Interference-Based Ultrafast Polarization

Control at Free Electron Lasers

Svitozar Serkez!, Gianluca Geloni!, Evgeni Saldin?

1 European XFEL, Holzkoppel 4, Schenefeld, Germany
2 DESY, Notkestrasse 85, Hamburg, Germany

Abstract

X-Ray Free Electron Lasers (XFELS) provide short high power pulses of X-rays with a high degree of
polarization, where polarization properties are determined by undulator magnetic field. Fast control of
these properties would allow for unique experiments. Here we propose a scheme to modulate the
polarization of FEL radiation (polarization shaping) or generate on average non-polarized radiation with
FELs. This scheme is based on “crossing” APPLE-X helical undulators.
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Shifting frequency in one of the undulators would create
phase chirp between the two radiation pulses.
Polarization plane of radiation depends on longitudinal
position along the beam : ; }
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Modifying bunching frequency
between the undulators

Chirped electron beam undergoes (de-)compression in the
Y A dispersive environment.
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Consider seeded electron beam (seed may be chirped to
satisfy resonance condition along the beam) - optional
Bunching is developed downstream the inverse tapered

undulator
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Two overlapping radiation pulses with linear phase chirp are generated in the helical
APPLE-X undulators, the resulting radiation pulse will have modulated polarization.
Polarization scrambling at Tera-radian/second rate

Two pulses of polarization-of interest if combined with slotted foil with two slots

Can operate in SASE mode

- Frequency chirp in radiation will be present
Twin-bunch technique may be beneficial

Focusing on the sample

Two helical undulators = two sources=two images

Convenient to locate sample between two images

(maximizing energy density)

Both radiation wavefronts are curved

A¢ varies with the distance from the optical axis
Introducing aperture in focusing system increases
Rayleigh length, decreases transverse phase chirp

Degree of polarization:
96% - on axis

+ slotted foil
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50% intensity clipped
by aperture

Rayleigh length increased

70% - transversely integrated 95% - transversely integrated with aperture

Stokes parameters

Polarization stated can be
expressed with Stokes
parameters

So = (ExEx) + (EyE;)

Sy = (ExEz) — (EyE;)

Sy = (EyE;> + (ExE;)
S3 = i(<EyE;> - (ExE;> )

Brackets (...) denote
an average over
observation time
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