining modules produced until March.
- Phase II cabling (motors, sensors...):
 All cabling done in April 2018.
- Scope of planning & work: 160+ PLC modules + 3200+ associated cables (not counting power or IT)!
- Start of electronics and cabling commissioning: April 2018

SASE3: 2018 schedule

- First Lasing in February 2018, beam brought up to the end of photon tunnels
- Major infrastructure works will finish in March/April
- Day 1 instrument installation starting in full swing in March/April
- Commissioning of instrument controls & electronics without beam in May/June/July
- Instrument commissioning with beam in August/September
- Very first trial experiments in October
- Potential first scheduled users in middle of November

PP-laser installation schedule

■ General PP-laser installation schedule:

Task 1: Laser tables and infrastructure in PP and ILH-hutches

Task 2: Components + commissioning in PP and ILH-hutches

Task 3: Beam to experiment

■ SASE-specific schedules:

■ Challenges:

- Parallel installation at SASE 2 and 3
- Simultaneous operation at SASE 1

Patch Panels

DSSC MiniSDD1 Mpix Detector

Processed DEPFET Wafer

Electronics/Power

Courtesy DSSC Collaboration

Measured DEF

Measured DEPFET Characteristics

Provided by pnSensor GmbH

Project started one year later 29-m long Cables & Strain Relief

European XFEL

mounted to the Support Frame

Front-end electronics produced and successfully tested

Collaboration is focused on integrating, calibrating and commissioning of the first full size 1 Mpix camera based on MiniSDD sensors, to be ready in Q3 2018

Full specs DEPFET based camera will follow in January 2020

 $Provided\ by\ pnSensor\ GmbH$

FastCCD

Detector arrived at XFEL

Beamline integration at SCS
is in progress

Calibration is in progress Ready for installation at experiment May 2018

pnCCD

Detector for soft- and hard X-ray imaging experiments.

Procurement and testing of first components started.

Detector available in autumn 2018.

Primary experiments SQS and SCS

Energy Range

0.03 – 25 keV

Pixel Size 75 x 75 µm²

1024 x 1024 Pixels²

Dynamic Range

6000 ph@1.keV

Frame Rate

up to 150 Hz

Noise

6 e- at high gain

Energy Range

0.25 – 6 keV

Pixel Size 30 x 30 µm²

1920 x 960 Pixels²

Dynamic Range

Approx. 350 ph@1 keV

Frame Rate

up to 200 Hz

Noise

25 e- at high gain

Fast solid sample scanner

DC electromagnet environment

Timing

Diagnostics

Final Layout of SQS Scientific Instrument

AQS

AQS Atomic-like Quantum Systems

Targets: atoms & molecules

Detection: electrons, ions, photons

KB Optics

Bendable mirrors

3 interaction points

Beam Position Monitor

Gas Monitor Detector

Alignment Laser

NQS

Beam Dump

NQS

Nano-size Quantum Systems

Targets: Cluster, Nano-particles, bio-molecules

Detection: electrons, ions, photons

SQS-REMI

Reaction Microscope

Targets: molecules **Detection: electrons, ions**

Angle- and energy-resolved electron and ion spectra

in coincidence

European XFEL

KB Optics: - interim solution

- non bendable

Beam Position Monitor

→ 1 interaction point

→ exchange of chambers

Atomic-like Quantum
Systems
atoms & molecules
Detection: electrons, ions,
photons

Beam Dump

KB Optics
NQS

ov, January 24, 2018

AQS

Gas Monitor
Detector
Alignment
Laser

European XF

REMI

Reaction Microscope
Molecules, Detection: electrons, ions
Angle- and energy-resolved
electron and ion spectra in
coincidence

Nano-size Quantum
Systems
Cluster, Nano-particles, biomolecules

Detection: electrons, ions, photons

Vacuum vessel

(< 10⁻¹⁰ mbar)

E ≤ 1 keV, E/∆**E**=100

eTOF: $E/\Delta E > 10~000$

OK.

Precision alignment base (1 μm)

AQS assembly & test

AQS: Atomic-like Quantum Systems

6 x eTOFs High energy resolution

Non-dipole studies

1 x VMI Angular distribution

e / ion - coincidences

1 x MBES e / e - coincidences

1 1D Imaging XUV spectrometer

Spectroscopy and Coherent scattering (SCS) scientific instrument Configuration at start of operation

SCS instrument timeline and status

- May 2017 Instrument components stored in experiment hall, local testing of FFT station and pre-installations
- Dec. 2017 KB mirror system stored at FMB Oxford
- Jan 2018 superpolished JTEC mirrors delivered, inspection in metrology labs.
- March 2018 Start of sensitive component installation
- May/June 2018 Day-one components installed and FastCCD integrated. Controls and DAQ to continue
- August 2018 commissioning start

SASE3 instruments – status and plans

Serguei Molodtsov, January 24, 2018

SCS 2nd baseline instrument (2019): XRD experiment station

- UHV, 10⁻⁹ mbar
- in-vacuum diffractometer, 2 degrees of motion
- sample stage: 6 degrees of motion
- cryogenic conditions

Sample-transfer port

Time-resolved spectroscopy:

- X-ray absorption spectroscopy (XAS)
- Resonant inelastic x-ray scattering (RIXS)
- Reflectivity / X-ray resonant diffraction (XRD)

SCS Early User Workshop 21-22 February 2018 Schenefeld campus

Counts

European XFEL

M.P.M. Dean et al., Nat. mat. 15, 601 (2016)

SCS and hRIXS user consortium: Heisenberg RIXS setup

hRIXS working group (on behalf of the consortium):

G. Ghiringhelli, A. Scherz, J. Schlappa, J.T. Delitz, T. Laarmann, S. Techert, S. Huotari, F. Senf, A. Pietzsch, S. Neppl and A. Föhlisch

Spectrometer:

Tender awarded (Bestec GmbH); delivery April 2019

Detector:

Multi-hit compatible delay-line anode contributed by Finnish partner consortium

Chemistry Endstation

European XFEL

- Flexible multipurpose UHV chamber
- Optimized for liquid jets and gas phase targets
- ☐ Up to for selectable hRIXS scattering angles (fixed)
- Vacuum protection: diff. pumping (to beamline) and filters (to hRIXS)
- Collinear laser in-coupling

Tender awarded (Bestec GmbH)

Delivery scheduled for December 2018

TR-PES beamline at SASE3

Bundesministerium für Bildung und Forschung

Experimental stations

Spin-filtering ToF momentum microscopy (Univ. Mainz, G. Schönhense *et al.*) Dual angle-resolving ToF photoelectron spectroscopy (Univ. Hamburg, W. Wurth *et al.*)

ToF momentum microscopy

Bad Honnef Physics School on

Physics with Free Electron Lasers

supported by the Wilhelm and Else Heraeus - Foundation
23 - 28 September, 2018, Physikzentrum Bad Honnef, Germany

On behalf of SQS - M. Meyer (Group Leader) SCS - A. Scherz (Group Leader) hRIXS - A. Föhlisch (Speaker) TR-PES - K. Rossnagel (Speaker)