Record Details

Title:
Conservation in two-particle self-consistent extensions of dynamical mean-field theory
Affiliation(s):
XFEL.EU staff, Other
Keyword(s):
Topic:
Scientific area:
Abstract:
Extensions of dynamical mean-field theory (DMFT) make use of quantum impurity models as nonperturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded interactions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model because it allows to suppress the antiferromagnetic phase transition in two dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper, we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge and longitudinal spin channels, the double occupancy of the lattice and the impurity is no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.
Imprint:
American Physical Society, 2017
Journal Information:
Physical Review B, 96 (7), 075155 (2017)
External related publications:
Language(s):
English


Export


 Record created 2018-07-11, last modified 2018-07-19

Fulltext:
Download fulltext
PDF

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)